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Introduction
 Corals (Cnidaria: Anthozoa) are important components of both 

tropical and boreal benthic communities. Dry biomass of corals contain 
up to 30% of lipids [1]. Lipids take part in the majority of biochemical 
processes in corals [2]. Neutral lipids serve as long-term energy stores 
[3,4]. Polar lipids, first of all phospholipids (PLs), are the structural base 
of cell membranes. The content and composition of coral lipids depend 
on the annual cycle [5], light regimes [6], and the prevailing food [7]. 
In symbiotic coral species, lipids constitute a part of organic carbon 
transferred between coral host and their symbiotic dinoflagellates 
(zooxanthellae) [8-10]. 

Fatty acids (FAs) are a part of lipid molecules as acyl groups. FA 
profile is the main characteristic of coral total lipids. Several FAs are used 
as markers of trophic and symbiotic relationships of corals [11,12] and 
play an important role in the regulation of coral metabolism [13]. There 
are certain differences in FA profiles between coral subclasses; lipids of 
soft corals contain tetracosapolyenoic acids (TPA), namely, 24:5n-6 and 
24:6n-3, which are absent in reefbuilding corals [1,14]. Svetashev and 
Vysotskii [15] suggested TPA as chemotaxonomic marker of soft corals 
and other taxonomic groups of the subclass Octocorallia. Comparison 
of FA compositions of zooxanthellate soft coral species and species 
without zooxanthellae showed that TPA are synthesized in coral polyp 
tissues and serve as the biochemical markers of the host [16,17]. Some 
C18-20 polyunsaturated FAs (PUFAs) can be evidently converted to 
TPA by the coral host [18]. Sprecher [19] summarized that arachidonic 
acid (20:4n-6) was elongated to 22:4n-6 and then to 24:4n-6, which in 
its turn was desaturated to yield 24:5n-6. Analogically, eicosapentaenoic 
acid (20:5n-3) was a substrate for synthesis of 24:6n-3. These pathways 
were found in several types of cells of terrestrial organisms and the 
presence of 24:4n-6 and 24:5n-3 as intermediate products was implied. 
The synthesis of TPA in cnidarians was not investigated, moreover, 
24:4n-6 and 24:5n-3 were not found in soft corals [14]. A hypothesis 
about synthesis of 24:5n-6 from 22:5n-6 and 24:6n-3 from 22:6n-3 by 
Δ4 desaturase in soft corals has been suggested [20]. 
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Abstract
Fatty acids (FAs) of soft corals contain two very-long-chain tetracosapolyenoic acids (TPA, 24:5n-6 and 24:6n-3), 

which are chemotaxonomic markers of all species of the subclass Octocorallia. The distribution of TPA in molecular 
species of different phospholipid (PL) classes was investigated for the first time in the soft corals Sinularia macropodia 
and Capnella sp. From shallow waters of Vietnam. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), 
phosphatidylserine (PS), and phosphatidylinositol (PI) were the major PL classes of S. macropodia and Capnella sp. 
More than thirty two molecular species of these four PL classes were determined by high resolution tandem mass 
spectrometry. 18:1e/20:4 PE, 18:0e/20:4 PC, 18:0e/24:5 PS, and 18:0/24:5 PI were the major molecular species of 
PL in both coral species. PE, PC, and PS mainly consisted of alkyl acyl and alkenyl acyl forms, but diacyl forms 
predominated in PI. TPA were the principal FAs in PS and PI, whereas 20:4n-6 was more abundant in PE and PC. 
Selective incorporation of TPA in the molecules of PS and PI are supposed to be a specific feature of the biosynthesis 
of PL in alcyonarians. To study the trophic and symbiotic relationships of soft corals, some molecular species of PS and 
PI with TPA may be applied as lipid molecular markers of coral polyps.
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 PUFAs are used as a substrate for phospholipid biosynthesis. The 
mechanism of this process is well described for medium- and long-
chain PUFAs [21] but not for TPA. In soft corals, most TPA are known to 
concentrate in PLs [1,22] but the distribution of TPA between different 
PL classes is unclear and the data on molecular species composition of 
PLs containing TPA are very limited. Recently, the molecular species 
composition of phosphatidylethanolamine (PE), phosphatidylcholine 
(PC), phosphatidylserine (PS), and phosphatidylinositol (PI) has been 
determined in the soft coral Xenia sp. and a predomination of the 
molecular species with TPA in PS has been found [20]. To determine 
the features of the distribution of TPA between different PL classes, 
structures and compositions of PL molecular species in the soft corals 
Sinularia macropodia and Capnella sp. were investigated.

