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Abstract
Influenza A viruses consisting of all known 16 HA and 9 NA subtypes have been isolated from birds. We have 

created a diagnostic avian cDNA microarray containing probes corresponding to the highly conserved matrix (M) 
gene, and selected hemagglutinin (HA), and neuraminidase (NA) subtypes of AIV. cDNA RT-PCR products from 
the HA, NA, and M genes of various avian influenza isolates and subtypes were used to create an avian influenza 
virus (AIV) cDNA microarray. The microarray was evaluated against a panel of AIV isolates in order to appraise its 
application in AIV detection and identification. Utilizing the M gene as a pan-influenza marker, all 10 samples were 
identified as being strains of type A influenza. The array was able to correctly HA- and NA-subtype subtype 7 out of 
10 test samples. This included correctly identifying, subtyping, and determining the geographic origin of all of the H5 
subtypes and the two H7 samples of U.S. origin.
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Introduction
Influenza viruses are enveloped, single-stranded RNA viruses 

belonging to the Orthomyxoviridae family [1]. The viral genome is 
composed of eight gene segments of negative sense single-stranded 
RNA. The viral envelope is coated with surface projections, comprised 
predominantly of the hemagglutinin (HA) and neuraminidase (NA) 
proteins, which are also major antigenic determinants. The HA and NA 
proteins are antigenically variable with 16 distinct hemagglutinin and 
9 distinct neuraminidase subtypes that have all been identified in wild 
birds [2]. Avian Influenza Virus (AIV) is a contagious viral pathogen 
affecting many species of birds throughout the world. Clinical signs of 
Avian Influenza (AI) vary from mild respiratory distress to death in 
chickens, while wild birds are generally asymptomatic [3,4]. The highly 
pathogenic H5N1 subtype has been associated with the infection of 
humans in Southeast Asia and Africa who have come in direct contact 
with infected birds [5,6]. These concerns persist as human infections 
with an avian H7N9 virus were first reported in 2013 [7]. 

The advent of the quantitative real time reverse transcriptase-
PCR assay (RRT-PCR) revolutionized AI diagnosis by increasing the 
sensitivity, specificity, and speed of analysis compared to traditional 
diagnostic methods [8-13]. RRT-PCR tests are designed in regions 
of high sequence conservation, and produce only plus/minus results, 
but phylogenetic sequence analysis has demonstrated multiple 
sublineages, particularly in the HA subtypes. This may lead to a lack 
of discrimination between H5 sequences, based on pathogenicity or 
geographical origin [14]. RRT-PCR, in general, is also limited because 
it relies on specific primers, which may fail when the corresponding 
viral sequences mutate [14,15].

Microarray technology has been applied to a wide variety of 
applications including gene expression studies, drug discovery, 
analyses of evolutionary relationships, and detection of nucleotide 
mutations. Microarrays have an unparalleled ability to analyze 
thousands of nucleic acid sequences simultaneously and because of 
this, DNA microarrays can be used as a diagnostic tool to detect a 
wide range of bacterial and viral pathogens [16-18]. Oligonucleotide 
and cDNA microarrays have been successfully used to detect and 
identify influenza viruses [14,19-27]. Several groups have also reported 

the development of microarray-based technologies for detecting and 
typing avian influenza virus [28-30]. These microarray-based methods 
for avian influenza virus detection have been shown to be as sensitive 
as real-time RT-PCR and they can differentiate between different 
HA subtypes and pathotypes [29,31]. As more influenza sequence 
information becomes publicly available, microarrays can become more 
comprehensive in their representation of circulating strains. Because 
of the genetic diversity observed in strains of AIV, and the ready 
availability of HA sequence data; the microarray is an ideal tool for 
AIV detection and identification. 

Both RRT-PCR and traditional microarray technologies are 
somewhat limited in their abilities to detect pathogens which do not 
have sequences in common with the amplifying primers or with the 
sequences placed on the array. This limits the use of these technologies 
in identifying new and emerging pathogens [32,33]. Advances in 
microarray fabrication techniques have dramatically increased the 
number of features that can be spotted on an array. This has led to 
the development of resequencing microarrays. By spotting degenerate 
probes on the array, these platforms sequence pathogens by direct 
hybridization. One such microarray, RPM-Flu v.3.1 can detect all 
known human and avian influenza serotypes as well as 84 additional 
viral and bacterial respiratory pathogens [34].

