Prasad et al., J Pharmacovigilance 2014, 2:2
DOi: 10.4172/2329-6887.1000125

Journal of Pharmacovigilance

ISSN: 2329-6887

Review Article Open Access

Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview

Shikha Prasad’, Ravi K Sajja’, Pooja Naik' and Luca Cucullo®

'Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
2Vascular Drug research Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA

Abstract

A host of diabetes-related insults to the central nervous system (CNS) have been clearly documented in type-1
and -2 diabetic patients as well as experimental animal models. These host of neurological disorders encompass
hemodynamic impairments (e.g., stroke), vascular dementia, cognitive deficits (mild to moderate), as well as a number
of neurochemical, electrophysiological and behavioral alterations. The underlying causes of diabetes-induced CNS
complications are multifactorial and are relatively little understood although it is now evident that blood-brain barrier
(BBB) damage plays a significant role in diabetes-dependent CNS disorders. Changes in plasma glucose levels
(hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, insulin, choline,
amino acids, etc.), integrity (tight junction disruption), and oxidative stress in the CNS microcapillaries. Last two
implicating a potential causal role for upregulation and activation of the receptor for advanced glycation end products
(RAGE). This type | membrane-protein also transports amyloid-beta (AB) from the blood into the brain across the
BBB thus, establishing a link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD, also referred to
as “type 3 diabetes”). Hyperglycemia has been associated with progression of cerebral ischemia and the consequent
enhancement of secondary brain injury. Difficulty in detecting vascular impairments in the large, heterogeneous brain
microvascular bed and dissecting out the impact of hyper- and hypoglycemia in vivo has led to controversial results
especially with regard to the effects of diabetes on BBB. In this article, we review the major findings and current
knowledge with regard to the impact of diabetes on BBB integrity and function as well as specific brain microvascular

effects of hyper- and hypoglycemia.
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Introduction

Diabetes mellitus (DM) is a multi-faceted metabolic syndrome
and currently one of the major health concerns in public health
across the globe. DM is characterized by high rates of mortality and
morbidity, especially in relation to T2DM [1]. Both, insulin-dependent
(type 1) and independent (type 2) DM, have detrimental effects on
the structure integrity and function of vascular beds, underlying the
pathophysiology and development of various peripheral and CNS
disorders. Hyperglycemia-elicited complications at the microvascular
level include low perfusion rates, thickening of capillary walls and
abnormal proliferation of endothelial cells with increased vascular
permeability (both in vitro and in vivo including DM patients).
The pathophysiology of microvascular complications in diabetes
encompasses major biochemical pathways while the common
endpoint appears to be mitochondrial superoxide overproduction in
the endothelial cells lining the vascular walls of the blood vessels. The
increased superoxide production causes the activation of four major
pathways involved in the pathogenesis of complications: increase in
polyol and hexosamine pathways flux, activation of Protein Kinase C
(PKC) and increased formation of advanced glycation end product
(AGE) ligands originating from proteins, lipids and nucleic acids (e.g.,
LDL) [2,3]. RAGE activation initiates a vicious cycle eliciting more
oxidative stress generation [3,4] and subsequently evoking vascular
inflammation [5] and thrombosis [6], thereby implicating a potential
vascular damage [7,8]. Furthermore, the overproduction of reactive
oxygen species (ROS) inactivates endothelial nitric oxide synthase
(eNOS) and prostacyclin synthase, thereby impairing the vascular tone
[2,9,10].

A growing body of evidence from recent clinical and experimental
studies suggests that prolonged hyperglycemic conditions, particularly
in type 2 DM, elicit a progressive impairment of neuronal function in the

brain [10]. Stroke and cerebral ischemia are typical CNS complications
related to diabetes due to the impairments in cerebral vascular supply
[11]. Diabetic patients are also at higher risk of experiencing stroke
than normal population [11-13] and 50% of stroke-affected individuals
have been diagnosed with hyperglycemia [14]. It is also reported that
subjects with type 2 DM have significantly lower brain volume and are
more likely to have single or multiple cerebral infarcts compared to
normoglycemic individuals [13]. In addition, preclinical studies in mice
suggest that vascular injury occurring in response to an ischemic insult
following stroke is significantly exacerbated in diabetic subjects [15]
and the situation is further worsened by recurrent hypoglycemia [16].
Type 2 diabetes can negatively impact the outcome of stroke (ischemic
brain damage); in fact increases the risk of stroke, as demonstrated in
vivo in type 2 diabetic mice [15]. Conversely, hyperglycemia is also
associated with high levels of mortality and morbidity during cerebral
ischemia, perhaps, caused by increased cerebral hematoma expansion
[14] and higher risk of cerebral hemorrhage due to tissue Plasminogen
Activator (tPA) activation and superoxide production damaging
the BBB [17] Recent studies also evoke a role for the AGE-RAGE
system activated by hyperglycemia leading to a further enhancement
of oxidative stress and amplification of inflammatory signals from
nearby leukocytes [18,19]. Improved glycemic control in these patients
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seem to ameliorate these pathological conditions [10] however, rapid
normalization of plasma glucose levels in hyperglycemic subjects can
lead to cerebral hypoglycemia thus favoring cognitive decline [20-
25]. Other studies have demonstrated an association between altered
glycemic conditions and alterations of the electrophysiological,
structural and neurochemical profiles of brain function [26] which can
impair neuronal plasticity and synaptic transmission [9,10].

