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Introduction
Defense to plant pathogens is activated by molecules originating 

from the host and the pathogen itself, such as pathogen-associated 
molecular patterns (PAMPs) and secondary metabolites. This allows 
for the establishment of a local defense response, as well as for the 
generation of a secondary signal(s) involved in the activation of a 
systemic defense response, the so-called systemic acquired resistance 
(SAR). Early detection of the pathogen triggers a cascade of events, often 
leading to limiting it to the initial site of infection via programmed cell 
death [1,2]. Several endogenous molecules involved in the activation 
of the defense response have been described, such as salicylic acid, 
jasmonate, and cell wall fragments from the host and pathogen. 
Additionally, different abiotic factors activate broad-spectrum 
resistance such as heat, cold and other physical factors, suggesting that 
at some points these pathways converge [1]. 

Recently, several chemicals have been shown to induce resistance to 
biotic and abiotic stresses. Not surprisingly, some of these are in general 
terms structurally related to salicylic acid and oligosaccharides, while 
others are of a quite diverse nature (e.g. amino acids, vitamins and fatty 
acids, among many others) [3,4]. It is reasonable to assume that the 
modes of action are similar to their endogenous, natural counterparts 
(although in the case of amino acids or nutrients, the underlying 
mechanisms are not well understood). Indeed, some of these have been 
shown to induce multiple signal transduction pathways resulting in 
defense against pathogen attack. These have been used in crops in which 
some protection has been achieved, presumably through activation of 
the SAR. Examples of these are chitosan, laminarin, oligosaccharins 
and various structural analogs of salicylic acid [5].

Exogenous application of SA as well as structural analogs 

2,6-dichloroisonicotinic acid (INA) and Benzothiadiazole (BTH) 
results in decreased lesion size, after viral infection in model species [5-
9]. Similar results have been obtained using other inducers of resistance 
such as thiamine, methyl jasmonate, polyacrylic acid, oligosaccharides 
and β-amino butyric acid, for instance, even at a large scale against 
diverse viruses and bacteria [5]. 

The first steps in the signal transduction pathway leading to 
systemic acquired resistance involve oxidative bursts. Superoxide 
ions are produced by transmembrane NADPH oxidases that in turn, 
are reduced to hydrogen peroxide by superoxide dismutase. The 
former activates locally and systemically defense-related genes, such 
as PR1 [10-12]. On the other hand, commercial products consisting 
of complex mixtures of leaf extracts, oligosaccharides and glutathione 
have been used to induce a defense response to pathogens in crops. The 
precise mechanisms through which such complex mixtures activate the 
defense response are poorly understood.

In order to gain understanding of the process through which 
these commercial products induce broad-spectrum resistance against 
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Abstract
 The plant defense response involves large changes in gene expression. Several inducers involved in such 

