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Abstract
Omics employs a suite of high-throughput techniques coupled with robust computational analysis to extract 

every aspect of information from microbial communities, thus giving access to their genome, metagenome, 
transcriptome, proteome and metabolome. Over the past 5-10 years omics has revolutionized the field of microbial 
ecology and diversity by overcoming several challenges associated with isolation and characterization of unknown 
microorganisms from different environments. With increasing technological advancements omics is growing rapidly 
by incorporating newer areas of study like metabolomics and culturomics and could be referred as new age omics. 
New age omics package involves unparallel techniques of detection and analysis that could be employed to study soil 
microbiota, which was once considered as a challenging task. Present review summarizes chronological scientific 
discoveries that contributed towards study of soil microorganisms and familiarizes with omics methodologies and its 
importance in soil microbial ecology.
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Introduction
Soil microbiota and its significance

In the terrestrial ecosystem, soil is a major component that sustains 
variety of life forms among which the microbes are the most abundant 
ones. One gram of chernozem contains about 10 billion or more living 
microorganisms (10 tons per hectare) that strictly depend upon the soil 
microenvironment for their survival. The microbiota of the soil has a 
symbiotic–mutualistic behavior and can develop by direct as well as 
indirect ways in the soil. Microbes which originate directly in the soil or 
by decomposition of plant matter are known as the native microbiota. 
Some microbes like the pathogens and aquatic microbes can enter 
accidently from the gastrointestinal tract of animals and man and through 
agricultural runoff to become part of the soil microbial community. Soil 
microbiota comprises both prokaryotes (bacteria, actinomycetes, blue-
green algae) and eukaryotes (fungi, microscopic algae, protozoans) 
but bacteria are the most abundant group of soil microbiota in terms 
of species and are the first colonizers [1-4]. Soil microbiota contribute 
in soil structure formation, involve in decomposing organic matter 
and recalcitrant xenobiotics, modulate the global biogeochemical cycle 
and recycle nutrients as well as important elements such as carbon, 
nitrogen, phosphorous and sulphur [5-8]. Hence it is imperative to 
understand the dynamics of soil microbial communities which is 
under the influence of abiotic factors like soil fertility [9], substrate 
availability, pH [10], climate [11], soil temperature [12] and moisture, 
as well as shifts in seasonality [9,13] as well as biotic factors like plant 
communities [14], microbe food web interactions [15,16] and farming 
practices [17]. Enormous studies have been carried out in order to 
study the microbial communities thriving in soil which maintains the 
balance of ecosystem, these studies involve both culturing the bacteria 
in a nutrient rich media and identify them through direct DNA isolation 
and sequencing. Over the past years researchers are trying to fill the gaps 
generated by older techniques of isolation and identification, which are 
the primary requirements for any downstream application. The gaps in 
techniques of isolation may involve inability to grow or culture targeted 
microorganism and novel microorganisms present in the soil [18]. 
Drawbacks of identification strategies include inaccurate identification 
that lead to the reclassification of many bacterial genera [19]. The new era 
of microbial ecology was originated with the advent of high-throughput 
sequencing technologies and smarter culturing techniques which are 

far more superior to the earlier methods of detection. These newer 
techniques of isolation and identification form the basis of the suffix 
“omics” that define today’s soil microbial studies. Omics amalgamates 
advanced instrumentation capability with sophisticated computational 
analysis fulfills the important fields of study that involve analyzing the 
genome, proteome, transcriptome and metabolome of a single bacteria 
or microbial community thriving in soil. This review primarily discusses 
the apparent technological advancements in the microbial diversity 
studies targeted to unfold the community structure and function of the 
soil microbiota.

