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ABSTRACT

The dimensionless equilibrium constant for the allosteric structure change is shown to be comprised of: (i) An 
endothermic change in structure, from Tstate to Rstate, of 24.3 kJ/mol; (ii) Exothermic conversion of Tstate TαO

2
-

chains to Rstate RαO
2
-chains of-13.8 kJ/mol; (iii) Exothermic binding of BPG by R-states. Equation (1) defines the 

component steps whereby the Tstate structure is converted to the Rstate structure. ΔG°(R(Hb
4
), BPG) describes 

the endothermic decomposition of the binary complex, THb
4
/BPG into RHb

4
 and BPG, equal to +33.7 kJ/mol 

(DeBruin et al. (1973). J. Biol. Chem. 248, 2774-2777). ΔG° of the equilibrium constant for ΔG° (K
Δ
) and Ʃ ΔG° for 

binding of O
2
 by the pair of equivalent Tstate α-chains, ΔG°(Tα*O

2
), +9.41 kJ/mol and-49.6 kJ/mol, respectively, are 

determined by fitting of O
2
 equilibrium binding data to the Perutz-Adair equation. 

Keywords: Hemoglobin; Allosteric structure; E-molecules; Standard free energy change; Structure (protein) changes; 
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INTRODUCTION

ΔGo for reaction of a pair of equivalent Rstate α-chains with O
2
, 

ΔG°(RαO
2
), was estimated from the known affinity of myoglobin for 

O
2
 at 37°C. (Biochem. Z., 268, 73-81),-63.4 kJ/mol. The unknown 

quantity, ∆G°(R(HbO
2
)
4
/BPG), was obtained by solving Equation 

(1), being-10.5 kJ/mol, K (HbO
2
)
4
/BPG)=58.4 L/mol. The value of 

the equilibrium constant for binding BPG to the R-state structure 
represents 0.0073% of the value of the binding constant of BPG to 
the Tstate structure: 800,000 L/mol. The value of K

∆
; (i) Accounts 

for the ability of O
2
 to escape, virtually unhindered from red blood 

cells and (ii) Provides a biophysical basis for manifestation of high 
resting rates of metabolism in warm blooded species. The Perutz/
Adair equation of state, Equation (1), imposes the elements of the 
Perutz stereochemical model on the Adair equation. The Perutz/
Adair equation, comprised of only three unknown quantities, 
accurately predicts equilibrium binding curves of whole blood with 
both O

2
 and CO. 
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These observations are particularly relevant insofar as they define 
the properties of haemoglobin in human RBCs in vivo, in the 
presence of the naturally occurring E-molecule, BPG. The result 
obtained with the Perutz/Adair equation permits unambiguous 
assignment of structural states, R and T, to the subunits in each 

intermediate species in the reaction sequence, Equation (a). Species 
I and II, as encountered in rbcs of whole blood, are Tstate. Species 
III and IV, as encountered in red blood cells of whole blood, are 
Rstate. Species l is in a special category insofar as it does not exist in 
vivo. Species I, however, is readily prepared in the laboratory [1,2].

The value of the equilibrium constant for the structural change, 
K

Δ
=0.02602, is of particular interest. It accounts for the ability 

of molecules of O
2
 to escape, virtually unhindered, from RBCs. 

This single insight, by itself, provides strong justification for the 
model underlying the Perutz-Adair equation. Upon release of 
O

2
 atoms from β-chains, species III and IV, 98% of species III 

revert to species II. Species II is unable to bind O
2
 molecules to 

Tstate β-chains, precisely defining the boundary condition of the 
molecular mechanism releasing O

2
 from arterial blood into the 

systemic circulation. The value of K
Δ
 provides a biophysical basis 

for manifestation of high resting rates of metabolism in warm 
blooded species. 