T2DM hasbeen stronglyassociated with mild cognitive impairments
[24,27] and is considered a predisposing factor for developing vascular
dementia [28] and Alzheimer disease [22,29]. Furthermore, DM
has also been associated with increased severity of epileptic seizures
[30] and risk of mortality following traumatic brain injury (TBI)
[31]. Frequent co-occurrence of psychiatric disorders (such anxiety
and depression) [32] have also been recorded in DM patients. These
large onset of CNS comorbidities in diabetic patients is not entirely
surprising considering the cerebrovascular (such as reduced vascular
tone, BBB leakage, inflammation, thrombosis [4,33-38]) and metabolic
(hyper/hypoglycemia and hyperinsulinemia [34,39,40]) abnormalities
that characterize DM.

Altered glycemic conditions such as those observed in diabetic
patients are prodromal to blood-brain barrier (BBB) impairment
[34,41-46]. This is of paramount relevance for the pathogenesis of
brain disorders in DM since the BBB act as a gate keeper of the brain
with a range of interrelated functions including protecting the CNS
from potentially harmful substances, regulate transport of essential
molecules, maintain the brain homeostasis, and provide immune
regulatory functions [47].

Unfortunately, despite the existence of a large body of data
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regarding DM-induced microvascular complications of the kidney and
retina, the impact of DM at the level of the cerebrovascular system is
still poorly understood from a mechanistic point of view and under-
investigated. Thus, advancements in this specific field can reveal unique
pharmacological targets for the development of novel and more effective
drugs for the treatment and/or prevention of diabetes-associated CNS
complications.

BBB: Structure, Function and Glucose Transport

The BBB has been described in detail both physiologically and
morphologically [48]. At the cellular level, the BBB is constituted
by vascular endothelium lining the cerebral microvessels with the
closely apposed astrocytic end-feet processes (Figure 1) [49]. The BBB
endothelium is characterized by distinctive expression patterns of trans-
membrane transport systems to regulate traffic of substances in and
out of the brain parenchyma [50,51]. In addition, expression of inter-
endothelial tight junctions, lack of fenestrations and minimal pinocytic
transport which concur in the regulation and maintenance of the brain
microenvironment are the unique features of the BBB endothelium.
Tight junctions between adjacent endothelial cells form a diffusion
barrier, which selectively excludes most blood-borne (including
electrolytes and other water soluble compounds) and xenobiotic
polar substances from entering the brain through paracellular routes.
Specialized efflux transport mechanisms (e.g., P-glycoprotein, breast
cancer resistant protein/BCRP, multidrug resistance protein-4/MRP-
4 etc.) are also in place to regulate the passage of amphipathic and
hydrophobic molecules and protect the brain from potentially harmful
substances.
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Figure 1: Structure and location of brain microvessels. (A) Gross view of brain microvessels crossing through brain parenchyma, (B and C) Schematics of
the inner view of the brain microvessels lined with closely associated endothelial cells together with pericytes and astrocytic foot processes, (D) FITC albumin
stained brain section showing the overall network of brain microcapillaries. Note: VR (Virchow-Robin space).
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Glucose is the primary brain bioenergetic source. While the
CNS utilizes approximately 25% of the total glucose, it only accounts
for ~2% of the total body mass [52]. Besides glucose, lactate (from
astrocytes) also provides energy to neurons [52,53]. Glucose crosses
the BBB through two independent groups of transporter proteins:
facilitative sodium independent transporters (GLUT) and sodium
dependent glucose co-transporters (SGLT) [54,55]. Facilitative glucose
transporters (GLUT) include 14 proteins [56] of which GLUT-1 is
the first identified member and a major transporter of glucose across
BBB [55,57,58]. This is evident from the clinical reports in which
patients with GLUT-1 deficiency syndrome had CSF/ blood glucose
ratio of 0.19 - 0.35 (vs. the normal value of 0.65), developed seizures
and other development disorders [57]. In contrast to SGLT, GLUT
proteins are saturable transporters and help in movement of glucose
along the concentration gradient [53,59]. While GLUT-1 transporters
in brain microvascular endothelial cells and astrocytes carry glucose
across the BBB, GLUT-3 is considered the main (although not the
exclusive) neuronal glucose transporters [57]. GLUT-1 transporters in
mature and fully differentiated BBB endothelium are heterogeneously
distributed with studies reporting higher luminal to abluminal ratio
in human brain microvessels [60,61], while the opposite holds true
in rats and other species [62,63]. This heterogeneity correlates to the

