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Introduction 
In the last decade PK/PD modeling has reached a new level of 

maturity, acceptance, and influence and is increasingly considered a 
central technology for improving both drug development and clinical 
therapy. Pharmacological effects can be measured at the biochemical, 
cellular, organ, individual, or clinical level. The integration of diverse 
pharmacological effects into a coherent picture of drug action is 
one of the goals of current research in modeling of PK/PD. Two 
communicating dynamic systems, viz., pharmacokinetics and 
pharmacodynamics, determine the response of a given individual to 
a particular drug. Pharmacokinetics (PK) includes drug absorption, 
distribution, biotransformation, and elimination (processes that 
involve receptors, transporters and enzymes). Pharmacodynamics 
(PD) includes the interaction of drug species with enzymes or receptors 
of a target cell (or bacteria or v.irus) and the often-complex chain of 
molecular and physiological events, which ultimately determine the 
physiological responses to the drug. The modeling of PK [1] has a long 
tradition, and the history of dynamic PK/PD models goes back (as far 
as we know) to the seminal paper of Segre [2], while the theoretical 
framework for PK/PD models is described in a number of publications 
[3-5]. General classes of PK/PD models, which allow a unified 
approach to modeling, and investigation of PK/PD systems, have been 
described in [6,7]. What complicates PKPD modeling is the fact that 
individuals differ in their responses to a given drug. These differences 
can be expressed as individual differences in PK and PD, which, in 
turn, can partially be explained by variation in such factors as age, 
gender, weight, or genetic components. The elucidation and estimation 
of such relationships is carried out using PK/PD data from samples of 
individuals from populations of interest. Population experiments are 
often conducted in a very different manner than those carried out on a 
small number of individuals where rich data sets can be collected, since 
the resources required to execute an experiment that fully quantifies 
each individual are prohibitive. As a result, non-linear hierarchical 
mixed-effects models are routinely used in attempts to identify PK/
PD models from a population study [8-10]. Determining the relations 
between the parameters of a population PKPD model and covariates is a 
major aim of population PK/PD modeling. The covariates can improve 
the estimates precision, explain part of the inter-individual variability, 
and may also increase the mechanistic interpretability of the model 
or generate hypothesis. An appropriate covariate might be selected 

according to its clinical importance, although this is very rare given the 
semi-empirical nature of PKPD models and limited knowledge about 
drug/covariate relationships, or, as it is the norm, identified from the 
statistical significance of its relation(s) with parameter(s).

The main purpose of this paper is to show out how the currently 
accepted paradigm for the inclusion of covariates in PKPD models 
constitutes an open problem, since the accepted model for the 
relationship parameters/covariate can easily generate intractably 
complex models selection problems. The paper is organized as follows: 
(i) briefly describe Bayesian methodology, that is at the core of the
methodologies we investigate, (ii) describe the covariate selection
problem associated with PKPD models, showing how the accepted
paradigm that associates covariates to each of the parameters in the
model, generates an extremely complex model selection problem,
(iii) show, by means of simulations, how current approaches have
difficulties in dealing with the dimensionality of the covariate model
families, (iv) propose an alternative that reduces the dimensionality
problem, (v) end with a short discussion.