We have created a cDNA microarray containing probes 
representing the matrix (M), HA, and NA genes of AIV. The AIV 
cDNA microarray was evaluated against a panel of AIV isolates in 
order to appraise its application in AIV detection and identification. 
This AI cDNA microarray is capable of identifying and pathotyping 
currently circulating AI strains.
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Materials and Methods
RT-PCR and microarray probes

PCR primers were designed by evaluating multiple sequence 
alignments of the matrix, hemagglutinin, and neuraminidase genes 
using DNASTAR MegAlign software (DNASTAR; Madison, WI). 
Regions of identity among strains within the same HA type were 
used to design PCR primers for HA gene amplification. PCR primers 
(Sigma Aldrich –Sigma Genosys; St. Lois, MO) were resuspended in 
DEPC water at a concentration of 100 μM. The primer pairs used to 
amplify M, HA and NA gene segments are represented in Table 1. Gene 
segments were amplified in a One-Step RT-PCR reaction (Qiagen; 
Valencia, CA). PCR reactions were carried out in a 50 μL volume (50°C 
for 30 min, 95°C for 15 min, and 40 cycles of 94°C for 1 min, 60°C for 
2 min, and 72°C for 2 min, followed by a final extension for 10 min at 
72°C). AIV PCR products were purified using the Qiagen QIAQuick 
PCR Purification Kit (Qiagen; Valencia, CA). Amplification of the 
desired gene segment was confirmed by agarose gel electrophoresis. 
Amplified PCR products were resuspended in 10 μL of 0.01% SDS, 
3X SSC (spotting solution), and stored in Genetix 384-well, V-bottom 
plates (Genetix; Boston, MA).

Microarray printing and processing
Each genetic element on the avian influenza virus cDNA 

microarray was spotted in duplicate in each of four subarrays, yielding 
a total of eight spots for each element. Silanated amine glass microarray 
slides (CEL Associates; Pearland, TX) were placed inside an OmniGrid 
Accent robotic spotter (Genomic Solutions, Gene Machines, Ann 
Arbor, MI) and spotting was conducted at room temperature and 
65% humidity. After spotting, the slides were left to dry at room 
temperature and humidity for 30 min and then UV cross linked in a 
Stratagene Stratalinker 2400 (Stratagene; La Jolla, CA) at 400 mJ. Slides 
were blocked at 55°C in a solution of 1% BSA, 3.5X SSC, and 10% SDS 
for 20 min followed by three washes in ddH2O. Slides were then boiled 
for 3 min to denature the double-stranded cDNA, followed by a cold-
fix in 100% ice-cold ethanol for 5 sec. Slide quality was confirmed by 
staining with SYBR Green II dye (Invitrogen; Carlsbad, CA).

Sample preparation
AIV RNA was isolated from allantoic fluid via Trizol® extraction, 

resuspended in 50 μL of DEPC water, and stored at -80°C. The 
Ambion Amino Allyl Message Amp II aRNA Amplification Kit 
(Ambion; Austin, TX) was used to create indirectly-labeled aRNA 
(amplified RNA) from the starting viral RNA. A modified T7 
Oligo(dT) Primer (5’-AAACGACGGCCAGTGAATTGTAATA 
CGACTCACTATAGGCGCAGCAAAAGCAGG-3’) containing a T7 
promoter sequence and the AIV Uni3 primer [10] was used instead of 
the proprietary kit primer in order to prime reverse transcription and 
first strand cDNA synthesis. Eleven μL of viral RNA in DEPC water was 
used as starting material. Two rounds of amplification were performed 
according to the manufacturer’s protocol. Dye coupling was completed 
using AlexaFluor 555 (Invitrogen, Molecular Probes; Carlsbad, CA). 
Labeled aRNA was purified and dye incorporation efficiency was 
validated using a NanoDrop® ND-1000 UV-Vis Spectrophotometer 
(NanoDrop Technologies; Wilmington, DE).

Hybridization and analysis

10 μg of labeled aRNA target was concentrated by evaporation 
to 6 μL, incubated at 95°C for 1 min and resuspended in 29 μL of 
preheated (65°C for 3 min) Telechem UniHyb Hybridization buffer 
(Telechem; Sunnyvale, CA). The 35 μL total volume was hybridized 
to the microarray slide under a Nunc mSeries LifterSlip (Nunc Brand; 
Rochester, NY). Hybridization was carried out for 3 hr in a 50°C water 
bath. After hybridization, unbound probe was removed by washing 
with 0.5X SSC, 0.01% SDS for 5 sec followed by one wash with 0.2X 
SSC, 0.2% SDS for 15 min. This was followed by two washes in 0.2X 
SSC for 1 min. each and finally three washes with ddH2O. Slides 
were dried via centrifugation and placed in an arrayWoRxe Biochip 
Reader (Applied Precision; Issaquah, WA) for scanning and analysis of 
fluorescent intensities.

