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Introduction
Vascular wilts caused by xylem-colonizing pathogens are among the 

most devastating plant diseases worldwide. The microbial pathogens 
that cause these diseases are generally soil-borne and infect the plants 
through the roots. They traverse the cortex of the roots and enter the 
xylem vessels, after which they proliferate within the vessels, causing 
blockage of water and mineral flows that may result in wilting and death 
of the leaves, often followed by partial destruction or death of whole 
plants [1,2]. There are four fungal genera (Ceratocystis, Ophiostoma, 
Verticillium, and Fusarium), seven bacterial genera (Clavibacter, 
Curtobacterium, Erwinia, Pantoea, Ralstonia, Xanthomonas, and 
Xylella), and one oomycete genus (Pythium) that comprise the most 
important vascular wilt pathogens [3,4].  Verticillium wilt disease is one 
of the most common and destructive plant diseases worldwide and is 
most often caused by the soil-borne fungus Verticillium dahliae Kleb 
[5-8]. Up to today, no sexual stage has been observed for V. dahliae, 
but DNA evidence places the species within the class of Sodariomycetes 
in the phylum Ascomycota. Its vegetative mycelium is hyaline, septate, 
and multinucleate, while conidia are  ovoid or ellipsoid and usually 
single-celled. They are borne on phialides, which are specialized 
hyphae produced in a whorl around each conidiophore, and each 
phialide carries a mass of conidia [9,10].  Verticillium  is named after 
this verticillate (=whorled) arrangement of the phialides on the 
conidiophore. The species can cause vascular wilt disease in at least 300 
plant species, ranging from herbaceous annuals to woody perennials 
[11-14]. Verticillium wilt disease is one of the major constraints for 
tree nurseries and plantations and causes substantial reduction in the 
production of orchards and high rates of tree mortality [15-20]. V. 
dahliae infection and colonization of woody hosts have been reviewed 
by [19]. In trees, V. dahliae begins its parasitic phase when microsclerotia 
in soil are stimulated to germinate by root exudates of nearby host roots. 
The resulting hyphae grow towards the roots of the host which they may 
penetrate inter- or intracellularly. Following the first penetration, hyphae 

grow inter- and intracellularly within the root cortex to reach and enter 
the xylem vessels. Next, conidiospores are produced within these vessels 
and the plant is colonized systemically by a combination of hyphal 
growth and conidiospores moving with the transpiration stream. The 
presence of the fungus and the responses of the plant ultimately cause 
widespread vascular dysfunctioning, leading to symptoms that comprise 
wilting, defoliation, necrosis and dieback. Infection and colonization 
of olive tree by V. dahliae has been studied by several research groups. 
Designing effective control strategies for this disease is difficult because 
of the long survival time of the pathogen in the form of microsclerotia 
in soil, broad host range of the pathogen that complicates crop rotation, 
and the absence of methods to cure infected trees and eradicate the 
pathogen from infested soils [21-24]. Several measures (such as 
employment of resistant cultivars or rootstocks, cultural practices to 
avoid spreading of the disease, disinfestation of V. dahliae-infested soil 
with fumigants, soil solarisation, green amendments or biological soil 
infestation. replacement of diseased trees with non-host plants, and use 
of biological control agents, including beneficial bacteria) have been 
suggested to control this disease [25]. However, as an important pre-
planting measure, new plantations should not be established in or near 
fields with a known history of Verticillium infections. Arguably, the 
best measure to control Verticillium wilt disease is by planting on soils 
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without Verticillium and preventing introduction of the pathogen into 
fields by using healthy planting material, and also the deployment of 
resistant plants when V. dahliae is already present [26-30]. 