induction are known, including endogenous low-molecular weight compounds, as well as those derived from the 
pathogen such as membrane and cell wall fragments and secondary metabolites. Salicylic acid and hydrogen 
peroxide are well-known inducers of the response to pathogen attack, and synthetic compounds analogous to some 
of these resistance inducers show similar effects. Foliar fertilizers, besides the beneficial effect on plant growth, 
have been shown in some pathosystems to limit pathogen infection, particularly during phytoplasmoses. However, 
their modes of action in these cases are poorly understood. In order to gain insight into the mechanisms through 
which these complex mixtures may induce the defense response, the effect of one of this foliar fertilizers, NPK-
oligosaccharin (known as KendalTM), on the accumulation of defense-related transcripts was analyzed in both mock-
inoculated and Turnip mosaic virus-infected Arabidopsis plants. Only a moderate induction was observed in the 
case of pathogenesis-related proteins (PR1) for NPK-oligosaccharin. On the other hand, viral infection plus this 
mixture induced PR1, MPK1 and TGA1 more effectively than the mixture alone. However, only peroxide treatment 
decreased virus levels; in contrast higher levels were observed in NPK-oligosaccharin treated plants. Confocal 
images of GFP-labeled TuMV support this observation. Our results suggest that treatment with foliar fertilizers may 
not be effective against certain pathogens.
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pathogens, the induction of genes associated to SAR was monitored in 
a model pathosystem. In the present work, the accumulation of PR1 
(At2g14610), TGA1 (At5g65210) and MPK1 MAP kinase (At1g10210) 
transcripts was monitored via real time RT-PCR in Arabidopsis plants 
treated with inducers of the defense response: Salicylic acid, hydrogen 
peroxide and the commercial product KendalTM, termed in the present 
work NPK-oligosaccharin. This product consists of glutathione, 
oligosaccharin and a mixture of nitrogen, phosphorous, potassium and 
leaf extracts; it is marketed as a foliar fertilizer, although it has been 
used to induce priming of the defense response in some crops [13]. 
Indeed, oligosaccharin is a general term for cell wall fragments derived 
from the activity of plant or pathogen lytic enzymes; these fragments 
are capable of inducing the defense response [5]. They are also involved 
in the wound response, and more recently have been shown to mediate 
freezing tolerance in wheat [14]. Induction of these genes is a hallmark 
of SAR. PR1 has been described thoroughly, and this gene in particular, 
is induced during SAR [9]. TGA1 encodes the transcription factor 
induced by NPR1 responsible for the activation of several defense-
related genes [9,15], while MPK1 kinase activity is triggered by MKK3, 
which in turn is activated by pathogen perception [16]. On the other 
hand, the accumulation of GFP-tagged Turnip mosaic virus (TuMV-
GFP) was used to monitor the course of infection in Arabidopsis 
plants [17]. TuMV, a member of the Potyvirus family [18,19] infects 
Arabidopsis naturally and thus, would allow observing any effect of 
resistance inducers. Our results suggest that while salicylic acid is the 
best inducer of PR1, hydrogen peroxide treatment induced MPK1 
more effectively, and also led to decreased virus levels in Arabidopsis. 
On the other hand, the NPK oligosaccharin actually increased virus 
titers, while the induction of the defense-related genes analyzed in this 
study was similar to the other treatments.

Materials and Methods 
Plant material and treatments

Arabidopsis plants were grown in greenhouse conditions during 
the experiment, with a mean temperature of 22°C and a 12 hour 
light-12 hour dark cycle. Soil used was supplemented with peat moss. 
Plants were subjected to the described treatments, at the onset of 
inflorescence stem emergence. The following compounds were sprayed 
on rosette leaves: salicylic acid (0.5 mM), hydrogen peroxide (3 mM), 
and the commercial product Kendal composed of total nitrogen (2%), 
phosphorus (P2O5, 24%), potassium (K2O, 17%) and plant extracts 
and other ingredients (oligosaccharins-vitamins-glutathione, 8%). 
24 hours after spraying, the binary vector containing TuMV-GFP 
(pCBTuMV-GFP), a gift from Dr. James Carrington (University of 
Oregon, Corvallis) [17], was mechanically inoculated onto the same 
leaves. Four plants from each treatment were selected for further 
analysis. The treatments applied were the following: salicylic acid 
(SA, 0.5 mM)+TuMV; hydrogen peroxide (PE, 3 mM)+TuMV; NPK-
oligosaccharins (K, 450 μL/200 mL)+TuMV; positive control (T+, 
TuMV only) and water (T-, mock-inoculated plant). Experiments were 
carried out in quadruplicates. Plants were covered with a transparent 
plastic bag to ensure infection and maintain humidity. Also, plants 
were treated only with inducers without virus infection under the same 
conditions as control.

RNA extraction

Total RNA was obtained from 100 mg of fresh tissue from systemic 
caulinar leaves, using the TRIZOL reagent procedure (Invitrogen, 
Sorrento CA) following the manufacturer’s indications. Tissue 
was collected 3 and 7 days after inoculation. RNA concentration 

was measured with a Nanodrop 2000 spectrophotometer (Thermo 
Scientific; Wilmington DE). Integrity of RNA was determined by 
agarose gel electrophoresis in denaturing conditions (Supplementary 
Figure S1). RNA was treated with RQ1 RNase-Free DNase (Promega, 
Madison WI) and stored at -80°C, until further use.

RT-PCR

One step RT-PCR was performed with the Superscript III One-
Step RT-PCR System (Invitrogen), as specified by the manufacturer. 
The program for RT-PCR was as follows. First, one cycle for 15 min 
at 50°C for first strand synthesis, followed by 30 cycles: 94°C for 40 s, 
specific annealing temperature for 40 s, 72°C for 40 s. A final extension 
step was also performed at 72°C for 7 min. The annealing temperature 
for each primer pair is specified in table 1. Primers were designed as to 
amplify products of similar size. For TuMV, primers were designed to 
detect GFP harbored by this virus as well as the coat protein gene, used 
as an internal control. The products were cloned in a cloning vector 
(pCRII TOPO dual, Invitrogen), and verified through sequencing of 
the products. The control used to determine RNA concentration was a 
fragment of the Arabidopsis 18S ribosomal RNA gene.