Materials and Methods
 The colonies of the soft corals S. macropodia (Hickson & Hiles, 

1900) (Anthozoa: Octocorallia: Alcyonacea: Alcyoniidae) and Capnella 
sp. (Anthozoa: Octocorallia: Alcyonacea: Nephtheidae) were collected 
in July 2014 at a depth of 1.5-2 m in Nha Trang Bay and Tonking 
Gulf, the South China Sea, Vietnam. To analyze lipids, three different 
colonies were taken. TL were extracted using a modified technique of 
[23]. Lipids were extracted by intensive homogenization in CHCl3/
MeOH (1:2, by vol) (30 mL per 10 g of coral wet wt). The homogenate 
obtained was filtered, and the residue was repeatedly extracted (6 h, 4 
ºC) in CHCl3/MeOH (2:1, by vol) (2 × 30 mL). The extracts were then 
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mixed and separated into layers by adding 35 mL of H2O and 30 mL 
of CHCl3. The lower layer was evaporated, and the TL obtained were 
dissolved in CHCl3 and stored at -18ºC. 

 The TL were divided into neutral and polar lipid fractions by 
column chromatography on silica gel according to Rouser et al. [24]. 
Polar lipid compositions were analyzed by thin-layer chromatography 
(TLC) using the precoated silica gel plates (10 cm × 10 cm) Sorbfil 
PTLC-AFV (Sorbfil, Krasnodar, Russia) and the solvent system CHCl3/
MeOH/28% NH4OH (65:35:5, by vol). Plates were sprayed with 10% 
H2SO4/MeOH and heated at 240ºC for 10 min. The chromatograms 
were scanned using an image scanner (Epson Perfection 2400 PHOTO) 
in a grayscale mode. Using an image analysis program (Sorbfil TLC 
Videodensitometer, Krasnodar, Russia), the percentages of PL contents 
were determined by band intensity. Individual PL classes were isolated 
by preparative TLC as described above. The Bands of PLs were scraped, 
eluted with 10% H2O/MeOH, dissolved in CHCl3 and stored at 
-18ºC. The HPLC separation of PLs was performed with a Shimadzu 
Prominence liquid chromatograph equipped with a Shim-Pack diol 
column (50 mm × 4.6 mm ID, 5 μm particle size) (Shimadzu, Kyoto, 
Japan) using the binary solvent gradient consisted of solvent mixture 
A: n-hexane/2-propanol/AcOH/Et3N (82:17:1:0.08, by vol) and mixture 
B: 2- propanol/H2O/AcOH/Et3N (85:14:1:0.08, by vol). The gradient 
started at 5% of mixture B and its percentage was increased to 80% over 
25 min. This composition was maintained for 1 min, returned to 5% of 
mixture B over 10 min, and maintained at 5% for 4 min (the total run 
time was 40 min). The flow rate was 0.2 mL/min. 

Lipids were detected by a high resolution tandem ion trap-time of 
flight mass spectrometry by a Shimadzu LCMS-IT-TOF instrument 
(Kyoto, Japan) operating both at positive and negative ion mode at 
electrospray ionization (ESI) conditions during each analysis. Ion 
source temperature was 200ºC, the range of detection was m/z 100-
1200, and potential in the ion source was -3.5 and 4.5 kV for negative 
and positive modes, respectively. The drying gas (N2) pressure was 200 
kPa. The nebulizer gas (N2) flow was 1.5 L/min. 

