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Abstract
Mesenchymal stem cells (MSCs) are known to reside in the stromal fraction of many tissues and have multiple 

differentiations. MSCs isolated from different sources have functional heterogeneity that is controlled by dynamic 
interactions between extracellular signaling, epigenetic, transcriptional and post-translational regulation. Extracellular 
vesicles (EVs) derived from MSCs are one of the main factors responsible for the therapeutic effect of MSCs. 
We propose here that EVs from different types of MSCs maintain the imparity. Recent studies have revealed 
that microRNAs (miRNAs), one of the integral cargoes of EVs, play a crucial role in translational regulation. We 
thus examined the miRNAs expression patterns in EVs derived from mesenchymal stem cells isolated from the 
bone marrow (BM), adipose tissue (AT), Wharton’s jelly (WJ) and human exfoliated deciduous teeth (SHED) and 
summarized the biological functions of common and specific miRNAs as well as their target genes in physiological 
and pathological processes. The data presented here help compare the biological properties and potential of EVs 
from these distinct MSC populations.
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Introduction
Mesenchymal stem cells (MSCs) are a population of fibroblast-

like cells derived from nearly all tissues in adult (adipose tissue, bone 
marrow, exfoliated deciduous teeth, peripheral blood) and fetal tissues 
(placenta, Wharton’s jelly and umbilical cord) [1,2]. These cells have 
the capability of differentiating into fat, bone, cartilage, muscle and 
neurons depending on the stimulus and culture conditions [3]. MSCs 
isolated from various tissue sources exhibit significantly different 
morphologies, differentiation capabilities, and gene expression. MSCs 
from different tissues are widely known to not be biologically equivalent 
and to have variable self-renewal and multipotent capabilities. Bone 
marrow (BM)-MSCs were first described by Friedenstein et al. and 
are usually considered to be the gold standard [4,5]. Adipose tissue 
(AT)-MSCs, also known as adipose-derived mesenchymal stem cells 
(ADSCs), have strong proliferation, repair and regeneration abilities 
[6,7]. Previous researches has revealed that Wharton’s Jelly (WJ)-
derived MSCs have more powerful immunosuppressive and therapeutic 
activities [8-10]. Stem cells from human exfoliated deciduous teeth 
(SHED) were reported to differentiate into neural cells and express 
neuronal markers under neural induction [11,12]. 

MSCs are emerging as a novel powerful tool for the treatment 
of various diseases. MSC EVs function as an extension of MSC’s 
biological roles. They exert specific effects on their microenvironment 
and play important roles in intercellular communication in both healthy 
and diseased tissues. 

MicroRNAs (miRNAs) were firstly identified in 1993 [13] and are 
small non-coding small RNAs of approximately 20-22 nucleotides. 
MiRNAs regulate approximately 30-70% gene expression through 
binding to the 3’ untranslated region (UTR) of target mRNAs. As one 
of the cargo content of EVs, miRNAs are key contributors to the overall 

biological function of EVs and the source cells. They are known to 
post-transcriptionally regulate the expression of genes involved in the 
differentiation pathways of MSCs [14-17]. 

Methods
Culture of BM-MSCs, AT-MSCs, WJ-MSCs and SHED

 Ethical approval (IRB No.18000015) was obtained from Tsukiji 
clinic cosmos. Four types of mesenchymal stem cells were donated 
by four individuals. Bone marrow-derived mesenchymal stem cells 
(BM-MSCs) and adipose tissue-derived mesenchymal stem cells 
(AD-MSCs) were obtained from the patients who received medical 
treatment of injecting cells for ameliorating structural changes 
associated with skin aging before the enforcement of the Act on 
the Safety of Regenerative Medicine on November 25, 2014 and 
consenting full-term provided. BM-MSCs were isolated according to 
the method described by Pittenger et al. [18]. AD-MSCs were isolated 
according to the method described by Zuk PA et al. [19]. Wharton’s 
jelly mesenchymal stem cells (WJ-MSCs) were extracted from the 
human umbilical cord (UC). The UC was obtained from the patients 
who provided full consent, and the UC was taken immediately after 
natural childbirth. WJ-MSCs were isolated according to the method 
described by Sarugaser et al. [20]. Stem cells from human exfoliated 
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deciduous teeth (SHED) were obtained from the patient consenting 
full-term provided from the deciduous teeth immediately. SHED were 
isolated according to the method described by Gronthos et al. [21] and 
Miura et al. [22]. Each cell type was cultured with Dulbecco’s modified 
Eagle’s medium with 4500 mg/L of glucose, 584 mg/L of L-glutamine, 
110 mg/L of sodium pyruvate, and 3700 mg/L of sodium bicarbonate 
(DMEM D6429; Sigma-Aldrich, St. Louis, MO, USA) containing 100 
units/mL of penicillin, 100 µg/mL of streptomycin, and 0.25 µg/mL 
of the antibiotic-antimycotic amphotericin B (100 x; Gibco™, Thermo 
Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (S1820 FBS; Biowest Nuaillé, France). When the 
cells proliferated to 80-100% confluency, they were passaged using 
TrypLE™ Select (Gibco™) and passaged until P4. All P4 passaged cells 
were used for collected conditioned medium (CM).