Methods
Bayesian estimation

We briefly summarize the main concept and problem involved in the 
Bayesian approach to inference, see, e.g., [11] for details. The Bayesian 
approach is developed in the presence of observations Y whose value is 
initially uncertain and described though a probability distribution that 
depends on some parameters θ  .  The Bayesian approach incorporates 
this information into the analysis through a density ( )θp  that represents 
the prior knowledge before the observations Y are collected. Inference 
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is based on the probability distribution of θ  after observing Y and is 
obtained through its posterior distribution using Bayes’ theorem. In 
trans-dimensional models (TDM), the prior uncertainty regarding 
the model structure is acknowledged, and the model itself becomes 
a parameter. For example, in variable selection we wish to select the 
“best” subset of all predictor variables on which to regress the response 
variable; the number of selected variables and the variables themselves, 
which together define the model structure, are unknown parameters. 
These models are referred to as trans-dimensional because each possible 
model structure has a potentially distinct set of coefficients/parameters 
associated with it. In general, these sets will be of different sizes and so 
as we move from one model to another, the parameter space of interest 
changes dimension. Until relatively recently the main restriction of 
Bayesian inference has been that the computation of the posterior is 
analytically intractable other than for relatively simple cases. Besides 
the controversy about the appropriateness of incorporating historical 
information, ( )θp  in the analysis and specifying a complex model for 
the data, the main restriction (a fatal flaw, for practical purposes) of this 
approach has been the computation of this posterior, which, other than 
for relatively simple cases, is analytically intractable. Computation of 
the posterior involves solving multi-dimensional integrals, and many 
computational methods have been devised to do so. In the last ten 
years a large body of work on stochastic methods has made possible 
the applications of the Bayesian approach to complex problems. 
Markov Chain Monte Carlo (MCMC) methods [12-16] opened the 
way to analysis of complex models. Coupled with the advent of MCMC 
methods for posterior computation, the development and application 
of Bayesian methods for model uncertainty [13,17-21] have seen 
remarkable evolution over the past decade. Some of these methods 
have been applied to PK/PD population models in [22,23] as well as 
to models for individual responses [24,25]. In general the field has 
achieved a high level of maturity, and computing systems and methods 
are available for a great number of Bayesian problems, we mention in 
particular BUGS [26], PKBUGS and JUMP for reversible jump MCMC 
[27].

Model selection

Variable selection in, for example, linear regression [28] consists 
of a set of potential predictors { }iX  for a response Y of interest: each 
model under consideration corresponds to a distinct subset of { }iX , 
and is of the form 

 γ γθ θ ε= + +
1

Y X              (1) 

where, γX  is the design matrix whose columns correspond to the  
γ -th subset of covariates,  γ{ }

i
X , and γθ  is the vector of regression

coefficients for the γ -th subset. In PK/PD modeling the predictors
(covariates) are not directly related to the response, but instead to the 
parameters of the model [29]. This fact immediately complicates the 
modeling selection problem, because each parameter can be related to 
different covariates. Moreover, different models can be used to express 
the relationship between a parameter and covariates (for example, 
clearance might be related to creatinine clearance linearly, but volume 
might be related to weight non-linearly). An instance of a general PK/
PD covariates model is of the form
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Where, m is the number of structural parameters in the model,  
( )γ γ γ= 

1
, ,

m , the collection of sub-sets of covariates for each 
parameter, ( )η η η= 

1
, ,

m
g g g  and is the collection of functions

characterizing the relationship of the parameters to covariates. For 
simplicity we omit details on the specification of individual specific 
random effects in equation (2), we refer to, e.g., [25] for the, Bayesian, 
formulation of the mixed effect model. 

Consider the simplest possible PKPD model a single compartment 
model, with two parameters:

 ϑ ϑϑ −= 1 2/
1/  tY D e   (3)

where ϑ2  represents volume of distribution, clearance, D the drug 
dose and CrCl (Creatinine clearance). Now assume that in the clinical 
trial one has collected just four covariates, say Age, Weight, Height 
and Creatinine clearance (CrCl); assuming that only one covariate can 
influence a parameter the possible alternative models to consider are 4 
for each parameter generating 4 4 16× =   possible combinations. If we 
relax the assumption that only one covariate can influence a parameter, 
then for each parameter we have 4 models with 1 covariate, 6 with 2, 4 
with 3, and 1 with 4 covariates, that is 15 models, and correspondingly  

215 225= models for two parameters. In absence of prior information, 
for c covariates the number of possible covariate models that can be 
considered for a parameter in a PKPD model can be indexed as a family 
{ }kJ . The dimension of the family equals the sum of the possible 
combination of c elements taken 1, 2, …,c at a time, that is

For a relatively small PK model with 4 parameters and 10 covariates 
the number of possible models is rather large: #{ }kM = ( )4#{ }kJ
=10244=109,951,162,776. A rather large number, to say the least, that 
does not even consider possible interactions between covariates or 
alternative models for the relationship covariate/parameters.

