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Global climate change has the potential to dramatically affect 
human health, especially impacting dynamics of parasites and 
infectious diseases. Rising temperatures and changes in rainfall patterns 
will alter the biogeographic patterns of microbes, insect vectors, animal 
reservoirs and susceptible humans and change the prevalence of 
infectious disease [1].

However, the effects of climate change and disease have rarely 
been considered together due to the difficulty in disentangling the 
multiple variables associated with parasite and pathogen diversity, host 
population dynamics, and short-term versus long-term environmental 
variation [2-5].

Food-borne infections follow seasonal patterns that have been 
associated with climate variability (increased temperatures, heat waves, 
and flooding) [6-7]. In addition, water-borne infectious diseases have 
been shown to be affected by seasonality [8]. During times of drought, 
that have been shown to have a higher probability in climate change 
models [9], water scarcity results in poor sanitation, and much of 
the population can be exposed to potentially contaminated water 
[10]. Colwell and Huq [11] studied the incidence of cholera and 
found significant relationship between ocean levels and sea surface 
temperature, both are expected to rise under current climate forecasts.

Climate change may affect zoonoses either by changing the 
range of reservoirs or vectors, or by prolonging transmission cycles 
[1]. Specifically, rainfall and temperature affect mosquito vector 
abundance, biting rates and parasite development within vectors that 
can have profound influence on malaria [12], dengue [13], and West 
Nile virus [14].

Not only does climate change alter disease ecology, but it also 
influences pathogen and parasite evolution. Anthropogenic disturbances 
have been shown to negatively impact microbial communities [15]. The 
stress applied to microbial communities can be sufficient to promote 
horizontal gene transfer [16]. The strategies employed by microbes 
to resist environmental stressors can result in transfer of antibiotic 
resistance elements [17]. However, Horizontal Gene Transfer (HGT) 
is also responsible for the creation of novel pathogens and parasites 
through interspecific transfer of disease elements and toxins known as 
‘pathogenicity islands’ [18-20]. The first cases of HGT in eukaryotes 
were associated with parasite evolution [21,22]. Whether through 
acquisition of antibiotic resistance, pathogenicity islands, or expanding 
to new metabolism [23] or host-specific environments [24], HGT is 
due in part to the fact that those genes that confer some evolutionary 
benefit are most likely to be found in other organisms already adapted 
to those circumstances [25].

Four key areas of research are needed in order to provide a 
better picture of the future of disease ecology; standardized metadata 
collection, improved baseline measurements, model building, and 
open access. 

Metadata standards: what information should be collected with 
disease ecology?

Similar to the Ecological Metadata Language (EML) project 
based on work by the Ecological Society of America to manage 

data associated, in this case, with disease ecology. (see http://knb.
ecoinformatics.org/index.jsp). Since this is a community oriented 
endeavor, more acceptance and encouragement of standards by 
publishers would benefit a building of current disease patterns for 
baseline measurements.

Baseline measurements: what are current disease prevalence 
patterns, and what resolution of strain identification is needed?

What are the biotic and abiotic factors that influence disease and 
what are the biogeographic patterns of different strains? In a recent 
study, Hendriksen et al. [26] identified the source of the cholera 
outbreak in Haiti as a group of Nepalese peacekeeping troops. A 
rebuttal, however, was published, which pointed out that South Asia, 
instead of Nepal, may be the origin of the Haitian cholera outbreak 
strains, stating that proper attribution of an outbreak to a source strain 
cannot be accomplished by an exclusionary approach [27]. How do we 
improve disease detection and biogeographic patterns?

Model Building
Models that can couple the metadata and baseline measurements 

to detect patterns in climate and disease are essential for understanding 
disease ecology and predicting future outbreaks associated with 
changing climate.

Open Access 
Restriction of information on disease ecology and the implications 

of climate change is morally unpalatable at best. Over the past few years, 
the number of high quality open access targets for publication has 
exploded. Publication in journals such as the Journal of Bacteriology 
and Parasitology provides an excellent platform for the studies needed 
to resolve complexity of disease ecology in the face of climate change.
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