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Editorial
Over the past decade, there has been an increasing curiosity in the

field of regulatory non-coding RNAs (rncRNAs). This is due to the
discovery of a huge number of rncRNA genes and their involvement in
multiple regulatory functions. Further, recent technological advances
have added icing on the cake to this venture. The advent of high-
throughput next-generation sequencing (NGS), especially RNA-
sequencing (RNA-Seq) enabled genome-scale profiling and
quantification of not only coding transcripts but also rncRNA
transcripts by involving direct sequencing of complementary DNAs
(cDNAs) [1,2]. This revolutionary unearthing of human transcriptome
tended to shift the paradigm that the proteins (encoded by messenger
RNAs) control the fate of the cells. The new classes of rncRNAs
discovered from the high-throughput RNA-Seq studies demonstrated
their potential regulatory roles in diverse cellular processes such as
cellular differentiation, development, homeostasis and many more
biological processes [3-7]. These rncRNAs include microRNA
(miRNA), small interfering RNA (siRNA), piwi-interacting RNA
(piRNA), long non-coding RNA (lncRNA), circular RNA (circRNA)
and much more.

In RNA-Seq, a population of RNA (total or fractionated, such small
rncRNAs) is converted to a library of cDNAs with adaptors attached to
one or both end followed by sequencing in a high-throughput manner.
The sequencing yields millions of short sequences (termed as reads)
from one end (single-end sequencing) or both ends (pair-end
sequencing). These reads are post-processed for quality control and
adaptor trimming by using tools such as FastQC, NGSQC [8], FASTX-
Toolkit, Trimmomatic [9], Cutadapt, and few more. The reads are
typically of 30–400 nucleotides in size, depending on the sequencing
technology/platform used. The platforms used for the RNA-Seq
purpose are Illumina, SOLiD, Ion Torrent and Roche 454 Life Science
systems, etc. The reads after passing QC and adaptor removal are
aligned to the corresponding reference genome (say, hg19 for human
genome) using NGS read aligner tools such as Bowtie, an efficient and
widely used the genome-scale alignment tool [10]. The other read
aligner tools are BWA [11], BLAT [12], ELAND, BFAST [13], GMAP
[14], SOAP [15], SeqMap [16], SHRiMP [17], NextGenMap [18], etc.
The uniquely mapped reads with not more than one mismatch to the
corresponding genome are considered for their annotations and
subsequent analysis. The reference sequences of different genomes are
obtained from the databases such as NCBI and UCSC genome
browser.

The uniquely mapped reads showing length distribution in the
range of rncRNAs (either small ncRNAs or lncRNAs) are analyzed by
adopting different strategies. Moreover, sequencing of small RNAs and
long RNAs are performed separately to pool out all the desired RNAs

efficiently as per our need. As an example, the sequencing of RNAs
within the range of 16-40 nucleotides is recommended if we intend to
identify small rncRNAs such as miRNAs and piRNAs. The
preprocessed reads are then analyzed using tools such as iMir and
mirtoools [19,20] to identify known and novel piRNAs as well as
miRNAs. The annotations of genomic regions from which these small
RNAs might have originated are done by aligning these to the
coordinates of mRNAs (5'UTR, CDS, 3'UTR), repeats, pseudogenes,
introns, small ncRNAs and lncRNAs using any publicly available tools
or in-house programs. We can obtain these individual annotation track
files from UCSC FTP site.

The expression level of a transcript (ei,j) in individual i obtained
from the RNA-Seq experiments is computed as follows:

ei,j = gi,j × t/ai × li
Where gi,j is the number of reads mapped onto transcript j

(transcript, exon, etc.) in individual i, ai is the total number of
mappable reads in individual i, and l is the length of the transcript in
individual i. The expression of a transcript (ei,j) is equivalent to RPKM
(reads per kilobase per million mapped reads) when the scaling factor
is t=109. The measure of expression is also represented in terms of
TPM (transcripts per million) in RNA-Seq. 1 TPM is equal to 1 RPKM,
which is approximately 1 transcript per cell when the average
transcript length is 1 kb. It is recommended to have at least three
replicates for each condition for computing differential expression
between two samples. The tools publicly available for performing
differential expression analysis are edgeR [21], DESeq [22], baySeq
[23], EBSeq [24], Cufflinks, etc. Some of these tools accept raw reads,
and others accept normalized reads for computing expression levels.

As mentioned previously, the RNA-Seq method is used to profile
and quantify any transcripts including lncRNAs and small ncRNAs.
The methods are described below.