Quantitative Real Time RT-PCR (qRT-PCR) 
For transcript levels of the selected genes, quantitative RT-PCR 

was carried out using a commercial system, the Express One-Step Syb® 
GreenER qPCR Super Mix (Invitrogen) according to the manufacturer’s 
instructions. 1µL of RNA (300 ng/µL) and 10 pm of each primer 
were used in a 10 µL reaction mix. The Real Time RT-PCR reactions 
were incubated in a Rotor Gene 3000 apparatus (Corbett Research, 
Australia). Conditions for amplification were 40 min at 42°C for first 
strand synthesis, followed by 40 cycles: 40 s at 94°C, 35 s at 62°C, and 
30 s at 72°C. Finally, in order to ensure that no dimers were amplified 
in the reaction, a dissociation curve was generated through progressive 
heating of the samples (60-95°C). The Ct value for each product was 
determined by duplicate, in each treatment. CP and GFP from TuMV-
GFP-infected plants were detected in symptomatic systemic leaves, 
using the same methodology. 18S RNA from Arabidopsis was used to 
determine the standard curve (Supplementary Figure 2).

Relative quantification for transcript accumulation was performed 
according to the method described by Livak and Schmittgen 2(-Delta 
Delta C(T)) (2-∆∆CT) [20]. This consists of a relative comparison between 
an endogenous gene and a blank. For this test, two repeats were 
analyzed per treatment. On the other hand, viral concentration was 
measured through the standard curve method (Biorad, Hercules CA). 
Amplification was confirmed by analysis of the products by agarose gel 
electrophoresis.

Gene ID Primer sequence (5´- 3´) Expected 
size (bp)

Annealing 
Temperature

PR1
At2g14610

Forward: TCTCCGCCGTGAACATGTGGGTTAGCG
Reverse: GTATGGCTTCTCGTTCACATAATTCCC

200 67°C

MPK1 
At1g10210

Forward: GATCCGTCAAAGAGGATTAGT-
GTCTCTG
Reverse: TCAGAGCTCAGTGTTTAAGGTTGAAGC

200 58°C

TGA1
At5g65210

Forward: GGTGAATTCTGCTATGGAT-
GAATTAGAAGC 
Reverse: CTACGTTGGTTCACGATGTCGAGTTGC

200 65°C

18S rRNA
At1g49240

Forward: GCCCCGGGTAATCTTTGAAATTTCAT
Reverse: GTGTGTACAAAGGGCAGGGACGTA

150 63°C

TuMV-GFP Forward: CATGGCAAGTAAAGGAGAAGAACTTTT
Reverse: CTTCATATGATCTGGGTATCTTG

250 54°C

TuMV-CP Forward: GGACGGCGACGATCAGGTG-
GAAATTCCCG
Reverse: CAACCCCTGAACGCCCAGTAAG

400 63°C

Table 1: Oligonucleotide Primers used in this study.
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Confocal microscopy

TuMV-GFP infection in Arabidopsis was monitored in systemic 
caulinary leaves essentially, as described for the detection of GFP [21]. 
Tissue was washed with a solution containing ethanol:glycerol:lactic 
acid:water in a 5:2:2:1 proportion for 5 days at 4°C, and then 
transferred to a 50% glycerol solution and mounted on a glass slide. 
These were observed with a multiphotonic confocal microscope model 
SP5 (Leica) at 20X magnification. Images were processed using the LAS 
AF software (Leica). To quantify the signal, 20 fields were captured 
with a 1000 mµ2 area each, and the pixels were calculated using the 
aforementioned software. 