    .......(a)

The endothermic Tstate → Rstate structure change is coupled with: 
(i) exothermic conversion of TαO

2
-chains (species II, Equation (a)) 

to RαO
2
-chains (species III, Equation (a)) and (ii) marked decrease 

in affinity of the Rstate for BPG. ΔG° for formation of THb
4
/BPG 

is-33.7 kJ/mol at 25°C. The Rstate structure forms a less stable 
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T-State →  R-State K
ΔC

=0.02602b 9.41

O
2
+R((α*O

2
)●( β*))  → R((α*O

2
)●((βO

2
)β) 2 Kβ=787,800 -35.01

O
2
+R((α*O

2
)○((βO

2
)β) →  R(α*O

2
○β*O

2
) Kβ/2=196,950 -31.43

Horse heart myoglobin   

Mb+O
2
 → MbO

2
  For two molecules 

of Mb
K=2.20 x 105 -63.4

Whole Blood Standard Conditions   

 Kα=15,090  

4 O
2
+T(α*●β*)→ K

C
=9.41 -106.7

R((α*O
2
)○(β*O

2
)) Kβ=393,900  

E-Free Electrolyte Kα=789,000  

0.05 M BisTris, pH 7 with HCl, 20OC Kβ=272,000 -134.6

Assignment of the value of ΔG°(THbO2)4/BPG) for the 
endothermic change, Tstate to Rstate, in protein structure

BPG, a potent E-molecule, binds avidly to RHb
4
. In the process 

of forming the binary complex, the structure of RHb
4
 changes to 

that of T(Hb
4
/BPG). In contrast to the great stability of THb

4
/

BPG, the equilibrium constant for the binary complex of BPG, 
yielding the Rstate binary complex, R(HbO

2
)
4
/BPG, is low. ΔG° for 

reversing the binding of BPG to RHb
4
, ΔG° (R(Hb)

4
, BPG), is +33.7 

kJ/mol at 25°C. A correction due to the increase in temperature 
was not applied. ΔG° for binding of BPG by Rstate conformations, 
ΔG°(R(HbO

2
)
4
/BPG), can be calculated directly from Equation 

(3) since all other values are known, estimated, or assigned. This 
procedure computes a value of ΔG° for binding of BPG to an Rstate 
structure, ∆G°(Rstate/BPG)=-10.5 kJ/mol, corresponding to an 
equilibrium constant for binding of BPG to R-state conformations, 
K(R(HbO

2
)
4
/BPG)=58.9 L/mol. O

2
-Equilibrium binding curves at 

pH 9.1 demonstrate binding of IHP to R-state conformations.

DISCUSSION
RHb

4
, free of E-molecules, such as BPG or 0.10 M chloride ions 

demonstrates a high affinity for O
2
, being half saturated with O

2
 

in 2 μM O
2
/L. Addition of stoichiometric amounts of BPG to 

solutions of RHb
4
 results in formation of a binary complex with 

markedly diminished affinity for O
2
. The product is a Tstate binary 

complex. The reaction can be written as follows, where BPG is 
indicated by a bullet: and superscript * indicates equivalent binding 
by a pair of subunits.

The reaction of BPG with RHb
4
 is exothermic: ∆G°=-33.7 kJ/mol. 

The history of observations of the properties of human hemoglobin, 
until approximately 1967, were conducted without knowledge of 
the effect of BPG on the properties of hemoglobin. Analysis of 
the O

2
 equilibrium binding curve of E-free preparations of human 

Hb
4
 reveals a pair of equivalent cooperative dimers: (α

1
β

2
) and 

(α
2
β

1
). It may be incorrect to describe these cooperative dimers as 

being Rstate. An Rstate β-chain regulates an α-chain of diminished 
affinity.α-Chains in cooperative dimers of RHb