Files of scanned fluorescent intensities were transferred from 
the arrayWoRxe Biochip Reader to SoftWoRx Tracker (Applied 
Precision; Issaquah, WA) for data analysis from which values for 
spot mean intensity, background mean intensity, and background 
standard deviation were determined. Background intensities were 
determined using the SoftWoRx Tracker cell method. On each slide, 
spot intensities were normalized to that slide’s mean background 
spot intensity. Elements on the array were considered positive 
for hybridization if ≥ 75% (6/8) of the spots on the array had spot-

1Uni3’ (AGCAAAAGCAGG), [10]
2Derivative of Uni5’ (AGTAGAAACAAG), [10]
3Extended derivative of Uni3’

Table 1: Primers used for the amplification of avian influenza genes (HA, NA, and M).

Strain Subtype Gene Forward Primer Reverse Primer Amplicon Length 
PekingDuck/Singapore/645/97 H5N3 HA5 CAGATTTGCATTGGTTACCATGC GATTTCACRTATTTGGGGCATTC 920

NA3 AGCAAAAGCAGGTGCGAG3 CGATCCAGGTTCATTGTC 1385
Ck/PA/13609/93 H5N2 M AGCAAAAGCAGG1 GACGATCAAGAATCCACAATA 849

HA5 TCTGCATTGGTTATCATGC TATTGCTCCAAATAGGCCTC 990
NA2 ATGAATCCAAATCAGAAGATAATAAC CCATCAGGCCATGAGCCTG 1310

Ck/Puebla/8624-602/94 H5N2 HA5 AGCCAAAAGCAGGGGT3 AGTAGAAACAAGGGTG2 995
NA2 ATGAATCCAAATCAGAAGATAATAAC CCATCAGGCCATGAGCCTG 1323

Tk/WI/68 H5N8 HA5 GGTTATCATGCAAACAATTC TATTGCTCCAAACAGACCTC 982
Ck/DE/HOBO/03 H7N2 M AGCAAAAGCAGG1 GACGATCAAGAATCCACAATA 848
Ck/NY/13142-5/94 H7N2 HA7 AGCCAAAAGCAGGGGA3 AGTAGAAACAAGGGTG2 1726
Tk/OR/71 H7N3 HA7 AGCCAAAAGCAGGGGA3 AGTAGAAACAAGGGTG2 1726

NA3 AGCAAAAGCAGGTGCGAG3 CGATCCAGGTTCATTGTC 1383
Ck/Korea/96006/96 H9N2 M AGCAAAAGCAGG1 GACGATCAAGAATCCACAATA 849

HA9 AGCCAAAAGCAGGGGA/T3 AGTAGAAACAAGGGTG2 1727
NA2 ATGAATCCAAATCAGAAGATAATAAC CCATCAGGCCATGAGCCTG 1382
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normalized intensity values that were >2.5X the mean background 
intensity. Some experiments resulted in more than one element on 
the array being determined positive for hybridization. In those cases, 
a one-way ANOVA analysis (p<0.01) on the average spot normalized 
intensity values was performed to determine which microarray element 
exhibited the highest spot-normalized intensity.

Results
Microarray design

The M, HA, and NA genes from various strains of AIV were 
amplified using the primers listed in Table 1. Primers were derived 
from alignments of 24 M, 137 NA1, 418 N2, 156 N3, 114 H5, 157 H7, 
and 81 H9 AIV gene sequences. An example of one such alignment 
is the HA5 alignment depicted in Figure 1. Based on this alignment, 
five H5 clades roughly corresponding to three geographic regions 
were assigned. The four H5 hemagglutinin elements on the microarray 
represent four of these five designated clades. CK/PA/13609/93 (H5N2) 
is contained within the USA1 clade, CK/Puebla/8624-602/94 (H5N2) 
belongs to the Mexico and Central America clade, TK/WI/68 (H5N8) is 
contained within the USA3 clade, and Peking Duck/Singapore/645/97 
(H5N3) belongs to the Eurasia clade. The USA2 (wildfowl) clade is not 
represented on the array.