Results 
PR1 induction by SA and biotrophic pathogens is a hallmark of 

SAR. Thus, we used this as control and compared its induction to other 
genes involved in the onset of SAR. It must be noted that the PR1 gene 
used to monitor induction by elicitor treatment and virus infection, 
is the one actually induced by SA and pathogen infection [22]. Other 
works have shown that this induction is specific to such treatments, 
whereas application of paraquat and ascorbic acid (compounds with 
antioxidant properties) fails to induce such gene [23]. The role of 
TGA1 in this defense response has been described, although there 
is little information regarding its induction at the level of transcript 
accumulation [15,24]. More recently, we have found that this gene is 
expressed constitutively in vascular tissue [21]. On the other hand, 
MPK1 may be part of the mitogen-activated protein kinase pathway, 
involved in the response to pathogens given its activation by MKK3, 
the kinase activity of which is induced by pathogen effectors [16]. It 
was, therefore, of interest to determine whether the gene was induced 
by elicitors of defense response and eventually used as marker of SAR. 
The transcript levels of PR1, TGA1 and MPK1 were determined in 
mock-inoculated plants treated with the different inducers, and in 
combination with TuMV, in order to discriminate the effect of the 
inducers and the pathogen. 

RT-PCR from RNAs extracted from treated and untreated plants 
revealed the accumulation of PR1, MPK1 and TGA transcripts at 3 
and 7 days post-inoculation (dpi), under all tested treatments after 30 
cycles of amplification, as well as in untreated plants, indicating that 
basal levels of these transcripts must be present in healthy plants (not 
shown). Quantitative RT-PCR was carried out to determine whether 
these transcripts are actually induced by the elicitors described above, 
particularly at an early stage of viral infection. 

Quantitative Real Time RT-PCR

RNA from plants inoculated with TuMV-GFP was obtained 3 and 
7 days after treatment with the defense response inducers (Figure 1). As 
expected, treatment with SA elicited the highest levels of accumulation 
of the PR1 transcript; 3 days post inoculation (dpi). Interestingly, 
7 days after treatment, the PR1 levels had decreased to almost those 
of untreated plants. TuMV infection and NPK-oligosaccharin 
also induced accumulation of this transcript, albeit to lower levels. 
Interestingly, the induction was short-lived, since no PR1 transcripts 
were detected 7 days after treatment. Furthermore, peroxide treatment 
failed to induce PR1 after 3 and 7 days. 

MPK1 RNA was induced to higher levels with peroxide, followed 
by NPK-oligosaccharin, TuMV and to lesser degree by SA. Also, the 
higher induction levels were observed 7 dpi. On the other hand, TGA1 
RNA accumulated to higher levels with NPK-oligosaccharin, followed 
by peroxide, SA and TuMV. In this case, this induction was highest, 7 

dpi. It must be noticed that the levels of induction were much lower for 
MPK1 and TGA1, compared to PR1. 

Of note, NPK-oligosaccharin treatment allowed the highest levels 
of TuMV (more strictly, the CP RNA levels), much higher than during 
infection of untreated plants, although variation among individual 
treatments was considerable (Figure 1 and Supplementary Figure 3). 
After peroxide treatment, on the contrary, no virus was detected, 3 
or 7 dpi. Therefore, at least in Arabidopsis, SA plus virus infection are 
the most efficient inducers of PR1; however, peroxide treatment while 
in our case, failing to induce PR1 transcript accumulation resulted in 
much lower virus levels. As mentioned above, NPK-oligosaccharin 
actually considerably increased virus levels, 7 days after treatment 
(Figure 1 and Figure S3).

The effect of the inducer treatment alone was also determined 
(Figure 2). SA treatment resulted in the highest accumulation levels of 
PR1, which were even higher in TuMV-infected plants. TuMV alone, 
as shown in figure 1, was not as efficient in inducing this transcript. 
The induction levels for MPK1 and TGA1 were similarly modest 
in the absence of viral infection, tenfold lower than PR1 (Figure 2). 

800

600

400

200

0

25.0

20.0

15.0

10.0

5.0

0.0

80.0

60.0

40.0

20.0

0.0

6000
5000
4000

3000
2000
1000

0

SA+T         PE+T          K+T            T+            T+ SA+T         PE+T           K+T                  T+            T+

SA+T         PE+T          K+T            T+            T+SA+T         PE+T          K+T            T+            T+

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

Co
py

 n
um

be
r C

P 
RN

A

534

2 2 13 9 6

220

366

3 dpl       7dpl 3 dpl       7dpl

3 dpl     7dpl 3 dpl       7dpl

17.6

13.4 11.2
8.1

4.5
3.6

5.1
3.8

38.7

16
98.2

29.4

10.8
14.6

12.7 561
1.58

2688

452
1.55

PRI MPKI

TuMVTGAI

A B

DC
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PRI PRI

MPKI TGAI

1000

800

600

400

200

0

250

200

150

100

50

0

15.0

10.0

5.0

0.0

20.0

15.0

10.0

5.0

0.0

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

fo
ld

 c
ha

ng
e 

(m
RN

A 
le

ve
l)