variable energy demands, cerebral glucose utilization and maintenance
of normal glucose level [64,65] with reports suggesting an increase
in their local densities, due to increase in local cerebral glucose
utilization [53]. More specifically, increased glucose transport across
BBB correlated with increased luminal density of GLUT-1. On the
other hand, higher abluminal expression (lower luminal/abluminal
ratio) was observed when GLUT-1 is down-regulated [66] suggesting
that luminal-abluminal redistribution and/or expression of GLUT-
1 modulates glucose entry into the brain (Figure 2). SGLT-1 plays a
major role in transport of glucose across intestinal membrane and renal
proximal tubule. Although the role of SGLT-1 in CNS glucose transport
has not been fully investigated, their presence on brain microvascular
endothelial cells and involvement in transporting glucose in certain
pathophysiological conditions (e.g., oxygen glucose deprivation-
ischemia) has been observed [59]. Unpublished data from our group
revealed up-regulation of SGLT-1 expression in a well-established
human BBB endothelia cells line (h\CMEC/D3 [67]) following either
acute or chronic exposure to hypoglycemia.

Insulin-sensitive glucose transporters (GLUT-4) and insulin
receptors on BBB endothelial cells also may play a central role in
regulating glucose transport into CNS. Very little or no insulin is
synthesized by the brain in normal conditions; although it has been
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Figure 2: Glucose transport across the BBB: Glut1 transporters located on microvascular endothelial cells and astrocytes transport glucose across the BBB,
while Glut-3 transports glucose in neurons. Heterogeneous distribution of Glut-1 transporters is a typical hallmark of a fully mature BBB and correlates to the
variable energy demands, glucose utilizations and maintenance of normal glucose level.
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shown that DM increases its transport across the BBB [39,68-70]. in
vivo, insulin can access the brain cells both via the cerebrospinal fluid
reaching through regions lacking proper BBB (e.g. circumventricular
organs), and directly through the BBB via specific insulin receptors
that can act as transporters [71,72]. The effect of insulin on CNS is
of particular interest in view of a recent body of evidence suggesting
that DM could affect the pathogenesis of AD through mechanisms
involving alterations in downstream signaling of the insulin receptor
at BBB. Although additional studies are required to shed full light
on the mechanisms involved, insulin may have a role in regulating
phosphorylation of tau in tauopathies - via activation of glycogen
synthase kinase-3 and amyloid-B peptides [73]) as well as the
expression (up-regulation) of soluble receptors for advanced glycation
end products (SRAGE) [74]. High levels of sSRAGE have been associated
with incident cardiovascular disease and all-cause mortality in type 1
[75] and 2 diabetes [76] and may also reflect tissue RAGE expression
in DM [77]. Thus, according to recent studies, activation of the AGE-
RAGE system seems to plays a central role in the pathogenesis of
vascular abnormalities and thrombotic insult observed in DM patients
[4,6].

Ultimately, alteration of BBB function and integrity can have a
profound impact on the CNS being prodromal to the pathogenesis and
progression of major neurological disorders. Thus diabetes-dependent
impairment of BBB function can severely impact the CNS.

Effect of hyperglycemia on BBB glucose transport in
DM

On the basis of common understanding it is believed that when a
substrate is in excess, body will down-regulate the receptor expression
for it, in order to balance its demand and supply cycle. This suggests
that the biological answer to chronic excess of glucose in the systemic
circulation should be down regulation of its transporters. In this line,
many experimental studies report a down-regulation of BBB glucose
transporters in hyperglycemic animals [63,78,79], indicating the
measures taken by brain from preventing excessive glucose intake.
However, this is not a universal scientific consensus since other studies
(in both animals and humans) did not reveal significant changes in the
BBB glucose transporters expression in DM [41,80-83].