The avian influenza microarray was designed as illustrated in 
Figure 2 and contains elements for three HA subtypes (H5, H7, H9), 
three NA subtypes (N1, N2, N3), M, and the Newcastle disease virus 
fusion (F) gene, as a negative control. The matrix genes from three 
different HA subtypes of AIV (CK/PA/13609/93 (H5N2), CK/DE/
HOBO/03 (H7N2), and CK/Korea/96006/96 (H9N2)) are present on 
the microarray to identify Type A influenza regardless of HA or NA 
subtype [35]. PCR products from the 16 unique genetic elements were 
spotted in duplicate to create a 32 spot sub-array. Four duplicate sub-
arrays are created on each slide resulting in 8 “spots” for each genetic 
element.

AIV panel

All elements on the array were evaluated and confirmed for their 
specificity and utility with homologous hybridizations using aRNA 
from the same strain used to make that element on the array (data 
not shown). The ability of the microarray to HA- and NA-subtype 
AIV was determined by the analysis of 10 blind RNA samples. Each 
viral RNA sample was amplified, indirectly labeled with fluorescent 
dye and hybridized to the AI microarray as described in Materials and 
Methods. The mean fluorescent intensity values of each spot and its 
mean background intensity value was determined and spots with mean 
intensity values <2.5X the mean background intensity values were 
eliminated from analysis and considered negative for hybridization. 
Elements on the array were considered positive if ≥ 75% of the eight 
spots on the array passed this analysis. Hybridizations that resulted 
in more than one HA element being scored as positive were further 
analyzed by performing a one-way ANOVA analysis on the average 
spot normalized intensity values.

Use of the microarray is depicted in Figure 3 for sample B. All 24 M 
gene elements (100%) had positive hybridization signals (>2.5X mean 
background intensity) identifying the sample as a type A influenza. 
Similarly, the N1 genetic element (and none of the N2 and N3 elements) 
had positive hybridization signals (>2.5X mean background intensity) 
allowing the sample to be neuraminidase sub-typed as N1. For only one 
HA element (CK/NY/13142-5/94– H7) did 75% of the spots exhibit 

positive hybridization signals (>2.5X mean background intensity) 
allowing sample B to be sub-typed as H7. The identification of sample B 
as an H7N1 type A AIV was determined to be correct when the code for 
the blind samples were read (Table 2, Softbill/IL/33445-136/92 H7N1).

The results for a second example, sample C, is show in Figure 4A and 
4B. Again, all 24 M gene elements (100%) had positive hybridization 
signals identifying the sample as a type A influenza and 100% of the 
N1 gene elements had positive hybridization signals allowing it to be 
neuraminidase sub-typed as N1. The only HA elements to pass the 
criteria for hybridization were those elements representing the H5 
subtype. However, two H5 elements passed the hybridization screening 
criteria (CK/PA/13609/93 and Peking Duck/Singapore/645/97) with 
the Peking Duck/Singapore/645/97 H5 spot normalized intensity 
being 3-fold more intense (Figure 4B). Statistical analysis (ANOVA) 
confirmed that the hybridization signal to the H5 element from Peking 
Duck/Singapore/645/97 was significantly higher (p<0.0013) than the 
CK/PA/13609/93 H5 signal, indicating that the H5 gene from sample 
C was most likely related to the Eurasian H5 phylogenetic clade. This 
analysis was found to be correct as sample C was coded for an H5N1 
type A influenza (CK/Hong Kong/220/97).

A more complex example was provided by sample D, Figure 4C and 
4D. All 24 matrix gene elements (100%) had positive signals indicating 
that the sample was a type A influenza. In this example, 100% of the 
N2 gene elements had positive hybridization signals allowing it to be 
neuraminidase sub-typed as an N2 virus. However, in this instance, five 
HA elements passed the formal screening criteria for hybridization, 
three elements representing the H5 subtype and two elements 
representing the H7 subtype. The spot normalized intensity value 
for the H5 element representing the Mexico and Central American 
clade (CK/Puebla/8624-602/94) was determined to be significantly 
higher (p<9.16 E-11) than the other four spot normalized intensity 
values, indicating that the H5 gene from sample D was most likely 
related to the Mexico and Central America H5 phylogenetic clade. The 
microarray analysis that sample D of the blind panel was an H5N2 type 
A influenza originating in Mexico or Central America was confirmed 
(Table 2, H5N2 Ck/Puebla/8624-602/94).