Literature Review: Use of Healthy Planting Material
Endophytic colonization of V. dahliae 

Selection of planting material only based on (the lack of) visible 
symptoms is not reliable, since asymptomatic infections have been 
reported to occur in several host plants [31-36]. V. dahliae could be 
detected when samples from trunks and branches of asymptomatic 
infected olive trees were subjected to amplification by PCR using V. 
dahliae-specific ITS primers [37]. Moreover, nested-PCR analysis and 
plating assays have shown that seeds harvested from asymptomatic 
olive trees can transmit the pathogen to seedlings [38]. This may be 
explained by the fact that V. dahliae can colonize plant species strictly as 
an endophyte without inducing any visible symptoms of disease [39,40]. 
Currently, endophytic colonization of V. dahliae has been reported 
mainly from monocotoledonous plant species, such as barley, oat 
and wheat. However, also numerous weeds, including dicotelydonous 
ones such as common blackberry (Rubus allegheniensis Porter ex L. 
H. Bailey), nettle (Urtica spp.), Pennsylvania smartweed (Polygonum 
pennsylvanicum L.), lamb’s quarters (Chenopodium album), common 
purslane (Portulaca oleraceae), and black nightshade (Solanum nigrum) 
are known as symptomless hosts of Verticillium spp. [41-45]. Thus, the 
fact that V. dahliae can thrive as an endophyte in plant hosts has the 
important implication that asymptomatic plants may serve as a reservoir 
of inoculum and may potentially initiate epidemics of Verticillium wilt 
disease.

Latent period and asymptomatic infection 

Asymptomatic infections may also occur in recently infected plants 
that do not yet display symptoms; a phenomenon that is also known 
as the latent period (Figure 1). Depending on host and pathogen 
genotypes as well as environmental conditions, this period can last 
for longer or shorter periods. Upon artificial inoculation, pathogen 
DNA can be detected in symptomless olive plants at much earlier time 
points than when the first Verticillium wilt symptoms appear [46-50]. 
Thus, considering that latency is a phenomenon that is associated with 
Verticillium infections, reliable methods should be used for detection 
of the pathogen in plant material prior to planting to ensure use of 
healthy plant material and to avoid the introduction of pathogens in 
non-infested growing areas.

Timely testing of plant material for V. dahliae infection 

PCR-based methods such as real-time PCR are increasingly used 
for rapid and sensitive detection and quantification of V. dahliae in 
artificially inoculated as well as in naturally infected trees [51,52]. 
In artificially inoculated trees, detection of the pathogen early 
after inoculation generally works well, owing to the high inoculum 
concentration that is generally used to promote consistency of disease 
incidence in pathogenicity tests [53]. However, the amount of fungal 
inoculum in asymptomatic infected plants, as likely occurs in natural 
infections in tree nurseries as well, combined with the non-uniform 
distribution of the fungus within the tree [54,55], complicates robust 
and reliable early detection of the pathogen in natural infections. 
Several studies have been conducted to improve PCR-based methods 
for early in planta detection and quantification of V. dahliae in 
symptomatic and asymptomatic tissues that carry low amounts of 
pathogen DNA. Loop-mediated isothermal amplification (LAMP) is 
a method that recently has been developed as a highly sensitive and 

specific isothermal PCR-based method that can be used for effective 
diagnostic assays. Moreover, the sampling strategy may have a major 
influence. It was demonstrated that the testing mixed samples instead 
of individual samples improves the robustness of detection methods. 
Thus, exploitation of these PCR-based in planta detection methods, 
in combination with sampling strategies facilitates robust testing of 
planting material for V. dahliae presence, aiming to provide pathogen-
free planting material for establishing new plantations [56,57]. 

Recovery: A natural phenomenon to overcome verticillium 
infection 

In several tree species such as almond, peach, apricot, ash, 
catalpa, pistachio, cocoa, avocado, and olive it has been observed 
that Verticillium wilt symptoms of infected trees may be reduced in a 
next growing year [58-60]. Also, it was observed that, despite the fast 
occurrence of disease symptoms in ash trees in the year of inoculation, 
a high portion of diseased ash trees were recovered from Verticillium 
wilt symptoms in the year after inoculation [61]. Interestingly, analysis 
of the distribution of the pathogen in the year after inoculation showed 
that new xylem sheaths in recovered ash trees were not infected by V. 
dahliae, whereas new xylem sheaths of both maple and symptomatic 
ash trees were infected. This implies that occurrence of recovery in 
ash trees is associated with impeding new infections. It also has been 
observed that olive trees that have recovered from a single inoculation 
will not express wilt symptoms again, unless new infections occur 
[62]. Sources of new infections, however, may be either internal (i.e. 
previously infected xylem sheets) or external (i.e. contracted from 
the environment). Infested soil is the major external source of new 
infections in the field. Therefore, practices that reduce inoculum 
sources in the soil and prevent new infections have an impact on the 
occurrence and persistence of natural recovery [63-65]. In this context, 
soil treatments such as soil solarization, soil fumigation, and organic or 
biological amendments that reduce the inoculum density of V. dahliae 
in the soil around the tree and therefore reduce the number of new 
invasions of rootlets not only prevent new disease but also stimulate 
recovery from disease [66-70]. 