EV purification

Prior to CM collection, MSCs were washed twice with PBS, and 
the medium was switched to fresh serum-free medium (Dulbecco’s 
modified Eagle’s medium with 584 mg/L of L-glutamine (DMEM 
D6429; Sigma-Aldrich, St. Louis, MO, USA). After incubation for 
48 h, the CM was collected and centrifuged at 2,000 × g for 10 min 
at 4°C. To thoroughly remove cellular debris, the supernatant was 
filtered through a 0.22-μm filter (Millipore). The CM was then used 
for EV isolation. To prepare EVs, CM was ultracentrifuged at 35,000 
rpm using a SW41Ti rotor for 70 min at 4°C for 3 times. The pellets 
were washed with 11ml PBS, ultracentrifuged at 35,000 rpm using the 
SW41Ti rotor for 70 min at 4°C. After ultracentrifugation, they were 
resuspended in PBS. The EVs yield per 106 MSCs per day was 1-4 × 
108 particles as determined by NTA, or 1-4 ug protein, as determined 
by the Bradford method.

RNA extraction and miRNA analysis

Total RNA was extracted from EVs using QIAzol reagent and the 
miRNeasy Mini Kit (Qiagen, Hilden, Germany). The quantity and 
quality of extracted RNA were determined using a NanoDrop ND-1000 
spectrophotometer (Thermo Fisher Scientific Inc. USA) and the Agilent 
Bioanalyzer system (Agilent Technologies, USA), as recommended. 

Total RNA was labeled with cyanine 3 (Cy3) using the miRNA 
Complete Labeling and Hyb Kit (Agilent Technologies) as instructed 
by the manufacturer. Briefly, total RNA was dephosphorylated by 
incubating with Calf Intestinal Alkaline Phosphatase (CIP) Master 
Mix at 37°C for 30 min. Dephosphorylated RNA was denatured by 
incubating with DMSO at 100°C for 5 min and then immediately 
transferred to ice for 2 min. After addition of a ligation master mix 
for T4 RNA Ligase and Cyanine 3-Cytidine bisphosphate (Cy3-pCp), 
the RNA was incubated at 16°C for 2 h. Labeled RNA was dried using 
a vacuum concentrator at 55°C for 1.5 h and then hybridized onto 
Agilent SurePrint G3 Human miRNA 8x60K arrays at 55°C for 20 h. 
After washing, the microarrays were scanned using an Agilent DNA 
microarray scanner. The intensity values for each scanned feature were 
quantified using Agilent Feature Extraction software version 10.7.3.1, 
which performs background subtractions.

Microarray data analysis

The intensity values of the miRNA microarray were log2-
transformed and imported into Partek Genomics Suite 6.6 (Partek Inc, 
Chesterfield, MO, USA). For gene expression analysis, fold changes 
were calculated for each analysis. Unsupervised clustering and heat 
map generation were performed with sorted or whole datasets based on 
the Euclidean distances of the average linkage clustering with selected 
probe sets using Partek Genomics Suite 6.6.

Results & Discussion
Common miRNAs in BM-MSCs, AT-MSCs, WJ-MSCs and 
SHED

  Using miRNA microarray, the expression levels of 2551 miRNAs 
were examined from EVs derived from BM-MSCs, AT-MSCs, WJ-
MSCs and SHED. We employed a criterion of signal intensity > 3 at 
a log2 value for each miRNA expression as being highly expressed. 
Ninety-one miRNAs were commonly detected in 4 types of MSC 
EVs (Figure 1). Table 1 lists 8 miRNAs that are biologically well-
documented. Several studies have suggested that miR-199-3p is 
involved in the regulation of the cell cycle, cancer progression, 