Trends in microbial diversity studies

The study of microbes predates to 1600 AD, when Leeuwenhoek 
described his oral organisms in 1676 [20], which was followed by 
Robert Koch who designed nutrient media using potato slices or gelatin 
to isolate bacteria and count them [21]. Later, with the advancement 
in microscopy and staining techniques like Gram, Ziehl–Neelsen 
and Schaeffer and Fulton, the identification and characterization 
of microbes was significantly improved [21,22]. It was the work of 
Russian botanist Sergei winogradsky in early 1930’s on lithotrophy 
that threw light on the function of soil microorganisms and 
revolutionized the field of microbiology with the origin of the concept 
of “microbial ecology”. His work involved methods for culturing soil 
bacteria, studying iron bacteria, nitrifying bacteria, nitrogen fixation 
by azotobacter and cellulose degrading bacteria [23] (Figure 1). 
Thereafter, a plenty of reports published which involved the study of 
soil microbial communities in different terrestrial ecosystems exhibiting 
an independent microenvironment, like the desert ecosystem where 
researchers studied the xerophytic microbiota present in the soils of hot 



Citation: Nair GR, Raja SSS (2017) Decoding Complex Soil Microbial Communities through New Age “Omics”. J Microb Biochem Technol 9: 301-309. 
doi: 10.4172/1948-5948.1000382

Volume 9(6): 301-309 (2017) - 302
J Microb Biochem Technol, an open access journal 
ISSN: 1948-5948

[28-31], Amplified ribosomal DNA restriction analysis (ARDRA) 
denaturing gradient gel electrophoresis (DGGE & TGGE), restriction-
fragment length polymorphism (RFLP), terminal restriction-fragment 
length polymorphism (T-RFLP) and Fluorescent in situ hybridization 
(FISH) etc. But, these techniques were limited by the fact that they 
could only detect the microbial community, they cannot be applied 
to understand the function of genes present in bacteria. Therefore, 
cloning approach was started to test the function of genes present in 
microorganisms and to express certain genes in bacteria that could 

and cold deserts [24,25]. But all these studies provided limited insight 
into microbial world of the terrestrial ecosystem. A thrust to unravel 
and understand the complex soil microbial communities was given by 
the molecular characterization approaches with the introduction of 16S 
rRNA gene as a molecular marker for identification of eubacteria in the 
late 1970’s by Carl Woese [26] together with the automated sequencing 
method developed by Sanger [27]. Further, these technologies became 
a platform for newer techniques like PCR based amplification of 16S 
rRNA gene to generate clonal library and identification using sequencing 