Glucose transporter expression studies performed in streptozotocin
(STZ)- induced diabetic rats showed that chronic hyperglycemia
down-regulates both mRNA and protein expression of GLUT-1 and
GLUT-3. Down-regulation of glucose transporters was independent
of the method used to induce DM in vivo [78]. Local cerebral glucose
utilization during chronic but not acute hyperglycemia was increased
in DM Sprague-Dawley rat models. This was paralleled by a moderate
(yet significant) decrease in expression of GLUT-1 in brain vessels
although no changes in GLUT-3 were observed [63].

in vivo studies in pig models undergoing continuous glucose
monitoring showed alteration of brain glucose similar to that
measured locally in muscle and subcutaneous fat tissue in response to
hyperglycemia (although in hypoglycemic conditions the glucose levels
in the brain decreased on a similar time scale as the other tissues but to
a much lesser degree) [82]. On the other hand, no significant changes
in glucose uptake and GLUT-1 expression were observed in STZ-
induced diabetic rats [41,84]. Further, high-field magnetic resonance
spectroscopy study in humans by Seaquist and colleagues did not reveal
major changes in global cerebral blood flow (CBF) or regional glucose
metabolism (including maximal transport velocity of glucose) after
acute hyperglycemia [83]. Nevertheless, such conflicting in vivo data

with regard to BBB GLUT expression can be plausibly explained by
differences in experimental approaches, animal models and methods of
analyses. Further investigation based on common experimental ground
with regard to model platforms, method, and analysis will be required
to validate the results and reach a consensus over the final conclusions.
To this end, in vitro human models could certainly help dissecting
out specific aspects of DM-related alteration of glucose transport at
the BBB which are currently impractical or unfeasible in in vivo or in
human studies.

Hypoglycemia and glucose transport across the BBB

Hypoglycemia is of major concern in diabetes as it leads to severe
impairment of CNS function. Frequent treatment regimen to reduce
glucose plasma concentration in DM patients, triggers repetitive
hypoglycemic insults to the brain cells and induce hypoglycemia-
associated autonomic failure (HAAF). The general concept
underlying HAAF is that defective glucose counter-regulation (lack
of adrenomedullary epinephrine response which under normal
circumstances would reduce insulin concentration and increase
glucagon) and hypoglycemia unawareness lead to a vicious cycle of
recurrent hypoglycemia and further impairment of glucose counter-
regulation. The clinical relevance of this phenomenon is now well
established, but the precise mechanisms and mediators remain largely
unknown [85,86].

Majority of diabetic patients face a great difficulty in maintaining
normalblood glucoselevel dueto HAAFand hypoglycemia unawareness.
Using ['H] nuclear magnetic resonance (NMR) spectroscopy, Criego et
al. [87] measured the in vivo steady state brain glucose concentrations
under controlled metabolic conditions to understand whether subjects
with hypoglycemia unawareness would have higher brain glucose
concentrations than control subjects. They concluded that brain glucose
concentration was higher in the hypoglycemia unaware group by 17
+ 6% in comparison to the control group [87]. However, Segel et al.
reported contradictory data (measured by using 1-''C glucose Positron
Emission Tomography) showing no changes in glucose transport from
blood to brain, blood flow to brain and cerebral glucose metabolism
between healthy subjects and patients subjected to 24 hrs interprandial
hypoglycemia [88]. Brain glucose concentration in sixteen human
subjects subjected to recurrent hypoglycemia (three hypoglycemic
clamps for 30 min at 0 hr, 9 hr, and 24 hr intervals) was not different
from the results obtained from the same subjects during a control study
[89]. Even, prior exposure to recurrent hypoglycemia in diabetic rats
did not result in an increase in extra cellular fluid glucose concentration
in the inferior colliculus [90]; thereby suggesting short episodes of
recurrent hypoglycemia do not alter transport or metabolism of brain
glucose. However, increased expression of GLUT-1 mRNA and protein
at the BBB in rodent model of chronic hypoglycemia suggest the
existence of a compensatory mechanism to increase glucose transport
activity across the BBB in response to chronically low circulating blood
glucose levels [91].

Increased brain glucose uptake under hypoglycemic condition
seems to be due to both increased GLUT-1 synthesis and redistribution
across BBB [91]. Brain glucose extraction [measured by Brain Uptake
Index] increased in experimental hypoglycemia group versus controls
(independently from the method used to induce hypoglycemia in
vivo such as implanting insulin secreting tumors, insulin osmotic
mini-pumps or repeated injections [92]). Similar observations were
made by Lei et al. in rats following 12-14 days of hypoglycemia. 48%
increase in brain glucose levels was observed, while brain glycogen
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Transporter

expression Hyperglycemia | Reference | Hypoglycemia Reference
[63,78,79] [41,91]
GLUT-1
No change [41,84] No change [88]
[78]
GLUT-3
No change [63]

GLUT-4 " [94]

Table 1: Effects of hyperglycemia and hypoglycemia on BBB glucose transporter
expression.

