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Editorial
Plants normally harbour microorganisms beneficial to the plants.

However, many of these microbes may cause diseases to human beings
in form of food-borne infections. Moreover, plant pathogens may also
infect human beings, resulting in cross-kingdom pathogenicity. For
instance, many members of Enterobacteriaceae which are pathogens to
human beings are also known to cause rots and blights in plants. Many
microbes found in rhizospheres of plants are also known to cause
diseases (Pseudomonas aeruginosa, Serratia marsescens, etc.).
Therefore, many inhabitants of plants (both rhizosphere and
phylosphere) residing in or on plant tissues can be opportunistic
pathogens of humans [1]. Despite of the morphological and
physiological changes of hosts, microbes have evolved surprisingly to
inhabit diverse hosts, thus leading to cross kingdom pathogenicity
[2-5]. There are a number of microbial pathogens capable of infecting
both plants and humans. This pathogenesis can be taken place by
direct or indirect methods. It has been suggested that human
pathogens are indirectly transferred to plants through environment or
with the aid of any carrier. Plant pathogens can be shifted to humans
by direct contact or indirectly through environment [1,2,5].

To cause cross-kingdom infection, pathogens must be evolved to a
level that allows them to survive in different hosts. In doing so, a
pathogen must be able to find specific target receptors on host, land on
those targets and evade host immune systems. Defensive system of
hosts, even of different kingdoms, share certain similarities and is
evoked by recognizing the same MAMPs (microbial associated
molecular patterns) [4,6]. Therefore, the number of pathogens capable
of causing cross-kingdom pathogenicity is limited. By residing
frequently in the close proximity of the potential host, opportunistic
pathogens gain ability to overcome target’s defence systems. As the
pathogen grows in vicinity of a potent host through generations, it
adapts and evolves based on the exudates and environment of the host
[3]. This adaptation is crucial to survive in an alternate host, and helps
microorganisms to acquire determinants capable to target the
pathways common in both hosts. In addition to this adaptation, niche
specific virulence factors and host specific determinants are
considerably switched by the horizontal gene transfer in both human
and plant pathogens and widely spread in the environment. Cross
kingdom pathogenicity is also supported by the selective pressure or
evolutionary directionality [7-9].

Among human pathogenic bacteria Enterococci, Serratia,
Enterobacter and Salmonella are more prone to cause disease in
plants. Whereas different phytopathogenic species of
Stenotrophomonas [5], Burkholderia and Pantoea are evolving as
human pathogens [2]. Some plant endophytes e.g. Cryptococcus gattii
[5] Streptomyces spp., Klebsiella pneumonia, Morganella morganii

and Pantoea agglomerans are more often asymptomatic within plants
but have clinical significance [2]. Rhizopus arrhizus, Alternaria
alternate, Fusarium oxysporum, Aspergillus flavus and Microascus
cinereus are the fungal phytopathogens evolved to infect the humans
[5]. Pathogenicity determinants of some pathogens have been
recognized for both plants and humans while other are unknown or
identified in case of one host only. Kirzinger et al. [2] has elucidated
many infection target sites of many cross-kingdom disease (both
plants and humans), as well as the disease causing determinants.

Pathogenic molecules involved in cross-kingdom pathogenicity
target conserved components of the host, thereby creating potential to
infect a wide range of hosts. Baarlen et al. [3] has reported enzymes,
secondary metabolites and toxins that target conserved constituents of
hosts. Infections are usually caused by the aid of toxins that target the
host cell membrane and facilitate necrosis to utilize cellular
components as source of nutrients [3,10]. Many homologous target
receptors are also found in both animals and plants, thus further
facilitating the cross-kingdom pathogenicity. In animals (mammals
and insects) target receptors are known as TLRs (toll like receptors)
[11,12] while in plants homologous receptors are recognized as RLPs
(receptor like proteins) and RLKs (receptor like kinases) [13].
Phytopathogenic determinants in case of Salmonella (flagellum
proteins) and Enterococci (quorum sensing system gene (fsrB) and a
serine protease (sprE)) are almost the same as involved in human
infections [2]. Phytopathogen Burkholderia pseudomallei exhibits
human disease potential as it harbours an operon which shows
similarity with signalling molecule of Pseudomonas aeruginosa
associated to virulence [2,14]. As cross-kingdom pathogenicity
involves synthesis of molecular determinants capable of recognition
and interaction with (almost) conserved target sites, evasion from host
immune system and above all, survival in host environment, therefore,
ironically, the characteristics of the host governing the fate and
survival of the pathogen lays the foundation and provides the criteria
for the evolution of the cross-kingdom pathogenesis.

Many studies have been done to explore the diversity of the plant
microbiome. However, the vast repertoire of microbial diversity can
only be unveiled by using culture-independent studies. Recent trend
has been the studies that come under the vast umbrella of
metagenomics; study of total DNA of the microbial community. Major
focus has been the rhizosphere of the plants [15] as it is one of the
richest habitats of microbes. More recently, metatranscriptomics
(study of total RNA of microbial communities) has also been
employed to explore rhizospheric microbiota. Turner et al. [16] used
this approach to analyze rhizospheres of wheat, oat and pea. They
found out that pea plant had a very diverse rhizosphere community as
compared to wheat and oat. However, the latter two had much higher
abundance of eukaryotic microbes as compared to wheat. They
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detected presence of a variety of taxa, many of which are known to
contain possible human pathogens. Chauhan et al. used both
metagenomics and metatranscriptomics to study rhizospheric
microbiome of transgenic switchgrass. Many microbial groups
detected by them are also known to house pathogens [17].

Frequency of emergence and re-emergence of infectious diseases is
highly influenced by the cross kingdom pathogensis, as these
pathogens have aptitude to uphold the level of their population in
variety of niches [4]. The cross-kingdom pathogenicity demands much
work to be done in order to explore insights of the mechanisms
involved, thus leading to possible recommendations to control and
contain this pathogenicity.
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