Figure 1: Commonly detected miRNAs in BM-MSCs, AT-MSCs, WJ-MSCs and SHED. With the criterion of signal intensity more than 3 at log2 ratio, 91 miRNAs are 
selected as positively-detected miRNAs in 4 types of MSCs. The selected 91 miRNAs are used to visualize as a heatmap
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differentiation and inflammation. MiR-199a-3p exerts the suppressive 
functions in prostate cancer by targeting CD44 and several mitogenic 
molecules including c-MYC, cyclin D1 and EGFR [23]. These results 
presented here offer a possibility for developing a miR-199a-3p delivery 
system by EVs into anti-PCa replacement therapeutics. Additionally, 
miR-199a-3p functions as an obesity-associated miRNA that is induced 
during adipogenesis [24]. MiR-24 upregulation in post-replicative 
cells reduced the H2AX levels, make cells vulnerable to DNA damage, 
and inhibited cell cycle progression by down-regulating of multiple 
E2F- and MYC-regulated genes [25,26]. MiR-29a has been repeatedly 
implicated in apoptosis, but its pro and anti-apoptotic functions have 
not been elucidated [27,28]. MiR-23a-3p has been shown to cause 
cellular senescence by targeting HAS2 [29]. Overexpression of miR-
23a-3p decreases E-cadherin expression and significantly reverses 
osthole-mediated inhibition of cell invasion, while silencing of miR-
23a-3p partially inhibits cell motility [30]. MiR-23a/b significantly 
suppresses PDCD4 expression and enhances tumor growth in gastric 
cancer [31]. MiR-638 which can reduce the proliferation, invasion, 
and DNA repair capabilities and is associated with downregulation of 
BRCA1 expression [32]. In addition, miR-638 regulates proliferation 
and myeloid differentiation by targeting CDK2 [33,34]. Restoring the 
miR-638 expression levels by delivering EVs may contribute to the 
treatment of acute myeloid leukemia treatment. MiR-125b-5p has 
been suggested to serve as an important positive regulator in adipocyte 
differentiation partially by down-regulating Smad4 [35]. These results 
indicated that miR-125b-5p encapsulated in the EVs of MSCs may be 
a potential target in obesity and metabolic diseases. Several reports 
have shown that miR-21-5p is able to regulate the expression of other 
target genes such as PTEN, MSH2, Cdc25A, SPRY2 and PDCD4, and 
therefore is associated with a worse response to therapy in other tumor 
types [36-41]. 

Specific miRNAs in AT-MSCs, BM-MSCs, SHED and WJ-
MSCs 

Specific miRNAs in AT-MSCs: To identify cell-type specific 
miRNAs, we excluded miRNAs that were not detected in any of the 
4 types of MSC EVs. There were 397 miRNAs left that were expressed 
in at least one sample. Among these miRNAs, specifically expressed 
miRNAs in each type of MSCs were selected based on expression 
levels. 4, 25, 29 and 35 miRNAs were selected as cell-type specific 
miRNAs in EVs derived from AT-MSC, WJ-MSC, SHED and BM-
MSC, respectively (Figure 2). We also summarized these findings 
in Table 2 by showing biologically well-documented miRNAs. In 
Table 2, miR-424-5p, which was specifically expressed in AT-MSC 
EVs, possessed diverse functions in different biological processes. 
In the metastatic process of hepatocellular carcinoma, miR-424-5p 
reversed EMT by directly targeting ICAT, and further reconstituted 
the E-cadherin/β-catenin complex on the cell membrane [42]. MiR-
424-5p was frequently upregulated in pancreatic cancer and modulated 
the ERK1/2 signaling pathway by negatively regulating SOCS6 [43]. 
MiR-424, which is induced by hypoxia in human endothelial cells, 
targeted cullin 2, a scaffolding protein critical to the assembly of the 
ubiquitin ligase system. Thus, miR-424 stabilizes HIF-α isoforms and 
promotes angiogenesis [44]. MiR-424 also participates in osteogenic 
differentiation [45]. 