concentration remained unaffected (although, others have reported
decreased brain glycogen level in hypoglycemic conditions) [93].
Further, hypoglycemia resulted in 25-45% increase in glucose uptake,
23% increase in total GLUT-1 expression and redistribution to the
luminal (vascular) side of BBB endothelium [41]. Increased GLUT-1
expression and luminal redistribution further aggravates the condition
by increasing the transport of glucose across the BBB. In addition, acute
(or mild) hypoglycemia was shown to up-regulate, GLUT-1, GLUT-4,
angiotensinogen and mitogen-activated protein kinase phosphatase-1
[94]. Increase in angiotensinogen expression can favor vasodilation,
thereby increasing local blood flow. Alternatively, increased local blood
flow raises glucose level locally leading to hypothalamic overestimation
of cerebral blood glucose which results in counter regulatory imbalance
[94]. See Table 1 for a summary of glycemia-dependent alteration of
glucose transport.

Transport of amino acids across the BBB in DM

Choline is the precursor for the neurotransmitter acetylcholine,
which is involved in variety of functions including memory and
muscle control. Choline enters the brain through a saturable transport
mechanism at the BBB. Reduced choline transport across the BBB was
observed in streptozocin-induced diabetic rats when the kinetics of
transport was compared to age-matched vehicle-injected controls [95].
The effect was statistically significant only in long standing diabetic
animals (9 wks) thus, suggesting a time dependent effect of diabetes
on choline transport. In parallel studies using continuous infusion
quantitative autoradiograph methods, Mans and colleagues determined
the regional permeability-times-surface area (PS) product and influx for
several plasma amino acids in streptozotocin-diabetic rats. Transport of
branched chain neutral amino acids was increased, whereas that of all
basic amino acids and some essential amino acids (such as tryptophan,
phenylalanine, methionine, and lysine) was decreased. Interestingly,
alterations in the plasma concentrations of these amino acid rather
than alteration of the transport mechanisms at the BBB were primarily
responsible for the observed effects [96].

Impact of diabetes on BBB integrity and other
pathophysiological changes

Experimental evidence from in vitro and in vivo studies has shown
that BBB integrity in diabetes is somewhat compromised resulting in
increased barrier permeability [34,45,46,97]; although current data
do not provide conclusive results and outcomes remain controversial.
in vitro BBB studies using co-culture of human brain microvascular
endothelial cell (HBMEC) with juxtaposed human astrocyte (HA)
showed loss of BBB integrity (measured in terms of trans-endothelial
electrical resistance, TEER) under hyperglycemic culture conditions

(25 mM D-glucose) maintained for five days. BBB integrity normalized
upon re-establishment of normoglycemic conditions (5mM
D-Glucose) or upon treatment with antioxidants [98]. A significant
increase in expression of pro-inflammatory cytokines (TNF-a, IL-6,
IL-1, IL-4), followed by activation of Nuclear Factor kappa-light chain-
enhancer of activated B cells (NF-«xB) and Signal Transducer Activator
of transcription 3 (STAT3) inflammatory pathways was reported in
other studies investigating the impact of hyperglycemia on human
astrocytes (HA) [99]. Closely associated astrocytic end-feet processes
contribute to modulate ECs differentiation in addition to induction
and maintenance of the BBB properties. There is also evidence showing
inhibition of astrocytic gap junctional communication in tissue culture
and brain slices obtained from diabetic rats. Increased production of
reactive oxygen-nitrogen species was also noted although the exact
mechanism remains unclear [100,101]. Further, increased level of
vascular endothelial growth factor (VEGF; a pro-angiogenic factor) in
response to advanced glycation end-products was also reported [102].

Protein expression and transcriptional activity of hypoxia-inducible
factor-la (HIF-1a) was up-regulated in endothelial cell cultures by
high glucose levels (30mM). In addition, the expression level of VEGF
- a downstream vascular effector of HIF-1a was also increased. VEGF
enhances and supports the translocation of GLUT-1 to the cell surface
at the BBB besides promoting angiogenesis and decreasing expression
of inter-endothelial tight junction proteins (e.g., ZO-1 and occludin
[103]), thus increasing BBB permeability. Morphometric analysis using
colloidal gold particles (GPs), showed that the immunosignal density
for occludin was significantly lower in the brain microvessels of diabetic
mice in comparison to controls [104].

On similar lines, inhibition of VEGF expression improved occludin
and ZO-1 expression thereby attenuating inter-endothelial leakage.
In accordance, down-regulation of the HIF-1a activity by the use of
inhibitors improved BBB integrity and tightness [105].