Identification of lncRNAs
The lncRNAs are ˃200 nucleotide long transcripts without the

protein-coding potential. These are known to play vital roles in various
biological processes [25]. Many types of NGS studies [26-28] have been
performed (outline below) to identify and characterize these lncRNAs
in various types of organisms, cells, tissues, etc.

RNA-Seq: The sequencing of short cDNA fragments using RNA-Seq
is used to reconstruct virtually an entire transcriptome to uncover
functional lncRNAs. The reads generated from the RNA-Seq of the
transcriptome is aligned to the corresponding reference genome
followed by assembling of the transcripts. The assembled transcripts
matching to the protein coding transcripts are removed. The remaining
transcripts with length ˃200 nts are selected (Figure 1) and coding
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potential is evaluated using tools such as CPC (Coding Potential
Calculator) [29], CPAT (Coding-Potential Assessment Tool) [30],
Coding-Non-Coding Index (CNCI) [31] and PLEK (predictor of long
non-coding RNAs and messenger RNAs based on an improved k-mer
scheme) [32] to annotate these as lncRNAs.

3SEQ: 3SEQ (3'-end sequencing for expression quantification) is a
modified version of the traditional RNA-Seq method that is based on
enrichment of 3' ends of transcripts by relying on the polyA+ selection
of fragmented RNAs [28]. In 3SEQ, only the 3'-end-most
polyadenylated fragment of each transcript is isolated and sequenced
which substantially reduce the depth of sequencing enabling discovery
and quantification of rare RNAs including lncRNAs. This method is
advantageous over the traditional RNA-Seq method by employing
strand-specific libraries which allow to quantify transcripts separately
based on strands using directional information of each read.

Figure 1: Flowchart of RNA-Seq for identification of non-coding
RNAs (lncRNA, miRNA, piRNA).

Full-length cDNA sequencing: Full-lenghth cDNA sequencing of
>21000 cDNA clones was performed by the FANTOM (Functional
Annotation of The Mammalian Genome) project, which aimed to
characterize the ‘unclassifiable’ transcripts (ncRNAs) in addition to the
expected protein-coding transcripts [33]. These ‘unclassifiable’
transcripts accounted for ~30% of the total transcripts which included
lncRNAs. Further, identification of transcriptional start sites (TSSs)
using cap-analysis of gene expression (CAGE) tag sequences in
FANTOM3 also predicted additional lncRNAs [33].

RNA pol II ChIP-Seq: The ChIP-Seq is a powerful method that
combines chromatin immunoprecipitation (ChIP) with parallel DNA
sequencing for identifying genome-wide DNA binding sites for
transcription factors and other proteins [34]. It is known that ChIP-Seq
profiling of H3K4me3 and H3K36me3 preferentially identifies TSSs
and transcribed gene bodies respectively [35]. This observation led to
the collective use of these marks to identify ‘K4–K36 domains’ outside
of known protein-coding genes that may represent novel lncRNA loci.
There are increasing evidence of the use of ChIP-seq data of H3K4me3,
H3K36me3, and Pol II to detect lncRNAs in various organisms [36,37].

Identification of miRNAs and piRNAs
The RNA-seq is highly versatile and can be modified to investigate

specific RNAs such as small RNAs. The identification of small RNAs
can be performed by employing the method termed as small RNA-Seq
where gel-based size selection is used to enrich RNAs within the range
of length of desired small RNAs. The construction of library can be
fractionated to select 16-40 nts RNAs using gel electrophoresis if one
intends to identify and quantify both miRNAs and piRNAs (through
RNA-Seq), the most promising sncRNAs discovered till date. The
miRNAs are ~18–22-nt single-stranded ncRNAs primarily found in
eukaryotes [38] is known to regulate mRNA transcripts post-
transcriptionally as well as crosstalk with other ncRNAs such as
lncRNAs through competing endogenous RNA (ceRNA) network
[39,40]. While piRNAs are comparatively less investigated and young
ncRNAs of about 25-33 nts in length primarily reported in germ lines
to regulate the transposable elements (TEs) [41]. There are
computational challenges to identify and validate real and novel mi/
piRNAs from the RNA-Seq demanding extensive experimental
validations to prove newly identified mi/piRNAs as real. Nevertheless,
several computational tools have been developed to identify known
small ncRNAs (miRNAs and piRNAs) accurately and also complement
experimental approaches to identify novel small ncRNAs, of course
with less sensitivity. The most popular tools used for predicting
miRNAs and piRNAs from RNA-Seq data are miRDeep2 [42],
miRanalyzer [43], Dario [44], SSCprofiler [45], miReader [46],
mirtools2 [20], piPipes [47] and iMir [19].