Specific miRNAs in BM-MSCs: EVs secreted by BM-MSCs, 
the most widely studied mesenchymal stem cells, expressed several 
distinct miRNAs (Figure 2D). Almost all of the miRNAs listed were 
reported to be correlated with differentiation. MiR-140-5p has been 
revealed to directly repress BMP2 and inhibited osteogenic lineage 
commitment in undifferentiated human MSCs [49]. MiR-140-5p has 
been shown to inhibit TGFBRI in hepatocellular carcinoma (HCC), 
and its overexpression may suppress HCC growth and metastasis 
[50]. In ovarian cancer, miR-140-5p increases PDGFRα expression, 
and enhances ovarian cancer cell proliferation [51]. Overexpression of 

Common miRNAs

miRNA Target genes Function References

miR-199a-3p CD44, c-MYC, cyclin D1, EGFR, 
HIF1α

↓cell-cycle progression
↓cancer cell proliferation
↑adipocyte differentiation

[23]

[24]

miR-24-3p

H2AX
MYC, E2F2

CCNB1, CDC2,
p27Kip1, VHL

↑DNA repair
↓cell-cycle progression

↑cell proliferation
↑terminal differentiation

[25]
[26]

miR-29a-3p ZFP36, VDAC1, VDAC2, CDC42 ↓inflammation
↑cancer cell proliferation

[27]
[28]

miR-23a-3p
HAS2, SMAD3

E-cad
PDCD4

↑senescence
↑cell motility

↓cancer cell apoptosis
↑cancer cell proliferation

[29]
[30]
[31]

miR-638

BRCA1

CDK2
DACT3

↓cancer cell proliferation
↓DNA repair

↑myeloid differentiation
↑autophagy

[32]

[33]
[34]

miR-125b-5p

Smad4

HMGA2
MCL1

↑pre-adipocyte differentiation
↓proliferation
↑senescence
↑proliferation

[35]

[36]
[37]

miR-630 IGF1R ↓cell motility [38]

miR-21-5p
PTEN, Bcl2, hMSH2, PDCD4

JAG1

↑cancer cell proliferation

↑dendritic cell differentiation
↑inflammation

[39]

[40]
[41]

Table 1: Common miRNAs.
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miR-140-5p disrupts autophagy in colorectal cancer stem cells through 
both Smad2 and ATG12, and impacts the downstream regulators of 
autophagy, such as cathepsin B, cathepsin S, and immunity-related 
GTPase family M [52]. MiR-335-5p has been previously reported to 
regulate the osteogenic, chondrogenic and adipogenic differentiations 
of MSCs [52-55]. Meanwhile, miR-378a-3p has also  been associated 
with differentiation of myoblasts, osteoblasts, and adipocytes [56,57]. 
MiR-378a-3p induces adipogenesis by targeting MAPK1 [58]. By 
targeting Gli3, miR-378a-3p suppresses the activation of hepatic 
stellate cells during liver fibrogenesis [59]. MiR-137 is an essential 
regulator of neurogenesis during multiple developmental stages. 
It negatively regulates cell proliferation and accelerates neural 
differentiation of embryonic neural stem cells through a regulatory loop 

with nuclear receptor TLX and LSD1 [60]. Together with miR-124, 
miR-137 induces the differentiation of adult mouse neural stem cells, 
mouse oligodendroglioma-derived stem cells and human glioblastoma 
multiforme-derived stem cells as well as glioblastoma multiforme 
cell cycle arrest [61,62]. By reducing both the mRNA and protein 
expression levels of Cdc42, miR-137 inhibits proliferation, induces G1 
cell cycle arrest, and blocks invasion of the colorectal cancer cells [63]. 

Specific miRNAs in SHED: SHED have been identified as a novel 
population of postnatal stem cells that are capable of differentiating 
into neural cells, odontogenic cells, and adipocytes.  MiR-199b-5p 
is a positive erythroid regulator during erythroid differentiation and 
is dependent on the binding of GATA-1 and NF-E2 to its gene locus 

Figure 2: Specific expression of miRNAs in BM-MSCs, AT-MSCs, WJ-MSCs and SHED. 
Based on selection criterion of fold change > 2 in the comparison with others, highly-expressed miRNAs in each type of MSCs are calculated. A-D, as specific miRNA 
sets, the heatmaps are produced in 4 types of MSCs, respectively
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[64,65]. MiR-455-3p activates early chondrogenesis by inhibiting the 
expression of Runx2 [66]. MiR-212-3p increases SOX11 expression 
and halts the process of neurogenesis at the stage of immature neurons 
as well as impairs the final maturation of neurons into mature granule 
cells in the chronic phase of epilepsy [66-80]. 

