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Description
Cancer researchers around the world are massively working 

in order to better understand cancer biology and find promising 
therapeutic targets to attack cancer cells more efficient and specifically. 
Once increased genomic instability is a remarkable feature of the 
different types of cancer, several groups are putting efforts in the 
characterization of alterations in the DNA damage response (DDR) 
pathway, a specialized genome surveillance mechanism that protects 
cells of endogenous and exogenous genotoxic stresses. Loss of function 
mutations or expression alteration in genes of the DDR machinery and 
in genes involved in DNA repair execution, which are downstream 
activated, have been extensively associated with cancer development, 
progression, malignancy grade, and patient’s prognosis and survival 
[1-14].

DDR activation encompasses a phosphorylation cascade in which 
numerous proteins are involved. Depending on the type of damage, 
specific DDR signaling is triggered and determines the activation 
of different pathways mainly coordinated by the PI3K-like kinases 
ATM (ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia 
and Rad3-related). Two major DNA damage sensors undertake 
the recognition of DNA lesions, the MRE11-RAD50-NBS1 (MRN) 
complex that detects DNA double-strand breaks (DSBs), and RPA 
(replication protein A) and the RAD9-RAD1-HUS1 complex that 
identify persistent single-stranded DNA regions. These complexes 
recruit the apical kinases ATM/ATR, which in turn phosphorylate 
several targets including: 53BP1 (p53-biding protein 1), MDC1 
(mediator of DNA damage checkpoint 1), TOPBP1 (topoisomerase 
DNA II binding protein 1), BRCA1 (breast cancer 1, early onset) 
and the histone variant H2AX. These proteins sustain and amplify 
DDR signaling and pass-through the signal to effector molecules. 
ATM is predominantly triggered by DSBs, while ATR responds to 
the presence of single-stranded DNA generated by DNA replication 
stress, but there is considerable crosstalk between these pathways in 
downstream steps. Ultimately, DDR signaling can spread away the 
DNA lesion site and promotes the engagement of the downstream 
kinases CHK1 (checkpoint kinase 1) and CHK2 (checkpoint kinase 
2), mainly phosphorylated by ATR and ATM, respectively. CHK1 and 
CHK2 activate two major effectors: p53 and CDC25 (cell division cycle 
25) that coordinates cell cycle arrest allowing DNA repair execution
by DNA repair proteins also activated in the process. The resume of
cell cycle progression occurs only when damage has been completely
removed. Otherwise, when extensive damage cannot be properly
repaired, DDR can induce senescence or cell death by apoptosis [15].

Therefore, considering the first steps of tumorigenesis, it is classically 
known that loss of function of genes involved in DDR is a fundamental 
trigger for cancer development. This multifaceted DDR machinery 

was shown to be an inducible barrier for cancer establishment by 
stopping the cell cycle and inducing cellular senescence or cell death 
in oncogene-transformed cells [3,4]. So far, the activation of DNA 
repair genes, which are orchestrated by the DDR proteins, functions 
as the good guys of tumor initiation blockage. Paradoxically, several 
studies have also shown that increased expression of DNA repair genes 
is correlated with the incidence of more aggressive cancers in patients 
with melanoma [16], bladder [17] and breast cancers [18], squamous 
cell carcinoma of the oral cavity [19], and glioma [20,21]. These data 
suggested that once the tumor was initiated and progressed to more 
malignant stages greater competence in DNA repair is required to 
avoid the collapse of extremely unstable genomes. 

More recently, this dual role of DDR in tumorigenesis (tumor 
suppressive) and cancer progression (tumor promoting) has been 
proposed as a mechanism by which cancer cells escape of checkpoint 
imposed senescence or death and adapt to advanced stages presenting 
higher levels of replicative stress and genetic instability [22]. Thus, after 
tumor establishment, the activation of DNA repair genes becomes the 
bad guy that allows cancer progression. The elevated resistance to radio 
and chemotherapies observed in highly malignant tumors could be, at 
least in part, related to this phenomenon [16,23]. 

Glioblastoma multiforme (GBM), the most common and malignant 
primary brain tumor affecting adults, is extremely aggressive and 
resistant to current therapies, which usually include maximal surgical 
resection, radiotherapy and chemotherapy with the alkylating agent 
temozolomide (TMZ) [24-26]. The median survival of GBM patients is 
14.6 months and the percentage of individuals who lives for five years 
or more is less than 10% [27,28]. It has been widely demonstrated that 
the activation of DDR acts as an oncogene-induced biological barrier 
against GBM development [29-32]. Bartkova et al., showed that DDR 
is aberrantly and constitutively activated in low-grade astrocytoma and 
in GBM samples, but not in normal brain or in brain tissues adjacent 
to the tumor area. More importantly, although GBM presents higher 
degree of proliferation, the levels of DNA damage were greater in 
the low-grade astrocytoma than in GBM. These results indicate that 
somehow DDR seems to be more effective in more aggressive lesions 
than in low-grade tumors.
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In this context, we have recently showed an independent 
correlation between the overexpression of HJURP, a novel protein 
involved in DNA repair and centromeric chromatin assembly, and the 
worse survival prognosis of GBM patients. Interestingly, we observed 
that the more aggressive the tumor is, the higher the levels of HJURP 
expression. We also demonstrated that HJURP function is essential for 
GBM cell lines survival while non-tumor cells were not significantly 
affected, suggesting a potential synthetic lethal effect for HJURP 
silencing in GBM cells [33]. HJURP overexpression was also included 
in a four-gene signature associated with poor clinical outcome of high-
grade gliomas patients [34]. Additionally, XRCC2 and XRCC4, both 
related with the homologous recombination DNA repair pathway, 
are also overexpressed in GBM and the knockdown of these genes 
sensitizes GBM cell lines to radio and chemotherapies [35]. 

Therefore, if we consider the initial steps of precancerous lesions 
development, DDR has the important roles of inhibiting uncontrolled 
proliferation and activating senescence or apoptosis when DNA damage 
accumulates. Not a coincidence, in the majority of low-grade cancers the 
pathway of ATM/ATR, the apical kinases that mediates DNA damage 
signaling, are compromised by loss of function mutations, mainly in 
TP53 but frequently also in other downstream genes. In contrast, after 
establishment of early lesions, it seems that along with tumor evolution 
the activity of these pathways are recovered and exacerbated in order 
to defend tumor cells from the replicative stress, high mutation rates 
and severe genomic instability [3,4,22,33,36,37]. Thus, the competence 
acquired in the DDR pathway, in part through the overexpression of 
DNA repair genes, allows the survival of progressively more malignant 
cancer cells despite the excessive genomic instability accumulated. 

This scenario highlights the fundamental role DDR presents in 
cancer progression and points out the potential of this pathway for 
the identification of promising therapeutic targets. Further research 
is necessary to elucidate the mechanisms by which endogenous 
replicative stress and genomic instability accumulation impose a 
selection pressure over tumor cells for the acquisition of higher 
competence in DNA repair and also to identify the genetic targets 
associated with this competence. The characterization of the genetic 
alteration repertoire related to the enhanced DNA repair capacity could 
permit the developing of adjuvant therapies that sensitizes tumor cells 
to the genotoxic agents or even boost the design of novel therapeutic 
strategies based on synthetic lethal effects for GBM cells. 
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