Experimental studies with contrasting results have been reported
in humans where plasma VEGF levels decreased during hyperglycemia
and increased during hypoglycemia; with a convincible explanation
that this is probably a neuroprotective mechanism to maintain a
constant cerebral glucose supply [106]. Overall, these findings implicate
the critical role for VEGE, as a vascular permeability factor, in hyper
and hypoglycemia-induced BBB dysfunction.

In addition to VEGE recent studies provide evidence for a major
role of matrix metalloproteinases (MMP) in altered glycaemia-induced
loss of BBB integrity. For example, BBB permeability to '*C sucrose (a
well-known paracellular marker) increased in response to increased
expression of MMP-2 (also paralleled by down-regulation of occludin
and ZO-1) in diabetic rats [34,107-109]. Similar to VEGE advanced
Reference

Tight Junction Protein Changes in expression level

Z0-1 l [104,107,108]
Occludin l [40,105,107,108]
ICAM-1 t [109,110]
Claudin-5 l [108]

Table 2: Effects of DM on BBB TJ proteins.
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glycation end-products were shown to stimulate the release of MMP-2
[102]. See Table 2 for a summary of glycemia-dependent alteration of
BBB tight junction and EC adhesion molecules.

Acute transient hyperglycemia has also been reported to cause
early inflammation and endothelial injury. This was clearly outlined
in middle cerebral carotid artery occlusion (MCAO) rat model of
ischemia-reperfusion injury. Increase in high-mobility group box 1
(HMGBI1) and intercellular adhesion molecule-1 (ICAM-1) levels
during ischemia-reperfusion were observed in both mild hyperglycemia
(blood glucose ~150 mg/dL) and transient severe hyperglycemia (blood
glucose ~400 mg/dL) with significant impact on BBB integrity [110].
These results were further reiterated by subsequent studies showing
a marked increase of ICAM-1 positive stained cortex microvessels in
diabetic rats after 3 days of reperfusion which was also paralleled by
increase in IL-1p expression [109]. It is possible that the increased HIF-
la and VEGF expression in response to hyperglycemia synergistically
adds to the detrimental BBB response elicited by flow-cessation [111],
thus further increasing the loss of barrier integrity observed during
reperfusion. However this hypothesis needs to be confirmed.

Regional as well as whole brain permeability increased by more than
100% in diabetic ketoacidosis patients (13 children) under observation
right from initiation of study through the treatment period. Level of
inflammatory cytokines also significantly increased in these patients.
Diabetic ketoacidosis is a result of type 1 diabetes in children wherein
increased BBB permeability results in complications like cerebral edema
[112]. Absence of tight junction proteins like occludin, claudin-5,
Z0O-1 and JAM-1; albumin extravasation; and presence of increased
neuroinflammatory markers chemokine CC ligand 2 (CCL2), NF-kB
and nitrotyrosine were also observed in a similar study. This clearly
suggests that neuroinflammation combined with loss of BBB integrity
(T] proteins) plays a primary role in the pathogenesis of brain edema in
these patients [108]. All together, these data strongly support a major
impairing role of diabetes on BBB integrity and maintenance of brain
homeostasis prodromal to the onset of major neurological disorders.

Hyperglycemia also hinders the supply of vitamin C (ascorbic acid)
to both retina and brain. Vitamin C is mainly transported across the
BBB by GLUT-1 as dehydroascorbic acid (DHA) and is accumulated
in the form of ascorbic acid. Vitamin C is involved in the biosynthesis
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such as Pentose phosphate pathway (PPP), Hexosamine biosynthetic pathway (HBP), Protein kinase C pathway and advanced glycation end-product pathway
(AGE). Glucose itself can also enter polyol pathway instead of glycolysis to form fructose. Altered glycaemia can hamper/affect any of these other pathways of

glucose metabolism, leading to oxidative stress and potential cell damage.
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of collagen, catecholamine and peptide neurohormones. It acts as
an antioxidant and scavenges the free radicals, thereby detoxifying
the brain [113-115]. *C DHA transport was reduced by 84.1% in
streptozotocin-induced diabetic rats. In addition, P-glycoprotein
(P-gp: a member of ATP-binding cassette transporter glycoprotein)
expression levels in diabetic mice have been contrastingly reported
to decrease [116,117], increase [118] or remain unaffected [119] by
others. Further, Insulin therapy was reported to restore the increased
P-gp levels in STZ-induced diabetic rats [117]. Additional histological
changes and vascular abnormalities observed at the level of the brain
microcirculation in diabetes include thickening of the capillary basal
membrane, collagen deposition, accumulation of lipid peroxidation
by-products and endothelial degeneration at the level of the cerebral
microvasculature [120]. Ultimately diabetes can lead to abnormal
cerebral neovascularization and remodeling [121], which may further
contribute to vascular damage and risk of hemorrhage associated with
stroke or neurodegenerative processes in diabetes.