Compartmentalization facilitates recovery

As noted above, in trees infected xylem sheets may provide an 
internal source of inoculum for infections of new vessel elements in the 
next year showed that pathogen DNA can be isolated from the xylem 
of two successive years in diseased maple trees, while in recovered 
ash trees pathogen DNA could be isolated only from old vessels and 
not from newly formed vessels in the wood after inoculation. In this 
experiment, plants received a single inoculation. This indicates that 
new xylem sheets in maple trees were infected by spreading of the 
pathogen from old vessels, while in recovered ash trees the ability of 
V. dahliae to invade adjacent vascular bundles was impaired. Thus, 
mechanisms that hinder spread of the pathogen from old vessels to the 
new vessels or other parts of infected trees can stimulate recovery of 
infected trees. Compartmentalization is a boundary-setting process that 
is activated following fungal vascular invasion and tends to limit the 
spread of infection and the loss of normal functioning of sapwood [71]. 
The principle of the compartmentalization lies in the establishment 
of four types of “walls”. While wall 1 restricts pathogen movement 
longitudinally, wall 2 consists of the growth ring boundary and restricts 
pathogen movement centripetally, and wall 3 limits the tangential 
movement of pathogen and is associated with ray parenchyma. Wall 
4 is the strongest and referred to as the parenchymatous “barrier 
zone”, produced by cambial activity, and separates the tissue present 
at the time of infection from new, uninfected tissue. Studies on clones 
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of Populus deltoides Bartr. (eastern cottonwood) and Liquidambar 
barstyraciflua L. (sweetgum) have shown that different clones vary in 
their compartmentalization ability, suggesting that this phenomenon 
is under genetic control, and making it possible to screen species for 
genotypes that display superior compartmentalization traits [72-75].

Restoration of vascular tissue enhances recovery

Recovery is also enhanced by producing new vascular tissue, 
which allows novel vegetative growth of affected stems and branches 
[76]. In trees in temperate climate zones every year a new zone of 
xylem elements (growth ring) is formed if the cambium survives. This 
enables recovery of infected trees through replacement of the infected 
vascular tissue. In annual plant species diseased plants at least two 
different strategies in response to invasion of vascular pathogens to 
produce new xylem vessels have been reported: 1) trans differentiation 
which is defined as the conversion of one cell type into another with a 
different function. 2) vascular hyperplasia which is generally defined as 
an induced increase in cell number as a result of infection [77-80]. In 
vascular diseases, infection may induce transdifferentiation of bundle 
sheath cells to novel, functional xylem vessels, or may increase xylem 
cells within the vascular bundle as a result of prolonged or renewed 
activity of the vascular cambium. Seven putative NAC (for NAM, 
ATAF1/2, and CUC2) transcription factors have been identified in the 
Arabidopsis thaliana, which are involved in transdifferentiation and fall 
into the subfamily of VND (Vascular related NAC Domain) [81-85]. 
Within this subfamily, VND6 and VND7 seem to have specific roles 
on Verticillium-triggered transdifferentiation of bundle sheath cells, 
with VND6 regulating metaxylem (xylem tissue that consists of rigid 
thick-walled cells and occurs in parts of the plant that have finished 
growing) formation, and VND7 inducing protoxylem (the first-formed 
xylem tissue, consisting of extensible thin-walled cells thickened with 
rings or spirals of lignin) development [86]. It would be very interesting 

to see if similar mechanisms do occur in tree species resulting in 
increased numbers of vascular elements being formed after vascular 
infection. Interestingly, homologs of NAC domain protein genes 
(PtVNS/PtrWND) have been identified in poplar (Populus trichocarpa) 
and their role in differentiation of the xylem vessel element has been 
demonstrated [87,88]. Thus, studying the distribution of these genes 
or their homologs in other trees, and their impact on Verticillium-
triggered changes in differentiation of cells from the cambium or 
even within existing tissues, may help to design strategies to stimulate 
recovery of susceptible trees [89,90]. 