Figure 1: Timeline of significant discoveries that gave an up-thrust to new era of microbial diversity.
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produce bioactive agents such as enzymes, antibiotics and metabolites 
and soil DNA libraries were extensively generated for such purposes 
[32]. With technological improvements in sequencing techniques 
and development of computational databases, studying the genome 
of bacteria was possible through whole genome sequencing. The first 
whole genome of bacteria sequenced was Haemophilus influenza, a rod-
shaped bacterium which causes meningitis in 1995 by Craig Venter and 
his team at The Institute for Genomic Research in Rockville, Maryland, 
USA. He used a technique called “shortgun” sequencing which involves 
fragmenting the DNA into smaller pieces and then sequencing to 
reconstruct the genome. This was further assembled using assembler 
software with information accuracy to obtain the genomic information 
of the bacteria [33]. Following which, many reports were published 
that involved genome sequencing of bacteria isolated from different 
environments. In 1998 Handelsman et al., contributed towards research 
in microbial diversity by studying the microbial community from 
specific environment that involved multiple genomes and coined the 
term “Metagenomics”. The offshoot of genomics and metagenomics saw 
promising strategies that could very well unravel the unseen microbial 
diversity and function of soil microbial communities and led to 
development of more advanced sequencing technologies which is known 
as the Next Generation Sequencing (NGS). The NGS technology came 
into existence when 454 Lifesciences launched the first NGS machine 
based on “pyrosequencing”, which is now marketed by Roche. Later on, 
Illumina/Solexa also developed NGS machines. In June 2009, Virginia 
bioinformatics institute and Virginia Tech together sequenced the 
complete genome of nitrogen-fixing, soil-living bacterium Azotobacter 
vinelandii which led to understanding of its features and metabolic 
potential [34]. Following years, the culture-independent techniques 
became indispensable to understand the genetic diversity, population 
structure, and ecological roles of the majority of microorganisms. 
Metagenome sequencing involves the functional and sequencing 
based analysis of collective genomes isolated from a particular niche 
using NGS and advanced bioinformatics tools. Microorganisms 
being ubiquotes, a new trend of studying the microbiota, which was 
present in soil, ocean and human body, was started by several research 
groups. These studies were facilitated by Metagenomics, following 
which several Metagenome databases and sequencing projects came 
into existence, one of which was the Human Microbiome project 
initiated by National Institute of Health (NIH), USA in 2008 aimed 
at characterizing the human microbiota and analyzing their role in 
human health and disease. Another project is the EMP or the Earth 
Microbiome project started in august 2010, targeted to generate the 
microbial map of earth by sequencing and analyzing over 200,000 
samples from different biomes of earth. Although Metagenomics has 
the potential to decipher the uncultured microbial population, it has 
limitations as it ignores the minority bacterial populations during 
bacterial community studies from an ecosystem. Some other problems 
associated with Metagenomics are cloning biases [35], sampling biases, 
misidentification of “decorating enzymes” and incorrect promoter sites 
in genomes and dispersion of genes involved in secondary metabolite 
production [36]. These biases could only be resolved using statistical 
approaches in order to detect the difference between the expected 
and observed bacterial diversity and to determine the actual species 
richness [37]. Cultivation based studies, once considered outdated is 
now been re-considered for microbial diversity studies. Lagier et al. 
used improved culture techniques to isolate 31 new bacterial species, a 
large human virus, the largest bacteria and largest archaea from human 
in 2012. Apparently, the researchers saw the need of new methods and 
strategies for cultivation of bacteria in diversity related studies which 
cannot be fulfilled by Metagenomics alone. This led to development of 

enhanced culture techniques which gained superiority over traditional 
cultivable approach is now known as “Culturomics”. The field of single-
cell genomics is rapidly growing as it aids in exploring “microbial dark 
matter”, which constitutes the unknown population of microbes that 
were considered uncultivable at laboratory [38]. Over several years 
these population of microbes stayed hidden from scientists, but recent 
studies have shown promising approaches to cultivate these unknown 
bacteria in laboratory and exploiting their potential to generate new 
antibiotics that can target multidrug resistant pathogens [39]. Single-cell 
genomics involves sequencing the individual cell DNA with optimized 
NGS technologies. Single-cell genome sequencing provides a precise 
genetic map of a single bacterium living in a microbial community. 
This genetic map provides a better understanding of the function of an 
individual bacterium in the context of its microenvironment, thereby 
complementing the cultivation based approaches through satisfying the 
specific growth requirements of uncultivable bacterium from metabolic 
profile of an individual cell [40] (Figure 1). 

Technological advancements in the new era of “omics”