Oxidative stress at BBB in DM

Understanding the brain metabolic pathways involved in energy
production is imperative to unravel how diabetes ultimately causes
oxidative stress which can lead to early inflammation and endothelial
injury.

Glucose metabolism (Figure 3) and energy production starts
with glycolysis where glucose undergoes a series of metabolic steps
to produce lactate (anaerobic metabolism end product) or pyruvate
which can be further processed to extract more energy. Under normal
condition the extensive bioenergetic demand of the BBB machinery is
met by the conversion of pyruvate into carbon dioxide (CO,) and water
(H,0) in an oxygen-dependent 8-step enzymatic process along the
tricarboxylic acid cycle (TCA cycle). The theoretical energetic yield of
the process from the complete oxidation of one glucose molecule to the
end product generation of CO, and H,Ois of 6X NADH, 2X FADH2,
and 2X ATP (equivalent to 36X ATP molecules). The aerobic pathway
also provides reducing equivalents (such as NADH and NADPH) to
counteract oxidative stress caused by both endogenous and exogenous
reactive oxidative species (ROS) [2,122,123].

Neurons and astrocytes interact to fulfill the energy requirements,
with glycolysis occurring in astrocytes while TCA cycle taking place in
neurons. Each cell type contains both sets of enzymes, thereby making
it a subject for validation. During glycolysis itself, the intermediates
formed can enter into different pathways of metabolism (Figure 3) -
namely pentose phosphate pathway (PPP), hexosamine biosynthetic
pathway (HBP), protein kinase C pathway (PKC) and AGE pathway.
Glucose itself can also enter polyol pathway instead of glycolysis to
form fructose [2,122,123]. We have subsequently discussed how these
pathways abnormally get regulated in DM.

Hyperglycemia aids in production of ROS which leads to variety
of microvascular and macrovascular complications [2,122]. Although
preliminary studies have shown that human brain endothelial cells
exhibit vulnerability to hyperglycemic stress (associated with notable
cytosolic and mitochondrial redox shifts) [124,125] characterization of
molecular and physiological responses of the BBB to DM-associated
oxidative stress (ROS generation) has been barely initiated and is still
under-investigated. This is extremely important since oxidative stress
has been associated with the pathogenesis and progression of many
neurodegenerative diseases including Alzheimer’s disease (AD),
Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS)
[126,127].

Takahashi et al. [128] reported that acutely and chronically induced
hyperglycemia increased PPP activity and glutathione (GSH) levels in
astrocytic culture, in turn decreasing ROS levels. Higher PPP activity
facilitates the regeneration of GSH such that cells are able to combat
the higher oxidative stress level (protective role). To this end, nuclear
translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related
factor 2) in association with BiP (immunoglobulin heavy-chain-
binding protein) was also observed. Nrf2 (the primary cellular defense
against the cytotoxic effects of oxidative stress) normally lies in the
cell cytoplasm but translocates into nucleus under oxidative stress to
initiate the Nrf2 antioxidant response pathway of transcription of anti-
oxidant genes and proteins (e.g., NAD(P)H quinone oxidoreductase 1,
Heme oxygenase-1, glutathione S-transferase, etc.).

Generation of excess superoxide during hyperglycemia suppresses
GAPDH, thereby promoting glucose utilization by alternative pathways
(e.g., processing of Glyceraldehyde-3-P through PKC pathway and
AGE pathway) [2]. Pronounced vasogenic edema that occurs during
hyperglycemic stroke has been investigated to be mainly due to PKCp
activation. Further PKC activation affects BBB permeability through
Z0-1 phosphorylation, TJ disruption and increase in VEGF expression
[129]. Increased intracellular levels of AGE products damage the
cells by altering the function of various proteins (modified by AGEs),
including their interaction with surface membrane components (e.g.,
integrins) and AGE receptors. This occurs in macrophages, vascular
endothelial and smooth muscle cells. Activation of AGE receptors
(RAGE) increases ROS formation and leads to activation of NF-
kB pathway. This ultimately promotes the expression of a variety
of pro-inflammatory mediators [2,122,130,131] thus adjuvanting/
strengthening the immune and pro-inflammatory responses. In fact
increased accumulation of AGEs in Alzheimer’s patients has proven
to cause neuronal death and degeneration, thereby supporting the fact
that diabetes increases the risk of AD and any shift in normal glucose
metabolism is deleterious for BBB integrity. In addition, oxidative stress
has been shown to activate matrix metalloproteinases (MMP-1, -2, and
-9) while decreasing tissue inhibitors of MMPs (TIMP-1 and -2) in a
protein tyrosine kinase (PTK)-dependent manner [126].