A summary of the microarray analysis for the panel of AIV isolates 
is summarized in Table 2. The AI cDNA microarray correctly identified 
100% (10/10) of the unknown isolates correctly as type A influenza 
viruses. Correct HA and NA subtyping was achieved for 70% (7/10) of 
the isolates. In one instance, sample A, the HA subtyping was incorrect 
as there was no element corresponding to the correct HA subtype 
(H1) on the microarray. Similarly, for sample F no NA subtype was 
determined as there was no element corresponding to the correct NA 
subtype on the array (N7). In two instances, samples F and H, correct 
H7 subtypes were not identified as the only two H7 elements present 
on the microarray are representative of strains isolated in the United 
States.

With only one exception, the HA sequences of the samples used to 
evaluate the microarray are known. A comparative sequence analysis 
(Clustal W version 1.83) analysis was performed on each of these 
hemagglutinin gene sequences with respect to the hemagglutinin gene 
sequences present on the microarray in order to evaluate the ability 
of the microarray to detect and hybridize to heterologous sequences 
[36]. The comparisons are illustrated in Table 3. The analysis showed 
that of the isolates correctly HA sub-typed by the microarray, there 
was 78-100% homology between the unknown and the correct HA 
elements on the microarray. When sequence homology was < 78%, the 
microarray was unable to correctly identify the HA subtype.
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Eurasia

USA 3

USA 2 
(Wildfowl)

USA 1

Mexico & 
Central 
America

Nucleotide Substitutions (x100)
0

13.5

24681012

Ck/Jalisco/14585-660/94
CK/Mich/28159-530/95
Ck/Queretaro/14588-19/94
Ck/Queretaro/7653-20/95 
Ck/Mexico/31381-3/94
Ck/Mexico/31381-4/94
Ck/Mexico/31382-1/94
Ck/Mexico/31381-5/94
Ck/Hidalgo/26654-1368/94
Ck/Mexico/26654-1374/94
Ck/Mexico/31381-1/94
Ck/Mexico/31381-2/94
Ck/Queretaro/26654-1373/94
CK/VeraCruz/28159-398/95
Ck/Mexico/31381-6/94
Ck/Mexico/31381-8/94
CK/FO-Guatemala/45511-3/00
CK/FO-Guatemala/45511-5/00
CK/FO-Guatemala/45511-4/00
CK/FO-Guatemala/45511-1/00
CK/FO-Guatemala/45511-2/00
CK/El Salvador/102711-1/01
CK/El Salvador/102711-2/01
CK/Chiapas/15405/97
CK/Chiapas/15224/97
Ck/Mexico/31381-7/94
CK/Vera Cruz/232-6169/98
CK/Puebla/231-5284/98
CK/Morelos/FO22189/98
CK/Chiapas/15406/97
CK/Chiapas/15408/97
CK/Jalisco/229-4592/98
CK/Mexico/37821-771/96
CK/Puebla/14585-622/94
CK/Puebla/14586-654/94
CK/Puebla/8623-607/94
CK/Puebla/8624-604/94
Pheasant/MD/4457/93
UN/NY/101250-18/01 
DK/NY/191255-59/02 HA1
UN/NY/200269-18/02 HA1
DK/NY/191255-79/02 HA1
DK/NY/185502/02 HA1
DK/NY/186875/02 HA1
Env/NY/5626-1/98
Env/NY/5626-2/98
Chukkar/MN/14951-7/98
Pheasant/NJ/1355/98
Avian/NY/31588-2/00
Chukkar/NY/51375/00
DK/NY/44018-2/00
AV/NY/31588-3/00
DK/NY/44018-1/00
CK/TX/167280-4/02 HA1
UN/NY/9899-6/01
DK/NJ/117228-7/01-HA1
DK/ME/151895-7A/02  HA1
TK/CA/D0208651-C/02 HA1
TK/CA/D0208651-C/02 HA1
TK/MN/10734/95
UGA AI01-1346 (H5N7)  HA1
Emu/Tx/39442/93
CK/FL/25717/93
CK/NJ/17169/93
CK/PA/13609/93
Ruddy Turnstone/DE/244/91
TK/MN/3689-1551/81
Chukkar/NJ/7207-4/00 
Mallard/WI/944/82
DK/MI/80
Mallard/WI/169/75
Mallard/WI/428/75
Mallard/OH/345/88
NAmerican HA1 consensus 8-1-98
TK/TX/14802/82
CK/NJ/12508/86 
CK/FL/27716-2/86
CK/NY/12004-3/87 
CK/FL/22780-2/88 
CK/FL/2507/89
CK/PA/10210/86
CK/OH/22911-10/86
CK/MA/11801/86
TK/VA/6962/83
CK/VA/40018/84
TK/VA/21833/84
Ck/PA/1/83 
CK/PA/1370/83 
Mallard/WI/34/75
Tk/Ontario/7732/66
TK/WI/68
CK/Hong Kong/220/97
Hong Kong/483/97 
Ck/Hong Kong/258/97 
CK/Hong Kong/728/97 
CK/Hong Kong/781/97 
CK/Hong Kong/915/97 
Hong Kong/482/97  
Hong Kong/156/97
Hong Kong/481/97  
Goose/HK/437-10/99
CK/Hong Kong/317.5/01 
Goose/HK/437-6/99
DK/Hong Kong/380.5/01
Goose/Hong Kong/3014.5/00
Hong Kong/213/2003
CK/Italy/1485/97
H5 Eurasian 
TK/England/50-92/91
Peking Duck/Singapore/645/97
DK/Ireland/113/83
/TK/Ireland/1378/83
Ck/Scotland/59
Tern/South Africa/61

