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With the advent of high throughput RNA sequencing technology 
and higher density tiling arrays, the transcriptional activities across 
the human genome have been investigated and led to the observation 
of widespread transcription of the genome [1,2]. While only less than 
2% of the mammalian genome codes for proteins, tens of thousands 
of genomic sites are pervasively transcribed and produce non-coding 
RNAs, including microRNAs, Piwi-interacting RNAs, small interfering 
RNAs, small nucleolar RNAs and long non-coding RNAs (lncRNAs). 
LncRNAs were originally defined as transcribed RNA molecules longer 
than 200 nucleotides and with little protein-coding potential. Recently, 
emerging evidences have shown that lncRNAs play important roles in 
a variety of biological processes including development, differentiation, 
metabolism, genome regulation and cancer progression [3-5]. 
Nonetheless, due to the heterogeneity and low abundance, in most 
cases, most lncRNAs have no genetic evidence to support their in vivo 
function.

Gene-targeted knockout technology has provided a powerful 
tool for elucidating the function of lncRNA genes in vivo, making the 
connection from mouse to mechanism. For example, Malat1, known as 
metastasis associated lung adenocarcinoma transcript 1, is among the 
most abundant and highly conserved lncRNAs. Malat1 was identified 
as an oncogene that promoted tumorigenesis and found to regulate 
pre-mRNA splicing in nuclear speckles and promote E2F1 target 
gene expression during cell cycle progression in vitro [6-9]. Recently, 
Malat1 knockout models have shown that loss of Malat1 in vivo has 
no apparent phenotypes and compatible with formation of nuclear 
speckles [10,11], but alters the transcription of Malat1 neighboring 
genes and metastasis-associated genes [12,13]. These loss-of-function 
models further support the critical function of Malat1 as a regulator 
of gene expression governing hallmarks of lung cancer metastasis. 
Along with more and more differentially expressed lncRNAs have been 
unraveled and screened during various physiological processes and 
disease, understanding the functions of these lncRNA genes require 
lose-of-function screen by deleting or modifying genes, and followed 
by studying the resulting phenotypes. More recently, a novel powerful 
genome-editing tool - the type II prokaryotic CRISPR/Cas system has 
been successfully employed for genome engineering, thus holding great 
potential for deciphering the function of lncRNAs in vivo.

The clustered, regularly interspaced, short palindromic repeats 
(CRISPR)/CRISPR associated (Cas) were originally identified as 
components of the bacterial adaptive immune response to invading 
viral and plasmid sequences [14,15]. This CRISPR/Cas system relies 
on integration of foreign DNA fragments into CRISPR loci. After 
transcription and processing, these inserts produce a short CRISPR 
RNA (crRNA), which recognizes a complementary stretch of 
nucleotides (the protospacer) within foreign DNA and then anneals to a 
trans-activating CRISPR RNA (tracrRNA), forming ribonucleoprotein 
complexes with the Cas9 nuclease and generating site-specific double 
strands breaks in the foreign DNA.

Generation of a targeted genomic double strands break has been 
considered as the rate-limiting step in the development of gene 
targeting technology for genome engineering. By combining crRNA 
and tracrRNA into a single chimeric guide RNA (gRNA) and expressing 
it alongside Cas9 endonuclease, several groups have shown that they 

can engineer the CRISPR/Cas system to function with custom gRNA 
to efficiently induce double strands break in specific genes in human 
cells [16-18]. For example, Mali et al. [16] obtained targeting rates of 
10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced 
pluripotent stem cells. Cong et al. [17] applied the CRISPR/Cas system 
to mediate genomic cleavage as efficiently as a pair of TALE nucleases 
(TALEN) targeting the same EMX1 element. Cho et al. [18] showed 
that CRISPR/Cas system can target two genomic sites and induce indels 
with frequencies of up to 33%. These three independent groups showed 
the easy programmability and wide applicability of the CRISPR/Cas 
technology, establishing the potential of the CRISPR/Cas system for 
high-throughput applications.

LncRNAs are marked with their abundance in the genome. It is 
clear that the majority of disease-associated SNPs are located within 
non-coding regions and impacts lncRNA expression [19]. Kumar et 
al. [20] showed that the associated of SNPs with expression levels of 
lncRNAs are also associated with complex traits and diseases. Studying 
the epistatic lncRNAs through CRISPR/Cas system may allow for 
dissection of phenotypes that are normally masked by compensatory 
mechanisms. Accordingly it requires the simultaneous introduction of 
multiple gRNAs into human cells to achieve multiplex lncRNA genes 
editing of multiple targeted loci. Subsequent studies further support 
that CRISPR/Cas system can efficiently mediate the simultaneous 
disruption of five genes in mouse embryonic stem cells, allowing the 
one-step generation of animals carrying mutations in multiple genes 
or reporter and conditional alleles [21,22]. Furthermore, the CRISPR/
Cas system also provides the probability for studies of complex genetic 
disease in a Petri dish using human embryonic stem cells and induced 
pluripotent stem cells [23].

The CRISPR/Cas system may yet have limitations although 
it undoubtedly possesses great potential for genome editing. For 
instance, target site selection may be limited by requirement for a 
dubbed protospace adjacent motif (PAM) sequence. Two current Cas9 
nucleases are derived from Streptococcus pyogenes and Streptococcus 
thermophiles require PAMs of 5’-NGG-3’ and 5’-NNAGAAW-3’ 
respectively, which may constraint the selection of target sequences 
[14]. Another important limitation of the CRISPR/Cas system is its 
potential off-target effects [16-18]. Although each base within the guide 
RNA sequence contributes to overall specificity, multiple mismatches 
between the guide RNA and its complementary target DNA sequence 
can be tolerated depending on the quantity, position and base identify 
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of mismatches. However, Ran et al recently developed a strategy that 
combines the D10A mutant nickase version of Cas9 from Streptococcus 
pyogenes (SpCas9n) with a pair of offset gRNAs complementary 
to opposite strands of the target sites to introduce targeted double 
strand breaks [24]. This double nicking strategy reduces off-target 
activity by 50 to 1,500-fold in cell lines and facilitates gene knockout 
in mouse zygotes without sacrificing on-target cleavage efficiency, thus 
extensively improving the specificity of Cas9-mediated genome editing.

In the last decade, the rapid discovery of lncRNAs by high-
throughput technologies has advanced our knowledge of transcriptome 
complexity. LncRNAs have been shown as a novel layer of regulation 
of diverse physiological activities. Dysregulation of lncRNAs and 
lncRNA expression-associated SNPs can lead to numerous diseases 
including cancers. It is inevitable to dissect into lncRNA structure and 
physiological function by in vivo knockout phenotypes. Timely, the 
novel CRISPR/Cas technology for genome-editing is moving so fast 
that it undoubtedly allows the accelerated study of lncRNAs in vivo in 
the near future.
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