Exploiting resistance sources to control verticillium wilt

Genetic resistance is the most preferred strategy to control 
Verticillium wilt diseases because of its potentially effective and 
environmentally-friendly nature [91-95]. Several experiments have 
been carried out to identify Verticillium wilt resistance in various tree 
species, such as maple, pistachio, and olive [96-100]. Cultivars that have 
been introduced as resistant show reduction in disease progression 
when they are inoculated with V. dahliae, while can still be colonized by 
the pathogen as the pathogen could be isolated from inoculated trees. 
This suggests that resistance in these cultivars is partial and despite 
the efficacy in reduction of disease symptoms, such plants may serve 
as a reservoir of inoculum and contribute to spread of the pathogen. 
Furthermore, when these cultivars are used as rootstock, the pathogen 
may grow through the rootstock and cause significant disease when 
it reaches the susceptible scion. Therefore, identification of genetic 
sources of resistance is an essential need for improving resistant trees 
aiming the effective control of Verticillium wilt in tree plantations. 

Genetic resistance against Verticillium wilt diseases has been 
reported in several crop species, such as alfalfa (Medicago sativa), 
cotton (Gossypium hirsutum), potato (Solanum tuberosum), strawberry 
(Fragaria vesca), sunflower (Helianthus annuus), and tomato (Solanum 

Figure 1: (A-E) Progression of V. dahliae and disease symptoms in olive upon artificial inoculation. A) Attachment of conidiospores (red spots) to the root 
surface. B) Dense hyphal colonization of the root system. C) Hyphae colonizing the xylem vessels of roots. D) Distribution of conidia throughout the tree 
upon transport by the transpiration stream of the host. V. dahliae is detectable in all above-ground tissues (main stem, branches, twigs and leaves). E) 
Colonization of V. dahliae in above-ground tissues leads to display of extensive disease symptoms in parts of the infected tree.
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lycopersicum) [101-105]. Nevertheless, for many other crops and tree 
species, genetic resistant is not readily available [106,107]. The Ve locus 
in tomato is the only cloned and functionally characterized locus in 
terms of plant resistance against Verticillium wilt. This locus contains 
two genes, Ve1 and Ve2, encoding extracellular leucine-rich repeat 
receptor-like proteins (eLRR-RLPs). However, of these genes only Ve1 
provides resistance against race 1 isolates of V. dahliae and V. albo-
atrum via recognition of Ave1 effector, which was identified only in race 
1 isolates [108-110]. Intriguingly, phylogenetic analysis showed that 
homologues of Ve1 are widely distributed in plants. So far, several Ve1 
homologous genes that confer race-specific resistance against V. dahliae 
have been reported such as SlVe1 from Solanum lycopersicoides, StVe1 
from S. tuberosum, StVe and StoVe1 from S. torvum, mVe1 from Mentha 
longifolia, and Vr1 from Lactuca sativa. Recently, the Ve1-like genes 
GbVe1 and Gbvdr5 were cloned from island cotton, which is resistant 
to Verticillium wilt. Transgenic expression of these genes in susceptible 
Arabidopsis and upland cotton induced significant resistance to both 
D and ND isolates of V. dahliae. Moreover, the  Ve1-like gene  VvVe 
was recently cloned from  Vitis vinifera.  Overexpression of VvVe in 
transgenic  Nicotiana benthamiana conferred resistance to the V991 
isolate (D pathotype) of V. dahliae [111-115]. Recently, Gómez-Lama 
Cabanás et al. conducted a transcriptomic analysis to identify systemic 
defense responses induced/repressed in aerial tissues of the tolerant 
olive cultivar (Frantoio) upon root colonization by V. dahliae. They 
reported transcription factor GRAS1 and disease resistance-responsive 
protein (DRR2) could be further evaluated as markers of the tolerance 
level to V. dahliae. However, genes conferring resistance to V. dahliae D 
and ND isolates have not been reported from tree hosts thus far [116-125]. 