Figure 1: Phylogenetic analysis of 114 AIV HA5 genes.HA5 gene sequences were aligned using DNASTAR MegAlign software (DNASTAR; Madison, WI) and 
organized into five clades which generally correspond to distinct geographic regions or species (USA2 – wildfowl).
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NDV               N3                     N2                                      N1                                  H9                                 H7                                  H5                                        M

Negative
Control

Tk/OR/71
(H7N3)

Ck/PA/13609/93
     (H5N2)

Ck/Puebla/8624-602/94
           (H5N2)

Ck/Korea/96006/96
         (H9N2)

SB/IL/3345-136/92
(H5N2)

Ck/Korea/96006/96
(H9N2)

Tk/OR/71
(H7N3)

Ck/NY/13142-5/94
      (H7N2)

PekingDuck/Singapore/645/97
(H5N3)

Ck/PA/13609/93
         (H5N2)

Ck/Puebla/8624-602/94
           (H5N2)

Tk/WI/68
(H5N8)

Ck/PA/13609/93
       (H5N2)

Ck/DE/HOBO/03
        (H7N2)

Ck/Korea/96006/96
          (H9N2)

Figure 2: Design of the avian influenza cDNA microarray. Image of a spotted microarray containing four identical sub-arrays stained with SYBR Green II dye 
(Invitrogen; Carlsbad, CA).Each sub-array contains elements (2 spots/element) for three HA subtypes (HA5, HA7, HA9), three NA subtypes (NA1, NA2, NA3), M, and 
the Newcastle disease virus F gene, as a negative control. The genetic source of each genetic element is indicated.There are 32 spots per sub-array and 4 sub-arrays 
on each slide for a total of 128 spots, representing 16 unique genetic elements.

NDV N3 N2  N1   H9   H7   H5    M

Figure 3: Microarray analysis of test sample B.Image of a microarray slide hybridized to fluorescently-labeled RNA amplified from test sample B as described in 
Materials and Methods.Elements corresponding to specific genetic elements is spotted in columns (Figure 2) and is labeled for one of the four sub-arrays present on 
the slide.
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Discussion
New diagnostic capabilities are needed to address the number of 

genetically unique influenza virus strains circulating in both avian and 
mammalian species, the potential for interspecies transmission, and 
the global dissemination of certain AIV isolates. The time limitations 
of virus isolation in embryonating eggs (3 days – 2 weeks) is an 
unacceptable delay given the rapid spread of certain AIV isolates, and 
the limited subtype information available from RRT-PCR severely 
restricts important information from being obtained in a single 
experiment. Several investigators have developed microarrays for the 
identification and typing of avian influenza [28-31,33]. These platforms 
have been designed to be robust and inclusive. By contrast, the low-
density AIV cDNA microarray described in this paper is avian specific 
and is focused on the most significant circulating avian influenza 

subtypes: H5, H7, and H9, and N1, N2, and N3. These hemagglutinin 
subtypes were selected because H5 and H7 avian influenza viruses 
are currently the only HA subtypes known to be capable of mutating 
from low pathogenicity to high pathogenicity. H9 is the most 
prevalent circulating hemagglutinin subtype in the avian and has also 
demonstrated the capability for avian-to-human transmission [37]. 