Model selection

Obviously the number of models indicated by (5) is too large 
to attack the problem by brute force. Putting aside the problem of 
selection bias that such a rather absurd number of alternative models 
can generate (exaggerating the importance of covariates is all but 
guaranteed with such a number of alternatives [30]), the main concern 
in the PKPD literature has been in trying to identify a practical and 
reliable selection method. There are various statistical approaches to 
model selection, of which one of the most common is stepwise addition 
(covariates are added one at a time until a maximum, large, number 
allowed in the model is reached) followed by backward elimination 
(the model is “pruned” by removing one of the selected covariates at 
a time until the removal corresponds to a significant increase in the 
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For m parameters the total number of models to consider, indexed 
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objective function value) [31]. The adaptation of the methodology to 
PKPD is generally carried out by introducing three simplifications.

Algorithm 1: (i) First, one considers one parameter at a time, 
adding covariates iteratively using stepwise addition.

(ii) Second, covariates are only added to the model if the addition
corresponds to a significant drop in the objective function accordingly 
to a statistical selection criterion, e.g. [32]. 

(iii) Third, the backward elimination process is not carried out.

Adopting (i) reduces the total number of models to be considered

The approach just described can easily be criticized. Simple stepwise 
addition/elimination is often ineffective even when used with much 
simpler statistical models. Using the PKPD variant just described it is 
rather obvious that whatever model is selected it would not represent 
the best possible one. However the approach has the advantage of 
making the intractable problem corresponding to equation (5) into 
something that can somewhat be managed, and it has became a sort of 
a standard in the literature. For the previous example of 4 parameters 
and 10 covariates the number of possible models drops from  #{ }kM

=10244, to #{ }kM = 
10

1
4

10 1=

× 
− + 

 
 

∑
i i

i

= 143×4=572, a number that is 

further reduced under (ii) above. 

Alternatives methods to stepwise addition have been proposed, see 
[33] for comparisons, and in addition a number of methods decoupling
the search for covariates from the overall likelihood function attempt
to mollify the intractability of the task, see [34] using generalized
additive models, or [35] using cluster analysis. Here we consider a
methodology that takes advantage of the algorithms and formalism of
trans-dimensional models (TDM). Briefly, to define a TDM one starts
from a family of possible models,  { }kM , where each model consists 
of a distribution ( , )θk kp Y M   where, θk   is a vector of parameters
with dimension  kd . The Bayesian approach proceeds by assigning
a prior probability distribution ( )θk kp M  to the parameters of each 
model, and a prior probability ( )kp M  to each model. This prior 
formulation induces a joint distribution over the data, parameters, 
and models. In effect, these priors serve to embed the various separate 
models within one large hierarchical mixture model. Conditioning on 
the data, Y  yields the posterior model probabilities ( )kp M Y   through 
the marginal likelihood of kM , obtained using MCMC [36]. The priors  

( )θk kp M and ( )kp M  provide an initial representation of model
uncertainty, the model posteriors, provides a complete representation 
of post-data model uncertainty that can be used for a variety of 
inferences and decisions. The TDM framework, proposed in PKPD by 
[27,37], can help with the problems associated with addition/deletion, 
however as we will see, it does not solve the problems related to the 
high-dimensionality of the model space. 

I. Simulation 1

We consider a simple model of the form of equation (3), where:

 
ϑ θ θ
ϑ θ θ

= +

= +
1 1 2

2 3 4

CrCl
Weight   (7)

Figure 1 shows the posterior probabilities corresponding to the 64 
instances of the TDM. The darker the square, the higher the posterior 
probability of the corresponding Cl and V model; an empty square 
indicates a posterior probability less than 0.01. Note the effectiveness of 
the methodology in detecting the combination that shows the correct 
relationship of Cl to CrCl and V and to Weight. The plots also reveal 
a second main motivation for the use of TDM: when the correlation 
between covariates increases posterior probabilities for models 
corresponding to such covariates increases. In these cases model 
averaging, might be a preferable alternative to selecting a unique “best” 
model.