Specific miRNAs in WJ-MSCs: Previous studies have revealed that 
WJ-MSCs exhibited more powerful proliferative, immunosuppressive 
and therapeutic activities compared to MSCs derived from adult BM 
or AT. MiR-144-3p negatively regulates osteogenic differentiation and 
proliferation of murine MSCs by targeting Smad4 [73]. MiR-142-3p 
has been shown to promote myeloid differentiation in hematopoietic 
stem/progenitor cells, osteoblast differentiation in the human fetal 
mesenchymal precursor cells, and erythroid differentiation in human 
embryonic stem cells [74-76]. In addition, miR-142-3p improves 
the macrophage differentiation potential of human peripheral blood 
monocytes [77]. However, it prevents macrophage differentiation of 
both canonical and non-canonical modulation of the gp130 and C/EBPβ 
signaling during tumor-induced myelopoiesis [78]. The findings from 
recent studies on miR-142-3p expression and its functions in cancer are 
somewhat diverse. For instance, miR-142-3p is upregulated in T-cell 
acute lymphoblastic leukemia and acts as an oncogene by targeting the 

cAMP/PKA pathway [79]. On the other hand, this miRNA has been 
reported to inhibit the growth of colon cancer cells accompanied by the 
downregulation of CD133, Lgr5 and ABCG2 [80].

Conclusion
MicroRNAs have been recently recognized as molecular regulators 

at the posttranscriptional level in a variety of biological processes. By 
repressing and activating mRNA translation and stability, miRNAs are 
involved in inflammation, apoptosis, angiogenesis, cell growth and 
mobility. MSCs are defined as an archetype of multipotent somatic stem 
cells. Furthermore, the subpopulations of MSCs isolated from different 
tissues have various characteristics. Based on their accessibility, 
expandability and multipotentiality, MSCs hold a promise for future 
stem cell-based therapy strategies. MSCs EVs have been considered to 
be an extension of the biological roles of MSCs. In this study, we have 
analyzed the miRNA expression profiles of EVs derived from human 
BM-MSCs, AT-MSCs, WJ-MSCs and SHED and summarized the 
molecular mechanisms and target genes of these functional miRNAs. 
The common and distinct miRNAs help compare the characteristics 
and therapeutic potential of EVs secreted by these four types of 
MSCs. Our results provide a foundation for a deeper and more precise 

Distinct miRNAs

miRNA Source Target genes Function References

miR-424-5p AT-MSCs

ICAT
SOCS6
CUL2

FGFR1

↓EMT
↑cancer proliferation

↑angiogenesis
↑differentiation

[42]
[43]
[44]
[45]

miR-423-3p BM-MSCs
AdipoR2

p21Cip1/Waf1

↓cancer proliferation
↑cancer proliferation

↑cell growth and cycle

[46]
[47]
[48]

miR-140-5p BM-MSCs
BMP2

TGFBR1, PDGFRA
Smad2

↓differentiation
↓cancer proliferation
↑cancer proliferation

↓cell-cycle progression

[49]
[50]
[51]
[52]

miR-335-5p BM-MSCs DKK1,
Daam1,
ROCK1

↑differentiation
(osteoblast,

chondrocyte,
terminal)

[53]
[54]
[55]

miR-378a-3p BM-MSCs HDAC4, MoyD, MHC, GalNT-7
MAPK1

Gli3

↑differentiation (myoblast,
osteoblast,
adipocyte)

↑angiogenesis
↓liver fibrosis

[56]
[57]
[58]
[59]

miR-137 BM-MSCs
LSD1, CDK6, Ezh2, Jarid1b

CDC42, CDK6

↓cell proliferation
↑neuronal and glial differentiation

↓cell-cycle progression

[60]
[61] [62]

[63]

miR-199b-5p SHED HES1
c-Kit

↓cancer proliferation
↑erythroid differentiation

[64]
[65]

miR-455-3p SHED Runx2 ↑chondrogenic differentiation [66]

miR-212-3p SHED
RFXAP
SGK3
SOX11

↑immune tolerance
↓cancer proliferation

↓neuronal differentiation

[67]
[68]
[69]

miR-144-3p WJ-MSCs
ABCA1
c-Met

PTEN, Smad4

↑inflammation
↑apoptosis
↑cell growth

↓osteoblast differentiation

[70]
[71]
[72]
[73]

miR-142-3p WJ-MSCs

APC
TBP2

CSF1
IL6st,

cAMP/PKA
CD133, ABCG2, Lgr5

↑differentiation
(osteoblast,

myeloid,
erythroid,

macrophage)
↓macrophage differentiation

↑cancer proliferation
↓cancer proliferation

[74]
[75]
[76]
[77]
[78]
[79]
[80]

Table 2: Distinct miRNAs.
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understanding of MSC EVs and highlight their biochemical potential 
to restore tissue homeostasis.
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