Even though all cells are exposed to elevated glucose level in DM,
hyperglycemic damage is restricted to only certain subtypes (retinal
cells, endothelial cells) that are unable to down-regulate glucose
transporter expression. As previously discussed, five major mechanisms
are believed to be responsible for hyperglycemic damage: 1) Increased
polyol pathway flux; 2) increased intracellular production of advanced
glycation end-products; 3) increased expression of AGEs receptors and
its activating ligands; 4) activation of protein kinase C; 5) increased
flux through the hexosamine pathway. The upstream triggering event
shared by all these mechanism is mitochondrial overproduction of ROS
(2,132].

Conclusions

Although the DM-dependent vascular damage has been clearly
associated to downstream mechanisms generating oxidative stress and
inciting inflammation, the impact of DM on the blood-brain barrier
has only been marginally addressed. Due to the unique characteristics
of the BBB the effects of DM on the brain microcapillaries are,
perhaps, different from other microvascular beds such as the retina
and peripheral nerves. Most of these adverse effects can build over
time with each insult being clinically unnoticeable until neurological
damage has occurred.

Diabetes effects on BBB function have been approached and
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Figure 4: Simplified RAGE signal transduction pathways. Note that the
engagement of RAGE stimulates the activation of a diverse array of signaling
cascades. These include mitogen activated protein kinases (MAPK), such
as extracellular regulated (ERK)-1/2, p38 and c-Jun N-terminal kinase
(JNK), Jak/STAT, phosphoinositol 3-kinase (PI3K), and members of the Rho
GTPase signaling pathway (Cdc42 and Rac-1). Moreover, RAGE activation
enhances the generation of reactive oxygen species (ROS) by activating
NAD(P)H oxidase. Conversely, AGE may decrease NO availability by
the decreased activity of NOS and by quenching NO. RAGE-dependent
responses eventually converge to the activation of nuclear transcription
factors (such as nuclear factor (NF-kB) and consequent target gene
transcription (including endothelin-1, ICAM-1, E-selectin, and tissue factor)
and ultimately triggering inflammatory pathways.

documented with respect to transport of glucose across the BBB in
pathophysiological conditions like hyperglycemia and hypoglycemia.
BBB regulates the efflux of metabolic byproducts of the CNS metabolism
thereby allowing the transport functions to adapt to alterations in
blood glucose levels. Chronic alteration in blood glucose content
(hyper- and hypoglycemia) is a characteristic hallmark of diabetes and
has been shown to trigger corresponding/compensatory alteration
in the expression of glucose transporters at the BBB. Specifically, up-
regulation of glucose transporters has been correlated to hypoglycemia
suggesting an increase in BBB glucose extraction [83,92,93]. By
contrast, hyperglycemia appears to down-regulate glucose transporters
[63,78], although in vivo studies so far have provided controversial
results. Alteration of glucose metabolism has also been suggested
as having a role in the pathophysiology of diabetes at the BBB.
Unfortunately, inconsistency and often controversial results between
experimental and clinical studies do not offer a compounding final
answer to this riddle. Therefore, whether diabetes and more specifically

hypo- and hyperglycemia alter glucose transport and metabolism at
the BBB (and the extent of these changes) is still unclear. Without a
common denominator (study platform and methods) interpretation
of current data (either in vivo or in vitro) becomes very difficult and
translational relevance of such findings is somewhat questionable. The
appropriateness of these studies (long versus short-term, in vivo versus in
vitro, etc.) performed so far also need to be addressed to find a common
experimental ground. On the other hand, there are ample experimental
(both in vivo and in vitro) evidences supporting an oxidative and
pro-inflammatory effect of diabetes on brain microcapillaries and
the BBB for which RAGE is gaining an increasingly prominent role
as a prodromal factor for many of the vascular pathophysiological
changes associated with diabetes. RAGE activation promotes vascular
dysfunction by impairing endothelial nitric oxide bioavailability,
increasing the expression of adhesion molecules as well as the release
of proinflammatory cytokines, chemoattractant mediators, matrix
metalloproteinases and prothrombotic factors [133] (Figure 4). This
inflammatory and oxidant milieu promoted by RAGE activation
enhances the generation of its own ligands, thus sustaining a harmful
vicious cycle enhancing vascular inflammation and BBB impairment.

Overall, the current common consensus is that diabetes-dependent
alteration of systemic glucose level play a significant role in the
pathogenesis and/or progression of major neurological disorders by
altering the structural and functional properties of the BBB [2,122,134].
However, this field of research is still severely under-explored. In depth
studies aimed at unraveling how DM progressively alters BBB function
and structure, the molecular players and mechanisms involved are still
very much needed.
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