PL molecular species were identified as described earlier [20]. The 
quantification of individual molecular species within each PL class was 
carried out by calculating the peak areas for the individual extracted ion 
chromatograms [25].

Results and Discussion
PL profiles of two alcyonarian species investigated were quite 

similar. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), 
phosphatidylserine (PS), and phosphatidylinositol (PI) were the major 
PL classes, which constituted in sum 75.5 and 82.3% of total PLs of S. 
macropodia and Capnella sp., respectively. The total percentages of these 
four PL classes in the species of the genera Sinularia, Lobophytum, and 
Sarcophyton collected previously in the same region and season were 
72.8, 65.4, 71.1% of total PL, respectively [26]. The group of PLs (PE, 
PC, PS, and PI) seems to be a characteristic group of structural lipids of 
alcyonarians from shallow waters of Vietnam. 

High performance liquid chromatography and high resolution mass 
spectrometry (HPLCHRMS) was applied for the analysis of chemical 
structures and amounts of molecular species of PE, PC, PS, and PI. The 
compositions of the major molecular species of these four PL classes 
obtained from S. macropodia and Capnella sp. are showed in Table 1. 

PE, PC, and PS of both the coral species mainly consisted of alkyl acyl 
and alkenyl acyl forms, but diacyl forms predominated in PI. The same 
distribution of alkyl, alkenyl, and diacyl forms has been earlier found in 
PL molecular species of Xenia sp. (Anthozoa: Octocorallia: Alcyonacea: 
Xeniidae) [20] and PL classes of the genera Sinularia, Lobophytum, and 
Sarcophyton [26] collected in summer season. On the contrary, alkenyl 
forms of PL (plasmalogens) were not detected in coral colonies collected 
in winter season [26]. Delta-1’- desaturase is known to convert the alkyl 
form (1-alkyl-2-acyl-sn-glycerophospholipids) to the alkenyl form 
(1-alk-1’-enyl-2-acyl-sn-glycerophospholipids) [27]. We suppose that a 
seasonspecific low activity of delta-1’-desaturase leads to the low level 
of the PL alkenyl form in the Vietnamese alcyonarians in winter season. 

18:1e/20:4 PE, 18:0e/20:4 PC, 18:0e/24:5 PS, and 18:0/24:5 PI were 
the major molecular species of PL in both coral species studied (Table 
1). In Xenia sp. described recently, 18:1e/20:4 PE, 18:0e/20:4 PC, and 
18:0e/24:5 PS constituted 86.4, 51.9, and 68.4% of the respective PL 
classes [20]. Thus, three soft corals (S. macropodia, Capnella sp., and 
Xenia sp.) had similar compositions of the molecular species of PE, PC, 
and PS. Most species-specific variations were found in the composition 
of PI molecular species. Nevertheless, 18:0/22:4, 18:0/24:5, and 18:0/24:6 
prevailed in PI molecular species of all three soft corals mentioned 
above. We suppose that the composition of diacyl PC is under the 
influence of PC of zooxanthellae [20], whereas the composition of 
diacyl PI mostly depends on lipids and FAs obtained from food. 

An evident imbalance in the distribution of TPA and 20:4n-6 
between PL classes was found in S. macropodia and Capnella sp. (Table 
1). All identified PS molecular species of two species, 79.9% of PI 

PE PC PS PI
Molecular species SM CS Molecular species SM CS Molecular species SM CS Molecular species SM CS