II. Simulation 2 

We use the same set up, but now the data are simulated using:

 
ϑ θ θ θ
ϑ θ θ θ

= + +

= + +
1 1 2 5

2 3 4 6

CrCl Heigth
Weight Sex  (8)

Considering just two covariates increases the number of possible 
models quite dramatically, for each parameter we have 52 (8 alternative 
covariate models with 1 covariate, plus 45 with 2). The total number of 
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Figure 1: Posterior probabilities for the covariate models considered in 
SIMULATION 1. The darker the square, the higher the posterior probability 
of the corresponding Cland V model combination. An empty square indicates 
a posterior probability less than 0.01.

for each parameter to
1

1

=

− + 
 
 

∑
c

i

c i
i

and the total number now 

growths linearly with p, not geometrically:
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Weight and CrCl are the individual weight and creatinine 
clearance, respectively. θ1=1, θ2=0.2, θ3=1, θ4=.2, that describes a linear 
relationship of volume (ϑ2 ) and clearance (ϑ1 ) with Weight and CrCl. 
We simulate a study with 100 individuals, and assume lognormal 
distribution for the individuals’ parameters with 50% inter-subject 
variability; 10% proportional error model for intra-subject variability. 
We assume that c=8 covariates are collected (corresponding to Sex, 
Ethnicity, Genotype 1, Genotype 2, Weight, Height, Age, CrCl). To 
generate a simulated covariates data set we use a multivariate normal 
model with a single correlation parameter ρ . The correlation between 
the i-th and j-th covariate equals  ρ −i j , and the variance of each 
covariate is 1. For implementation of the model we rely on the interface 
and set up developed by [27]. We consider two chains run a 25,000 
iterations burn-in, and then a further 175,000 iterations from which 
we shall draw posterior inferences. The analysis involves one Markov 
chain, initialized corresponding to the model with no covariates 
included. 
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possible models is 522=2704. The analysis now involves two Markov 
chains, initialized corresponding to the model with no covariates 
included, and to the model with highest posterior probability when 
considering one covariate. As suggested in [38], we check convergence 
qualitatively by plotting ‘model state’ against iteration number for 
each Markov chain and then quantitatively by comparing tables of 
posterior model probabilities from each chain. In addition at the end 
of the runs we simply counted the number of visits for each covariate 
model. Generating a data set with ρ =0.8 and 100 subject, and using, 
as above, a total number of 200,000 iterations a relatively large number 
of models, approximately 12%, receives less than 5 visits, a number that 
we consider too low to guarantee a proper evaluation of those model 
(note that the Markov chain should not only visit the models, but also 
spend “enough time” in each one to estimate the parameter associating 
covariates to parameters correctly). Doubling the length of the chains 
did not improve the situation significantly, making it questionable if the 
TDM search is capable to fully explore model spaces of this dimension.

The simulation points out how relatively quickly the methodology 
can get in trouble. The approach seems to be rather unfeasible using 
a model as simple as (3), and it would seems all but quite intractable 
with just slightly more complicated PK models and a larger number 
of covariates.

An alternative to the use of a “brute force” TDM, where all possible 
models are candidates, is to adapt a sequential approach, where model 
with 1, 2, … covariates are considered sequentially, as spelled out by the 
following simple algorithm. 

Algorithm 2: Fit the base model with no covariates, B0

For j =1,…

Define the family of covariate models with j covariates obtained 
conditional on Bj-1  { }j

kM .

Fit the Trans-Dimensional Model { }j
kM , and obtain the model 

with highest posterior probability, Bj

Stop when the increase of posterior probability of Bj does not reach 
a desired threshold (or a model selection criterion indicates that Bj-1 is 
the preferred model).

The family { }j
kM  corresponds to all the possible permutations

with repetition of the models that can be obtained by adding 0 or 1 
additional covariate to each parameter, starting from Bj-1. The approach 
has the advantage of bringing the dimension of the model space under 
control: at each step the dimension of the TDM is constant: only c 
models need to be considered for each parameter, and the total number 
of models for each step is  pc .