The approaches to study and understand the microbial life thriving 
in different micro-environments has undergone a remarkable change 
since Koch used to culture bacteria using synthetic media. Modern 
era of microbial ecology witnessed the technological revolution, 
which when combined together with the classical microbiology 
gave birth to “omics” that aims at the collective high-throughput 
characterization and quantification of pools of biological molecules 
that translate into structure, function and dynamics of an organism and 
organisms. “Omics” is an english-language neologism which provides 
a set of advanced tools to study the genome, metagenome, proteome, 
metabolome and transcriptome of a micro-organism. It is used as 
a suffix to generate these important fields of study like genomics, 
metagenomics, proteomics, metabolomics, lipidomics, transcriptomics 
and culturomics. It all starts with isolating and sequencing the DNA 
and the success majorly depends upon the quality of DNA isolated and 
depth of sequencing. Nowadays, sequencing the DNA has undergone 
a dramatic shift with the arrival of new sequencing chemistries, 
instruments, and bioinformatics which we call now NGS. NGS is much 
faster and carries a greater sequencing depth compared to traditional 
Sanger’s dideoxy sequencing and in the past years, the rapid and 
substantial cost reduction in NGS technologies has accelerated the use 
of it in Genomic and Metagenomic studies. With NGS researchers could 
very well explore the rare bacterial groups present in the community of 
an environmental sample that could provide a potentially inexhaustive 
genetic reservoir. Currently, the NGS platforms could be classified 
based on the parameters like maximum read length, cost, run-time and 
error rate (Table 1) [41]. The first generation sequencing technologies 
involved the use of cloning DNA into vectors or bacterial host for 
library preparation, which had a greater chance of DNA contamination 
and error in sequencing results. This problem was resolved by the 
second generation sequencing platforms that do not require cloning 
process for library preparation. Yet amplification biases and short read 
length were persistent, which was sorted out by single molecule real 
time technologies (SMRT) like the PacBio RS from Pacific Bioscience 
[42] which are considered as third generation sequencing platforms. 
Now, which sequencing platform is better for use is still debatable as 
each one has its own shortcoming. But one could ascertain it based on 
the characteristics of these sequencing platforms to use a customized 
approach of sequencing based on the type of environmental sample, 
requirement of data and depth of analysis. As of now, Illumina’s 
sequencing platform has become the most widely used platform for 
Genomic and Metagenomic sequencing because of its low sequencing 



Citation: Nair GR, Raja SSS (2017) Decoding Complex Soil Microbial Communities through New Age “Omics”. J Microb Biochem Technol 9: 301-309. 
doi: 10.4172/1948-5948.1000382

Volume 9(6): 301-309 (2017) - 304
J Microb Biochem Technol, an open access journal 
ISSN: 1948-5948

cost and higher yield. Another important aspect in the NGS is the 
processing of the crude data from the sample DNA runs that has to 
be translated into important information. One would require higher 
computational resources, more complex bioinformatic analysis and 
large data storage for processing NGS datasets, which means we not 
only require high end servers but also LINUX operative system skills 
[43]. Although, programming and scripting knowledge are desirable 
to run and install the available metagenomics software for processing 
the raw data and interpreting the results. But it is expected that the 
researchers working with NGS data for genomic and metagenomic 
analysis are trained in basic computational skills. The first step in data 
processing involves analyzing the quality of the raw reads generated by 
the sequencer. All sequencing platforms have their own quality check 
(QC) module in their software suite which assists in initial processing 
of raw reads that involves filtering of low quality reads, trimming and 
adapter removal. The results of QC analysis often contain information 
regarding sequencing output that involves number of reads, read 
length, GC content, overrepresented sequences, etc. Nevertheless, this 
can also be achieved by using easily operational software FastQC [44] 
and several others which are capable of performing initial quality check 
of high-throughput sequencing data, thus not entirely relying on the 
software suite based on the sequencing platform. Second step in the 
sequence processing after initial QC is called assembly and annotation 
that requires a whole lot of computing power along with programming 
skills. Therefore a computer with latest processor and large memory 
depending upon the dataset is advisable for a hassle free and less time 
consuming analysis. This job of assembly and annotation is made now 
easier by several centralized server pipelines like RAST, MG-RAST, 
IMG/M and CAMERA which analyze genomic and metagenomic 
datasets and later allow data storage and sharing of the computational 
results. But for a customized analysis, where one can modify parameters 
according to the needs is not supported by these server pipelines. This 
can be achieved using some legacy software packages like Mothur 
[45] QIIME [46] MEGAN [47], CARMA [48] and requires a sound 
knowledge in Linux operating system.