16:0e/20:4* 2.4*** - 16:0e/16:2 3.6 - 16:0e/24:5 0.8 - 18:0e/20:4 - 8.3
18:0e/20:4 16.7 23.3 16:0e/18:2 5.1 4.4 18:0e/24:5 83.9 77.9 18:0e/22:4 - 3.9
18:0e/24:5 - 2.1 16:0e/18:3 6.8 2.1 18:0e/24:6 15.3 22.1 18:0e/24:5 - 4.2
18:1e/20:4** 56.0 41.1 16:0e/18:4 8.0 2.1 18:0e/24:6 - 0.1
18:1/20:4 - 2.8 16:0e/20:4 23.9 10.8 16:0/18:1 - 2.6
18:2/20:4 17.1 30.5 18:0e/16:2 2.7 - 16:0/18:2 - 1.8

Other 7.8 0.2 18:0e/18:1 1.5 - 16:0/22:6 - 11.5
18:0e/18:2 4.9 4.1 16:0/24:5 6.0 -
18:0e/18:3 9.7 4.3 18:0/20:3 - 2.6
18:0e/20:4 29.6 63.1 18:0/22:4 20.1 26.5
19:1/20:4 - 1.4 18:0/24:5 63.0 38.5

Other 4.2 7.7 18:0/24:6 10.9 -
* Alkyl acyl form; ** Alkenyl acyl form (plasmalogen); ***Values are presented as mean of triplicate analysis, SD do not exceed 10% of the means.
Table 1: Composition of the Major Molecular Species of Phosphatidylethanolamine (PE), Phosphatidylcholine (PC), Phosphatidylserine (PS), and Phosphatidylinositol (PI) 
(mol % of Each Lipid Class) of the Soft Corals Sinularia macropodia (SM) and Capnella sp. (CS)
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molecular species of S. macropodia, and 42.8% of PI molecular species 
of Capnella sp. contained TPA. Acid 20:4n-6 was abundant in PE and 
PC, but molecular species with TPA consisted less than 3% of PE and 
PC. In Xenia sp. investigated recently, PS contained 76.6% of molecular 
species with TPA; PI contained 30.2% of three diacyl molecular species 
(16:0/24:5 PE, 18:0/24:6 PE, 18:0/24:5 PE) and 1.7% of 18:0e/24:5 PE [20]. 

We compared three soft coral species belonging to three different 
families (Alcyoniidae, Nephtheidae, and Xeniidae) of the order 
Alcyonacea. The high concentration of TPA in PS and PI may be 
considered as a taxonomic indicator of zooxanthellate alcyonarians. 
Recently, several highly unsaturated molecular species of galactolipids 
have been proposed as lipid molecular markers of zooxanthellae in a 
symbiont-host association of corals [28]. Contrary to zooxanthellae, 
soft coral polyps have no galactolipids but can synthesize TPA. To study 
trophic and symbiotic relationships of soft corals, some molecular 
species of PS and PI with TPA may be applied as lipid molecular 
markers of soft coral polyp tissues. 

Ether lipids, which contain alkyl or alkenyl group in sn-1 position 
and 20:4n-6 in sn-2 position, were the major PC and PE molecular 
species in S. macropodia, Capnella sp., and Xenia sp. The profiles of the 
major PC and PE were similar in all three species. This similarity is 
easily explained by biosynthesis of ether lipids, which assumes that both 
1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine and 1-alkyl-2-acyl-
sn-glycero-3-phosphocholine are synthesized from the same 1-alkyl-2-
acyl-sn-glycerols (AAG) [29]. Alkyl lipids can be then converted to the
alkenyl lipids.

The very high level of TPA in PS molecular species allowed us to 
postulate that PS and PE (PC) synthesized from two different groups 
of AAG distinguished by their FA compositions. AAG with TPA are 
used for the synthesis of PS, whereas PE (PC) synthesized from AAG 
contained 20:4n-6. Theoretically, soft corals can use full set of FAs for the 
synthesis of diacyl PI, although soft coral PI are rich in TPA. Selective 
incorporation of TPA in the molecules of PS and PI are supposed to be 
a specific feature of the biosyntheses of PL in alcyonarians.
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