Discussion and Conclusion
Putative resistant cultivars may be identified by screening 

genotypes preserved in germplasm banks, or by screening wild relatives 
or progenies generated in breeding programs. Several screenings of 
commercial olive cultivars and wild olive germplasm have been carried 
out to identify sources of resistance to Verticillium wilt [126]. Although 
olive genotypes that display some degree of resistance to V. dahliae have 
been found, most of the commercial olive cultivars are still susceptible 
or extremely susceptible to Verticillium wilt. Thus, the development 
of breeding programs may act as an important approach to generate 
resistant cultivars that also have desirable agronomic traits. Breeding 
for resistance typically includes: 

1) Identification of genotypes that carry a useful disease resistance 
trait, even if this is combined with less desirable other traits. 

2) Crossing of a susceptible preferred cultivar with the resistance 
source.

3) Testing of the progeny of the cross for reduced disease susceptibility.

4) Selection of disease-resistant individuals and crossing back to the 
recurrent parent. 

This process is repeated for as many back crosses as needed to 
obtain a line as identical as possible to the recurrent parent with the 
addition of the gene of interest. Especially in perennial species this is a 
long term approach that takes many years, often even decades.

Diversity in plant genetic resources is the basis for selection and 
for plant improvement in breeding programs [127]. In the absence 
of enough diversity, mutagenesis followed by screening for enhanced 
resistance is a means to identify novel resistance traits. Through the 
years, mutagenesis has played a significant role in plant breeding 

programs by producing a vast amount of genetic diversity in crops and 
tree species. Several technologies have been developed for random 
mutation, e.g., radiation (gamma and X-ray), chemical mutagens such 
as ethyl methanesulfonate and sodium azide and methylnitrosourea, 
T-DNA- or transposon-based activation tagging. Besides, in vitro 
culture techniques are particularly relevant for mutagenesis as 
large populations of cells can be treated and screened before being 
regenerated into complete plants. Among the different in vitro methods, 
however, somatic embryogenesis is the most useful tool for the selection 
and multiplication of mutants as somatic embryos usually originate 
from single cells. Furthermore, a few subcultures can be performed 
in a short time to increase the mutagenized population for selection. 
Therefore, combination of mutagenesis and in vitro culture techniques 
can generate an appropriate genetic diversity to be used in breeding 
programs for improvement of resistant cultivars. 

To evaluate the resistance level of genotypes that are developed 
in a breeding program, they should be challenged with the pathogen. 
Reported that olive cultivars that are highly resistant to isolates that 
belong to the ND pathotype may be highly susceptible to isolates that 
belong to the D pathotype. This indicates that resistance in trees is only 
active against isolates of the species, and not to others, equivalent to 
the occurrence of a race-structure that is frequently observed with the 
deployment of resistance genes. As isolates of V. dahliae are mostly 
considered host-adapted rather than host-specific, i.e. are more virulent 
to the host from which they were isolated it is important to include 
isolates representing differential virulence in programs for evaluating 
host resistance to V. dahlia.

Advances in genetic transformation technology through use 
of selected strains of Agrobacterium tumefaciens and subsequent 
regeneration via somatic embryogenesis have provided new possibilities 
for the biotechnological improvement of resistance in tree species. 
However, for this strategy understanding host-pathogen interactions 
and molecular characterization of the genes and proteins that are 
responsible for resistance is essential. In tomato, genetic analysis has 
shown that the Ve1-mediated resistance signaling pathway requires the 
EDS1 (Enhanced Disease Susceptibility 1), NDR1 (Non-race-specific 
Disease Resistance 1), BAK1 (BRI1-Associated Kinase 1), MEK2 
(MKK2, MAP kinase 2), and SOBIR1 (LRR-RLK Suppressor of BIR1-
1) proteins. Also, it has been reported that GhNDR1 and GhMKK2 
are required for resistance mediated by the GbVe1 and Gbvdr5 genes 
in cotton. In tree hosts, however, many aspects of defense responses 
remain unknown and require investigation. With recent genomic 
and transcriptomics advances we are now better equipped to begin 
unraveling the mechanisms underlying plant-pathogen interactions in 
woody hosts. The discovery of candidate genes for disease resistance 
in trees based on genomics and transcriptomics, coupled with 
advancements in breeding technology, is expected to enable us to 
improve resistance particularly in commercially propagated olive and 
other valuable tree species in the future. 
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