Materials and Methods
Bacterial genomics

Genomics was one of the pioneering fields which involved the 
use of omic technologies. Genomics is the study of entire genome of 
an organism, i.e., the set of genes that translate into proteins which 
ultimately determine all the cellular functions. Bacterial genomics 
has led to identification of putative gene products by a comparative 
approach called comparative genomics. In comparative genomics, 
genome of a pathogenic bacterium is compared with a non-pathogenic 
bacterium to identify molecular targets that can be manipulated for 

designing new drugs. This approach could unravel the pathogenicity 
factors present in bacterium or the genes that code for bacterial survival 
[49]. Bacterial Genomics involves the use of NGS technologies to 
sequence the whole genome of bacteria and identify genetic functions 
using advanced computational tools [50]. Further, the data from the 
whole sequencing projects is deposited in searchable databases like 
Microbial Genomes Resources at the National Center for Biotechnology 
Information (NCBI), which contains more than 1000 prokaryotic 
genomes. Similar to this is the Genomes Online Database (GOLD) 
that contains comprehensive information of ongoing and completed 
genome sequencing projects (http://www.genomesonline.org). 
Bacterial genome annotation can be achieved using online webservers 
like Rapid Annotation Using Subsystem Technology (RAST) and 
Integrated Microbial Genomics (IMG).

Metagenomics

Metagenomics is community genomics and gives access to the 
genetic content of entire communities of organisms and is useful for 
studying ecological role of a particular microbial community present 
in different ecosystems. Phylogenetic and functional diversity of 
uncultured microorganisms present in soil, phyllosphere, ocean and 
acid mine drainage could be very well investigated using metagenomics 
[51]. Before NGS, metagenomic study involved isolating the DNA 
from environmental sample and cloning it into a suitable vector, 
transforming the clones into host bacterium and screening the resultant 
transformants. Later the clones were screened for phylogenetic markers 
like 16S rDNA and recA etc., this approach is often called a sequence 
based metagenomic approach. Another type of metagenomic study is a 
function based approach in which the expression of specific genes like 
the genes for antibiotic production or enzyme activity are screened using 
expression vectors [52-54]. Today most of the research laboratories use 
NGS for metagenomic studies which not only accelerated the process 
but also removed the biases and artifacts that were present in clone based 
approach. The NGS based metagenomic process is similar to previous 
approach, but the need for cloning the DNA fragments into a vector 
is replaced by labeling them with fluroscent adapters and measuring 
the signal during the single nucleotide addition with a great accuracy 
using a NGS machine. Further the massive data generated from the 
NGS machine is processed using bioinformatic tools. Accessing the 
microbial diversity using NGS can be achieved by using two different 
approaches 1) amplicon sequencing 2) shortgun metagenomics. In first 
approach the DNA fragments are amplified using a specific primer 
targeting a single gene like the 16S rDNA for eubacteria [55,56]. In 
second approach, the large DNA fragments or even complete genomes 
from organisms in a community can be characterized using shortgun 
libraries and amplifying them using multiple primer sets. This method 
is often called whole metagenome approach and requires more 

Roche 454 IonTorrent PGM Illumina PacBio RSIIa

Sequencing chemistry
Pyrophosphate (PPi) 

release transformed to 
luminous signal

Measured hydrogen 
potential converted to signal 

during proton release

Laser excitation of the 
incorporated fluorescently 

labeled nucleotide

Zero-mode wave guide system 
detects the fluorescently labeled 

single nucleotide insertion
Maximum read length (bp) 1200 400 300b 50,000
Output per run (Gb) 1 2 1000c 1
Amplification for library construction Yes Yes Yes No
Cost/Gb (USA Dollar) $9538.46 $460.00 $29.30 $600
Error kind Indel Indel Substitution Indel
Error rate (%) 1 ∼ 1 ∼ 0.1 ∼ 13
Run time 20 h 7.3 h 6 days 2 h

Table 1: Shows the comparison of present sequencing modalities employed in genomics and metagenomics.