When we apply the sequential approach to the data generated for 
simulation 2, we need to perform three steps (corresponding to 1, 2, 
3, covariates, and 64 alternative covariate models for each step) before 
the Akaike criterion [32] indicates that the model with two covariates 
is selected to represent the data. The result indicates a cluster of models 
grouped around the correct quadruplet Sex, Weight, Height, CrCl 
(Equation (8)) thoroughly follows the correlation structure adopted 
in the simulation. For the simulated data set the model with highest 
posterior has Sex and Weight for Cl, and Weight and Sex for V.

Discussion
The main purpose of this paper is to point out how the currently 

accepted modeling paradigm for the inclusion of covariates in PKPD 

models, that is model (2), can easily generate intractably complex 
model selection problems. The examples shown in the paper illustrate 
the fundamental problems with the approach. Problems that we 
summarize below.

Equations (5) indicates how the total number of models can 
grow rather astronomically with the number of parameters in the 
model and the number of covariates. However that number is still 
an underestimate of the models that one might, in principle, want to 
consider. In the computation of the dimension of the space of covariate 
models we have not included (i) interactions between covariates, that 
is models of the form:

ϑ θ θ θ θ+ + += + + +1 2 2i k k p k q k r sCov Cov Cov Cov
Where Covj indicates the j-th covariate. We have also omitted 

(ii) alternative models for the relationship between parameters and
covariates. For example polynomial model of the form:

θϑ θ θ +
+= + 2
1

k
i k k lCov

instead of the linear models of the form  ϑ θ θ += + 1i k k lCov . In addition, 
to give a complete picture of the potential complexity involved, we (iii) 
strictly speaking did not consider PKPD models, but only the simplest 
possible PK model. Introducing a PD component adds parameters 
to the model, and therefore further adds to the number of covariate 
relationships that need to be elucidated. And finally, (iv), if anything 
PKPD models are getting more complex in the literature [5] and the 
complexity again translates into more parameters and even more 
possible relationships with covariates.

The current approach to “solve” the problem basically ignores 
it. A univariate stepwise addition is adopted, where covariates are 
attached to one parameter at a time (ALGORYTHM 1 above, and 
currently distributed software implementing the simple algorithm 
[39]). However univariate stepwise addition is an approach that is not 
only not guaranteed to identify the covariate model maximizing the 
likelihood given the data, but it is not even guaranteed to obtain the 
same result if a different order of the parameters is considered in the 
search. (For example, if in a model with, say, four parameters one add 
covariates to the 1st, 2nd, 3rd and than 4th parameter, the final result will 
be different if one chooses to add to the 2nd, 3rd, 4th and than 1st ).

Given the complexity of the problem it is questionable if slightly 
more sophisticated versions of stepwise addition could be more 
successful. Even for much simpler univariate problems stepwise 
addition, followed by backward elimination, is not guaranteed to 
obtain a global maximum, and a number of alternatives have been 
described [40,41] trying to solve its limitations. The methodology 
described in [27,37] for PKPD models is basically an adaptation of 
those approaches, and ALGORITHM 1 shows a further elaboration 
that attempts to mollify the dimensionality of the problem associated 
with the covariate model (2).

The culprit for this situation is model (2). Its formulation 
makes a univariate problem into a multivariate one and explodes 
the dimensionality of the problem geometrically with the number 
of parameters in the model. The solution to this might simply is 
to formulate the problem into a relationship of covariates with the 
response, not with the model parameters. For example, a representation 
of the form:

 ( ) ( )ϑ θ ε= +, ,iY f t g X
Might prove to be as effective to incorporate the effect of covariates 
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on PKPD resposes. The investigation of such models is of course 
beyond the scope of the present paper. This paper might instead 
help stimulating discussion on model (2), a model that can be easily 
formulated in theoretical terms but that has a degree of flexibility, 
and admits so many variants, that might be unacceptable from both a 
scientific and statistical point of view.