The low density cDNA microarray described here can detect, 
identify, HA and NA subtype, and in the case of the HA5 subtype, 
phylogenetically/geographically characterize avian influenza isolates. 
A blind panel of ten avian influenza isolates, A-J, was tested against our 
array to validate its detection and subtyping ability (Table 2). Utilizing 
the M gene as a pan-influenza marker, all 10 samples were identified 
as being type A influenza viruses. The array was able to correctly HA- 
and NA-subtype subtype 7/10 test samples. Due to the number and 

Table 2: Results from panel of AIV isolates. Subtype and strain designation as indicated in key after determination of microarray result.

Unknown Sample, Strain, and Subtype Microarray Result
A - Dk/NJ/7717-70/95              H1N1 H7 N1
B - SB/IL/33445-136/92           H7N1 H7 N1
C - Ck/HongKong/220/97         H5N1 H5 Eurasia N1
D - Ck/Puebla/8624-602/94      H5N2 H5 Mexico N2
E - Ck/NJ/12220/97                  H9N2 H9N2
F - Ck/VIC/85                           H7N7 Type A
G - Dk/Singapore/97                 H5N3 H5 Eurasia N3
H - Ck/PAK/1369-CR2/95       H7N3 H_N3
I - Ck/Scotland/59                     H5N1 H5 Eurasia N1
J - Ck/NJ/294508-12/04           H7N2 H7 N2
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Figure 4: Microarray analysis of test samples C and D.Image of microarray slides hybridized to fluorescently-labeled amplified RNA derived from test sample C (Panel 
A) and test sample D (Panel C).The organization of the genetic elements on the slide is indicated.Panel B shows the mean spot normalized intensity values for the 
two HA5 elements which produced positive hybridization signals to sample C.Panel D shows the mean spot normalized intensity values for the five genetic elements 
(3 HA5 and 2 HA7) which produced positive hybridization signals when hybridized to sample D.Intensity values were compared using one-way ANOVA analysis to 
the highest value.
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genetic diversity of the H5 genetic elements on the array, we were able 
to correctly identify the geographic origin of all four unknown H5 
samples, including the Eurasian H5N1 strain CK/Hong Kong/220/97. 
These results demonstrate the capability of identifying AIV strains and 
gives further insight into the epidemiology of H5 strains. Therefore, 
this technique, as validated here, can identify type A influenza via 
the conserved matrix gene, differentiate between the H5, H7, and H9 
hemagglutinin subtypes, and also differentiate between the N1, N2, and 
N3 neuraminidase subtypes of avian influenza.

The limitations of the current version of this cDNA microarray 
relate to the limited number of elements present in the system. Three 
samples were incorrectly or incompletely identified. In one case we were 
unable to subtype the NA gene due to the absence of the appropriate 
NA subtype on the array (N7). Similarly, the lack of an H1 element 
prevented the HA subtyping of one sample.

The array successfully identified both H7 samples (B and J) 
which were determined to have originated in the United States. A 
phylogenetic analysis of 157 H7 sequences revealed considerable 
sequence diversity within this subtype (data not shown). The two 
incorrectly identified H7 samples (F and H) were of non-U.S. origin 
and no elements representing non-U.S. clades of H7 are present on the 
array. Although HA positive hybridization signals can be generated 
between sequences exhibiting as little as 27% sequence identity, correct 
HA subtype identification required 78% sequence homology (Table 3). 
The F and H H7 sequences exhibited 75-76% sequence identity to the 
sequences of the HA elements present on the microarray, below the 
required nucleotide identity needed to yield a statistically significant 
hybridization signal.

The AIV cDNA microarray can potentially be applied to clinical 
diagnostic samples, but the sensitivity of the array to detect low viral 
concentrations in various clinical samples (nasal or oral/pharyngeal 
swabs, serum, lung tissue, and blood) has yet to be determined. Genetic 
elements from other viral and/or bacterial pathogens could also be 
added to the array to increase the diagnostic range of the test [27,36]. 
To begin development of an avian respiratory pathogen specific 
microarray, the addition of Newcastle disease virus (NDV) elements 

would provide the greatest benefit. In the field, velogenic NDV (the 
most virulent form of NDV) and HPAI are often indistinguishable due 
to the severity and variability of their clinical signs.
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