http://www.genomesonline.org
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expenditure and sophisticated bioinformatic analysis. An initial study 
which involves determining the bacterial community present in soil 
or marine ecosystem will require only amplicon sequencing approach 
targeting the 16S rDNA. Further whole metagenome sequencing can be 
done in order to identify the functional genes present in the bacterial 
community with prospects of novel metabolites that have antimicrobial 
or anticancer properties. In simple terms metagenomics determines the 
phylogeny and function of group/community of organisms thriving in 
different ecosystems. As mentioned earlier, the analysis of metagenomic 
datasets and data interpretation is a crucial step in metagenomics. 
Therefore data storage, sharing and statistical analysis has become an 
important aspect in metagenomics. Large-scale databases that process 
and deposit metagenomic datasets include centralized servers like MG-
RAST, IMG/M and CAMERA [57-59]. Reference databases like KEGG 
[60], eggNOG [61], COG/KOG [62], PFAM [63] and TIGRFAM [64] 
can be used to give functional context to the metagenome data after 
assembly. In addition one can also perform the analysis of metagenomic 
data without depending on the centralized servers if we have strong 
bioinformatic skills using different software based on UNIX/Linux 
platforms (Table 2). The major steps in metagenomic data analysis 
involve assembly, binning, annotation, statistical analyses and storage. 
In assembly the raw sequence data after QC is processed to get full 
length CDS in the form of contigs. The assembly algorithms are usually 
based on de Bruijn graphs and can be of two types 1) reference based 
2) denovo. The reference based assembly is fast and involves a reference 
genome or metagenome dataset, whereas the denovo assembly requires 
more computational power, large memory and processing time. The 
second step is binning which involves sorting the DNA sequences in 
the metagenome to represent an individual genome or genomes from 
closely related organisms. Through binning we can create the genome 
or partial genome of uncultured organisms. The process of annotation 
involves gene calling and has two aspects namely feature prediction 
and functional annotation. In feature prediction the specific features 
of gene of interest is identified and protein coding and non-coding 
sequences can be annotated. Functional annotation is a challenging 
task as assigning function to datasets requires accessing the protein 
families that have sequence homology with the metagenomic data, 
which relies on the protein structure prediction methods like NMR, 
X-ray crystallography and other biochemical methods. Now, to 
make meaningful results from larger metagenomic datasets requires 
statistical analysis which can be achieved through various statistical 
software packages that can perform statistical analysis based on the 
experimental design and objectives (Table 2). For data storage and 
sharing several data repositories, most of which are the centralized 
servers like the US National Center for Biotechnology Information 
(NCBI). For storing the metadata a set of guidelines is provided by 
Minimum Information about any (x) Sequence checklists (MIxS) [65]. 
MIxS is composed MIGS (the Minimum Information about a Genome 
Sequence), MIMS (the Minimum Information about a Metagenome 
Sequence) and MIMARKS (Minimum Information about a MARKer 
Sequence) that outlay standard formats for recording environmental 
and experimental data [66].