Acknowledgements

This work was supported in part by NIH grants R01 AI50587, GM26696.

References

1. Gibaldi M, Perrier D (1982) Pharmacokinetics. (2ndedn), New York: Marcel 
Dekker.

2. Segre G (1968) Kinetics of interaction between drugs and biological systems. 
Farmaco Sci 23: 907-918.

3. Sheiner LB, Beal SL, Sambol NC (1989) Study design for dose-ranging. Clin 
Pharmacol Ther 46: 63-77.

4. Veng-Pedersen P, Gillespie WR (1988) A system approach to pharmacodynamics 
I: theoretical framework. J Pharma Sci 77: 39-47.

5. Csajka C, Verotta D (2006) Pharmacokinetics-Pharmacodynamics Modeling: 
history and perspectives. J Pharmacokinet Pharmacodyn 33: 227-279.

6. Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize 
diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56: 406-419.

7. Verotta D, Sheiner LB (1995) A general conceptual model for non-steady state 
pharmacokinetic/pharmacodynamic data. J Pharmacokinet Biopharm 23: 1-4.

8. Sheiner LB, Ludden TM (1992) Population Pharmacokinetics/Pharmacody-
namics. Ann Rev Pharmacol Toxicol 32: 185-209.

9. Whiting B, Kelman AW, Grevel J (1986) Population pharmacokinetics. Theory 
and clinical applications. Clin Pharmacokinet 11: 387-401.

10. Fan J, Gijbels I (1995) Nonlinear Models for Repeated Measurement Data. 
Monographs on Statistics and Applied Probability. Chapman & Hall.

11. Bernardo JM, Smith AFM (1994) Bayesian Theory. (2ndedn), New York: Wiley.

12. Metropolis N, Arianna WR, Marshall NR, Augusta HT, Edward T (1953) Equation 
of state calculations by fast computing machine. J Chem Phys 21: 1087-1092.

13. Tierney L (1994) Markov Chains for exploring posterior distributions. Ann Stat 
22: 1701-1762.

14. Gelman A, Roberts GO, Gilks WR (1999) Efficient metropolis jumping rules. in 
Bayesian Statistics 5. Oxford: Oxford University Press.

15. Gelfand AE, Smith AFM (1992) Bayesian statistics without tears: a sampling-
resampling perspective. The Am Stat 46: 84-88.

16. Gilks WR, Richardson S, Spiegelhalter DJ (1995) Markov chain Monte Carlo in 
practice, New York: Chapman & Hall.

17. Hoeting JA, Raftery AE, Madigan D (2002) Bayesian variable and transformation 
selection in linear regression. J Comput Graph Statist 11: 485–507.

18. Berger JO, Pericchi L (2001) Objective Bayesian Methods for Model Selection: 
Introduction and Comparison. IMS Lecture Notes – Monograph Series 38: 135-
193.

19. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and 
Bayesian model determination. Biometrika 82: 711-732.

20. Chipman H, George E, McCulloch R (2001) The Practical Implementation of 
Bayesian Model Selection. Institute of Mathematical Statistics 65–134.

21. Sisson SA (2005) Transdimensional Markov chains: A decade of progress and 
future perspectives. J Am Stat Assoc 100: 1077-1089.

22. Wakefield J, Racine-Poon A (1995) An application of Bayesian population 

pharmacokinetic/pharmacodynamic models to dose recommendation. Stat 
Med 14: 971-986.

23. Gelman A, Bois F, Jiang J (1996) Physiological pharmacokinetic analysis using 
population modeling and informative prior distributions. JASA 91: 1400-1412.

24. D'Argenio DZ, Park K (1997) Uncertain pharmacokinetic/pharmacodynamics 
systems; design estimation and control. Control Eng Practice 5: 1707-1716.

25. Wakefield J, Bennett J (1996) The Bayesian modeling of covariates for 
population pharmacokinetic models. JASA 91: 917-927.

26. Spiegelhalter DJ, Andrew T, Nicky B, Wally RG (1997) BUGS: Bayesian 
inference Using Gibbs Sampling. Cambridge, UK: MRC Biostatistic Unit.