Downstream Analysis of ncRNAs
The functions of ncRNAs can be deduced by analyzing their

probable targets and enrichment in various biological processes. The
majority of the ncRNAs such as miRNA, piRNAs, and lncRNAs
primarily participate in gene regulation at epigenetic, transcriptional
and post-transcriptional level adopting different mechanisms. The
miRNAs act at post-transcriptional level for fine-tuning of gene
expression in the cell by binding to target mRNAs at their 3’UTR, CDS
or 5’UTR in a sequence-specific manner through partial or full
complementarity. The miRNAs, when perfectly base-paired to their
target mRNA, direct cleavage of the target mRNA and direct
transcriptional repression when partially base-paired, preferably to
2-7/8 bases at 5’ end of the miRNAs (designated as ‘seed’) [48]. Many
miRNA targets have been computationally predicted, but only a
limited number of these were found to be experimentally correct.
There are a variety of tools for predicting miRNA targets, among which
most of them relies on sequence complementarity of 7-8 bases. The
most widely used tools are targetscan [49], pictar [50], mirsvr [51],
starmir [52], pita [53] etc. Among these, mirsvr and starmir are based
on sequence, structure and thermodynamic features of target mRNAs
trained on Ago2-identified CLIP-Seq studies. However, none of these
tools are 100% sensitive in predicting targets and hence finding a
functional miRNA target is still a challenging problem. To overcome
this challenge, many CLIP-Seq studies are booming up along with the
development of experimentally verified miRNA target databases to
meet the requirement of the RNA biologists. Some of the widely
known databases are miRTarBase [54], miRWalk2.0 [55], StarBase
[56], StarmirDB [53], and miRecords [57], etc.

The piRNAs are primarily known to execute repeat inactivation by
targeting transposons, but these are currently known to regulate
endogenous mRNAs as well. The principle of targeting by piRNAs is
not identical to that of miRNAs as thought earlier. There are several
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theories gradually evolving to decipher the mechanism of targeting by
piRNAs. In a recent report, Goh et al, 2015 deduced that potential
piRNAs bind to target mRNAs through perfect sequence
complementarity in nts 2–11 (primary seed), with maximum of four
mismatches being tolerated in nts 12–21 (secondary seed) of the
piRNAs [58]. The possible regions of target mRNAs where piRNAs can
bind are 3’UTR, CDS, 5’UTR similar to that of miRNA targeting.
However, there are also other rules of piRNA targeting reported in
other studies [59,60]. These indicate that these concepts are still in
nascent stage and are likely to evolve in coming years to sharpen our
understanding of mechanisms of piRNA-mediated regulations.

lncRNAs which was initially treated as transcriptional noise are now
established as an important group of functional ncRNAs playing
diverse roles in genetic imprinting, genome rearrangement, chromatin
modification, cell cycle regulation, transcription, splicing, mRNA
decay, and translation [5]. These regulate expression of genes at
epigenetics, transcriptional and post-transcriptional level. The
functions of lncRNAs are elucidated from studying the changes in
genome-wide or individual gene expression level after knocking down
or overexpressing the lncRNA. Some of the lncRNAs act as miRNA
decoys, known as competing for endogenous RNAs (ceRNAs) which
are reported to play key roles in diseases including cancer [61,62].
ceRNAs can sequester shared miRNAs through competition for
binding to miRNAs leading to de-repression of the other target
transcript [63]. Several computational methods have been developed
in the past to predict ceRNAs, but none these are efficient [56,64,65].
Moreover, all the components of a ceRNA network and how they
interact among themselves to modulate cellular mechanisms are yet to
be understood.

Conclusion
Unveiling the entire regulatory ncRNA landscape and their

functional characterization is a rapidly expanding area of research.
Within the past few years, it has become clear that although the
majority of the transcripts in cells do not undergo translation still, they
perform important regulatory functions. Many of these new rncRNAs
belong to an important, relatively unexplored class of regulatory
elements. Rapid improvements in high-throughput sequencing
technologies have made it possible to discover a significant amount of
these uncharacterized transcripts. With such rapidity of advancement,
if sequencing costs keep decreasing, we can plausibly expect this
technology to become a key component of rncRNomics. Moreover,
much remains to be done regarding accurate characterization and
functional analysis of rncRNAs. Despite the difficulties encountered
regarding characterizing novel rncRNA transcripts, we believe that
new and more sophisticated technnologies and algorithms will come to
the rescue. With the advent of such new technologies, we shall be able
to probe into this large novel class of rncRNAs which may well define
one of the turning points of modern biology.
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