Meta-transcriptomics

Meta-transcriptomics involves random sequencing of microbial 
community mRNA that can be employed to identify the RNA based 
regulation and expression of biological signatures of a microbiome under 
different conditions. Expression profiling studies such as Microarray 
and RT-qPCR depend upon factors like primer design, array conditions 
and hybridization conditions. Therefore presently these are replaced by 
transcriptome sequencing as the sequence of a gene transcript is always 
the same and the meta-transcriptome data can be stored and retrieved 
through centralized server databases such as MG-RAST, CAMERA and 
IMG/M [50]. The meta-transcriptome sequencing begins with isolation 
of total RNA from microbial community followed by enrichment of 
selective RNA to be sequenced (i.e., mRNA, lincRNA and microRNA). 
Later, RNA is fragmented into smaller pieces (the fragment sizes in 
bp depend of the selected sequencing platform) followed by cDNA 
synthesis using reverse transcriptase and random hexamers or oligo 
(dT) primers which are subjected to high throughput sequencing [67]. 
Other methods which do not require synthesizing cDNA and involve 
direct sequencing of RNA were also developed to avoid the sequencing 
biases introduced in quantification of transcripts that arise during 
conversion of RNA to cDNA [68-71] (Figure 2). The processing of the 
meta-transcriptomic data is similar to the metagenomic data and two 
strategies are employed for this (1) mapping sequence reads to reference 
genomes and genes and (2) de novo assembly of new transcriptomes. 
Metagenomic assembly programs like SOAPdenovo [72], ABySS [73] 
and Velvet-Oases [74] could be very well applied for meta-transcriptome 
data assembly [75-78], further the function of the expressed genes can 
be identified using databases like KEGG [79]. Trinity is now most widely 
used program for de novo assembly of short read RNA sequence-data 
because of its efficiency in recovering full length transcripts [80-82]. 
This direct sequencing of RNA from environmental sample is emerging 
as a powerful technique for elucidating the in-situ activities of soil 
microbial communities. But extraction of RNA and its processing from 
soil microbial communities has its own limitations as well difficulties. 
One major limitation is the short half-life of RNA [83] and its variation 
in different species [84]. Likewise, there are difficulties which arise 
during isolation of RNA from soils due to inaccessibility of cells located 
on and within soil particles, inefficient cell lysis, the adsorption of RNA 
to soil particles and the presence of RNases [85]. Recently some studies 
have shown improved meta-transcriptomics approach to study soil 
microbiota by overcoming the above mentioned limitations [86,87]. 

Meta-proteomics

Microbial diversity studies not only involve studying the 
evolutionary relationship of microbial communities, but also finding 
the link between the phylogeny and function which requires accessing 
the mRNA and proteins [88-90]. The meta-proteomic approach 
basically employs studying the total protein isolated from the meta-
community of an environmental sample in order to get the functional 
insight of the microbial environments. Unlike mRNA expression, 
expression of protein is a reflection of specific microbial activities in a 

Assembly  Binning Annotation Statistical analyses
Reference based denovo Compositional-based Similarity- based Both FragGeneScan Primer-E package

Newbler SOAP Phylopythia SOrt-ITEMS PhymmBL MetaGeneMark Metastats
AMOS Velvet S-GSOM MetaPhyler MetaCluster MetaGeneAnnotator (MGA) R statistical package
MIRA MetaVelvet PCAHIER MEGAN - Metagene -

- Meta-IDBA TACAO CARMA - Orphelia -

Table 2: Shows the computational resources employed in different steps of metagenomic data analysis.
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given ecosystem, therefore it has great potential for functional analysis 
of microbial communities [91,92]. The procedure involves sample 
preparation, protein extraction, separation of protein or peptides 
using techniques like 2D gel electrophoresis and finally identification 
using mass spectrometry (MS) (Figure 2). As the technologies advance 
the challenges in protein separation and identification are met with 
improved extraction techniques like combination of citrate extraction 
method, SDS lysis method and NaOH extraction, followed by direct 
identification using LC-MS/MS [93]. Omics part in metabolomics 
involves the generation of peptide databases based on the specific 
peptide mass fingerprint (PMF) generated during MS analysis which 
can be matched to identify the proteins. In another approach the de 
novo peptide sequence can be generated from the isolated proteins by 
peptide sequencing. Proteome Discoverer software suite (v1.4, Thermo 
Fisher Scientific) and the Mascot search engine (v2.5, Matrix Science 
49) are usually used for peptide identification and quantification [94].

Metabolomics

This omic technique enables us to map the entire metabolic profile 
of an organism. In context to microbiology, metabolomics can be 
regarded as “microbial metabolomics” which involves identifying 
the complete set of metabolites produced within a microbe that in 
turn reflects the enzymatic pathways and other network processes 
involved in the functioning of the cell [95-97]. Metabolomics assesses 
the interaction between cell’s genome and its environment thereby 
understanding the novel biosynthetic and degradative pathways 
exploited by the microbe in utilizing the organic content present in a 
particular soil ecosystem [98,99]. Metabolomics can also be employed 
in studying the entire microbial community present in the soil in order 
to understand the community responses to changes in soil through 
“community metabolomics” [100]. Soil metabolites include amino acids, 
organic acids and other natural and synthetic compounds, which can 