SA                SA+T                T+              T+ SA                 PE                   K               Water

SA                 PE                   K               WaterSA                 PE                   K               Water

3 dpl    7 dpl 3 dpl    7 dpl

3 dpl      7 dpl3 dpl    7 dpl

A B

DC

117

4
86

399

102
156

168

19
2.34.5

24

2.9

5.4
7

2.3
3.2

2 2.2

11.6

9.4

2.0 2.84.82.3

Figure 2: Analysis of PR1, MPK1, and TGA1 transcript accumulation in 
Arabidopsis leaves treated with defense response inducers only by qRT-PCR 
(2∆∆CT method), 3 and 7 days post-inoculation application (dpi). A) PR1, plants 
treated with SA only (SA, 0.5 mM), and with SA plus virus (SA+T), inoculated 
only with virus (T+), sprayed with water only (T-). B) PR1; C) MPK1: D) TGA1. 
SA, salicylic acid, 0.5 mM; PE, hydrogen peroxide, 3 mM; K, NPK-oligosaccharin 
450 μL /200 mL, T+, TuMV-infected plant with no inducer added.



Citation: Salgado-Siclán ML, Rojas-Martínez R, Zavaleta-Mejía E, Ochoa-Martínez D, Burgueño-Ferreira J, et al. (2012) Differential Accumulation 
of Defense-Related Transcripts by Inducers of Resistance in Arabidopsis. J Plant Pathol Microb 3:137. doi:10.4172/2157-7471.1000137

Page 4 of 5

Volume 3 • Issue 6 • 1000137
J Plant Pathol Microb
ISSN: 2157-7471 JPPM an open access journal 

must be taken when interpreting such results, though, since these are 
evidently not quantitative. 

Discussion 
SA and hydrogen peroxide are well-studied inducers of SAR; 

indeed, current models indicate that SA is involved in the translocation 
of the defense response regulator NPR1 to the nucleus, in response to 
change in its redox state. Hydrogen peroxide, and in general, oxidizing 
agents act in concert with SA to trigger the defense response. The other 
inducer tested, NPK-oligosaccharin, is used as a foliar fertilizer and 
has been shown to decrease symptom expression in plants caused by 
phytoplasmoses [13]. 

While the increase in PR1 and TGA1 transcripts has been observed 
after SA and peroxide treatment, this had not been reported for 
MPK1, although its involvement in the defense response as part of the 
MKK3 pathway could be inferred from the protein being a target for 
phosphorylation, within this pathway [16]. Furthermore, the MPK1 
gene is expressed at moderate to low levels, according to microarray 
data and little variation is evident between different tissues, or after 
treatment with Pseudomonas syringae, Phytophthora infestans and 
diverse elicitors (http://www.weigelworld.org/resources/microarray/
AtGenExpress/).

As mentioned before, the role of PR1 limiting fungal pathogen 
infection is well documented, although its precise biochemical activity 
remains poorly understood. Our results suggest that at least in the case 
of TuMV, the induction of this gene via SA does not correlate completely 
with limiting virus accumulation, in contrast to other viruses such as 
TMV [25]. Actually, hydrogen peroxide treatment results in the lowest 
virus levels observed in the present study (as determined through 
detection of CP RNA) compared to the other treatments, although in 
this case, this does not occur through an induction of the PR1 gene. 
Interestingly, this treatment also leads to induction of the TGA1 and 
MPK1 genes, suggesting that these may be more directly involved in 
the defense mechanism against this virus, and conceivably, against 
other pathogens. On the other hand, the induction of the NPR1-TGA1 
system is mediated by hydrogen peroxide, although this is known 
to occur at the post-translational level. Our results indicate that this 
also happens at the transcriptional level. Additionally, these genes can 
also be used as markers for response to viral infection. Also, NPK-
oligosaccharin induced weakly the accumulation of the PR1, TGA1 
and MPK1 transcripts, although regarding virus accumulation, the 
results are less clear because of the variation found in CP RNA levels in 
different plants. It could be suggested that since NPK oligosaccharin is 
a foliar fertilizer, plants are healthier and more vigorous which could 
lead to higher replication rates for the virus, but not necessarily through 
induction of a plant defense response. More studies will be needed in 
order to determine more precisely, the effect of NPK-oligosaccharin 
on virus levels. 
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