4
, then, are not Rstate 

until an Rβ-chain binds O
2
. The cooperative dimer, nevertheless, 

binary complex with BPG. The Perutz/Adair equation is based on 
the assumption that: (i) Tstate protein structures, species I and II 
(Equation (a), bind BPG with the exactly the same high affinity and 
(ii) Rstate protein conformations, species III and IV (Equation (a), 
bind BPG with exactly the same relativity low affinity, in comparison 
with Tstate structure. Nevertheless, the diminished affinity of Rstate 
structures for BPG is large enough to be exothermic, estimated to 
be-10.5 kJ/mol. These reactions, endothermic and exothermic, 
taken together, account for the observed value of KC, 0.02602. 
Equation (2) and (3) define the reactions predicted to account for 
the observed value of the equilibrium constant for the Tstate to 
Rstate structure change [3,4].

LITERATURE REVIEW

Determination of Unknown Quantities in Eq. (3): 
Calculation of the Values of ΔG° (KΔC) and ΔG° (Tα*O2) at 
37°C

These values are returned by curve fitting of O
2
-binding date of 

whole blood, under standard conditions, to the Perutz/Adair 
equation: 

ΔG°(K
∆C

)=9.41 kJ/mol; ∆G°(Tα*O
2
)=-49.6 kJ/mol. Results are 

summarized in Table 1.

Estimation of the Value of ΔG°(Rα*O
2
) at 37°C. The model described 

in Figure (1) does not permit determination of ΔG° for binding of 
a molecule of O

2
 to equivalent Rstate (Rα*)-chains. Molecules of O

2
 

have only equivalent Tstate deoxy-(Tα*) chains to form equivalent 
(Tα*O

2
) chains. (Rα*O

2
) chains are formed directly from T(α*O

2
) 

when the Tstate → Rstate structure change relaxes proximal strain. 
One can estimate ∆G° for formation of RαO

2
 in two ways: (i) 

assume that ∆G° (MbO
2
) is similar to ∆G° (RαO

2
); (ii) assume that 

∆G° (RαO
2
) for E-free hemoglobin is an upper limit [5-7]. Theorell 

elaborated O
2
-binding data for horse heart myoglobin at 37O, with 

half-saturation of myoglobin occurring at a partial pressure of O
2
 

in the gas phase of approximately 3.5 Torr, corresponding to a 
concentration of O

2
 of 4.60 µmol/L. This allows an assignment of 

2.2 x 105 L/mol as the O
2
-binding equilibrium constant of Rstate 

(Rα*O
2
) chains: ∆G°=-63.4 kJ/mol. Using equilibrium constants 

obtained for E-free hemoglobin at 20°C Results are summarized 
in Table 1.

Table 1: Equilibrium constants and ∆G° for the sequence of reactions 
comprising the Perutz-Adair equation, 37°C.

Reactions K L/mol ∆Go kJ/mol

RHb
4
+DPG → THb/DPGa K

DPG
=8 x 105 -33.69

In Whole Blood   

O
2
+T(α)

2
 → T(αO

2
) T(α) 2Kα=30,180 -26.6

O
2
+T(αO

2
) T(α) → T(αO

2
)
2

Kα/2 = 7,545 -23.02

2 O
2
+2 T(α) → T(αO

2
)
2

 -49.62
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to species II. Using the Perutz/Adair equation to fit equilibrium 
binding date, the value of ΔG°(K

∆
) is revealed to be remarkably 

well fitted to the purpose of O
2
 transport from arterial blood to 

mitochondria. 

CONCLUSION

Variation in values of K
∆
 across the spectrum of mammals, birds and 

lizards offers new insights into comparative respiratory physiology. 
A significant increase in the value of K

Δ
 would lower the rate at 

which rbcs could deliver O
2
 to mitochondria. The Perutz/Adair 

equation of state is the first probe of respiratory function to reveal 
insight into the mechanism of enhanced transport of O

2
 from the 

lungs to the respiratory tissues. The picture, however, is incomplete 
without consideration of the consequences of the cyclic variation 
in the pH of the interior of red blood cells. Doing so is the subject 
of another communication.
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