be identified using various techniques such as GC-MS for amino acids, 
N-containing compounds and di-peptides and 1H NMR, HPLC for 
identification of phenolics, flavonoids, carbohydrates and organic acids, 
etc. Once all metabolites are identified a metabolic model is generated 
and stored in databases (Figure 2). A handful number of computational 
tools facilitate this reconstruction and model process, one such is 
the BiGG (biochemical, genomic and genetic) knowledge server that 
provides the reconstructions of genome scale metabolic networks from 
six organisms spanning three major branches of the Tree of Life. Among 
them are Escherichia coli (a model organism), Helicobacter pylori (Gram 
negative bacterium), Staphylococcus aureus (Gram positive bacterium) 
and Methanosarcina barkeri (archaea) [101-105]. Another resource 
that integrates metabolic data is the MetaCyc database containing 
highly curated small molecule metabolites [106,107]. Metabolomics 
has its own restrictions and many gaps are needed to be filled using the 
upcoming technological advancements. Nevertheless, metabolomics 
serves as a crucial link to other omic technologies like metagenomics, 
meta-transcriptomics meta-proteomics, etc. and circumvents the 
limitations posed by them.

Culturomics

The term “culturomics” is often misleading as it resonates with 
the other fields of study such as the study of human society and 
cultural behavior. But in context to microbiology “culturomics” is a 
new terminology which comes with the omics package. Culturomics 
employs improvised culture techniques to isolate microbes in laboratory. 
Culturomics came in to existence from studies carried out by Lagier 
et al. 2011 on human gut microbiome [107]. In this study 3 people (2 
lean African and one obese European), were analyzed by 212 different 
culture conditions of culture that recovered 32500 colonies, which was 
traced to 340 species of bacteria from seven phyla and 117 genera, five 
fungi and a giant virus (Senegalvirus). Advantages of culturing microbes 

Figure 2: Comprehensive workflow of different omics approaches involved in the study of microbiota from soil sample.
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instead of detecting them from their DNA signatures include obtaining 
information about their viability. Further these newer strains could be 
exploited for several microbial byproducts that have therapeutic value. 
Like the NGS, next generation of culture technique is fuelled by next 
generation technologies like smart incubators, automated colony-
picking systems, miniaturization, automated detection of microbial 
growth, innovative culture conditions, customized media supplements 
and high throughput identification using matrix-assisted laser 
desorption ionization time-of-flight mass spectrometry (MALDI-TOF 
MS). Now regarding soil microbiota, high throughput culture studies 
are yet to come and many researchers are now trying to isolate soil 
microbes using soil supplements in their media. No doubt culturomics 
has abolished the term uncultivable or non-culturable microbes and 
will be a promising omics strategy to isolate novel microorganisms. 

Results and Discussion
This review packs comprehensive information on present omic 

technologies employed in studying soil microorganisms and details 
its path of evolution on a timeline scale. Research on the diversity of 
soil microbial community has undergone a paradigm shift with the 
arrival of omic technologies like metagenomics, metaproteomics and 
metabolomics, etc. which was previously studied using conventional 
culture techniques, DGGE, TGGE and 16S rRNA clone library method. 
The review also highlights the importance of informatics along with 
the technology and its need in data analysis and storage. Rebirth of 
microbial culture techniques using improvised strategies (culturomics) 
and its choice over other culture independent methods is increasingly 
adopted by many research groups shows the importance of culture 
based techniques as a fundamental methodology for isolating and 
studying the novel microorganisms. 

Conclusion
As the technological advancements take place in the field of 

microbial diversity studies, we gain more and more insight into the 
unexplored microbial community. At present both Metagenomics and 
Culturomics approaches must go hand in hand to unravel the unseen 
diversity of microbial world that will act as a platform for discovery of 
new generation drugs and antibiotics.
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