27. Lunn DJ (2008) Automated covariate selection and Bayesian model averaging 
in population PK/PD models. J Pharmacokinet Pharmacodyn 35: 85-100.

28. Miller AJ (2001) Subset selection in regression. (2ndedn), Chapman & Hall.

29. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacoki-
netic-pharmacodynamic models. I. models for covariate effects. J Pharmacokin 
Biopharm 20: 511-528.

30. Ribbing J, Jonsson EN (2004) Power, Selection Bias and Predictive 
Performance of the Population Pharmacokinetic Covariate Model. J 
Pharmacokinet Pharmacodyn 31: 109-226.

31. Breiman L, Friedman J, Charles JS, Olshen RA (1984) Classification and 
Regression Trees, Belmont, CA: Wadsworth.

32. Akaike H (1974) A new look at the statistical model identification. IEEE Trans 
Automat Contr 19: 716-723.

33. Wählby U, Jonsson EN, Karlsson MO (2002) Comparison of stepwise covariate 
model building strategies in population pharmacokinetic-pharmacodynamic 
analysis. AAPS Pharm Sci 4: E27.

34. Mandema JW, Verotta D, Sheiner LB (1995) Building population pharmacoki-
netics-pharmacodynamic models, ed. D.Z. D'Argenio: Plenum, New York.

35. Semmar N, Bruguerolle B, Boullu-Ciocca S, Simon N (2005) Cluster Analysis: 
An Alternative Method for Covariate Selection in Population Pharmacokinetic 
Modeling. J Pharmacokinet Pharmacodyn 32: 333-358.

36. Han C, Carlin BP (2001) Markov Chain Monte Carlo Methods for Computing 
Bayes Factors: A Comparative Review. J Am Stat Assoc 96: 1122-1132.

37. Verotta D (2007-2012) Modeling Complex Pharmacokinetics/Pharmacodynam-
ics., NIH, RO1 AI50587.

38. Brooks SP, Giudici P (1999) Convergence assessment for reversible jump 
MCMC simulations. Bayesian statistics 6, ed. J. Bernardo, et al. Oxford: Oxford 
University Press.

39. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit--a collection of 
computer intensive statistical methods for non-linear mixed effect modeling 
using NONMEM. Comput Methods Programs Biomed 79: 241-257.

40. Denison DGT, Mallick BK, Smith AFM (1998) Bayesian MARS. Stat Comput 
4: 337-346.

41. Denison DGT, Mallick BK, Smith AFM (1998) A Bayesian CART Algorithm. 
Biometrika 85: 363-377.

This article was originally published in a special issue, Recent Trends in 
Pharmacokinetics/Pharmacodynamics handled by Editor(s). Dr. Richard L. 
Slaughter, Wayne State University, USA

http://onlinelibrary.wiley.com/doi/10.1002/bdd.2510040213/abstract
http://www.ncbi.nlm.nih.gov/pubmed/5712792
http://www.nature.com/clpt/journal/v46/n1/abs/clpt1989108a.html
http://www.ncbi.nlm.nih.gov/pubmed/3346822
http://www.ncbi.nlm.nih.gov/pubmed/16404503
http://www.ncbi.nlm.nih.gov/pubmed/7955802
http://www.ncbi.nlm.nih.gov/pubmed/8576839
http://www.annualreviews.org/doi/abs/10.1146/annurev.pa.32.040192.001153
http://www.ncbi.nlm.nih.gov/pubmed/3536257
http://books.google.co.in/books?hl=en&lr=&id=BM1ckQKCXP8C&oi=fnd&pg=PR13&dq=Nonlinear+Models+for+Repeated+Measurement+Data.+Monographs+on+Statistics+and+Applied+Probability&ots=UjGkmCxmZH&sig=Bm682uKYWJ53J52JmhZ2DynnqOg
http://books.google.co.in/books?id=cl6nAAAACAAJ&dq=Bayesian+Theory+1994,+New+York:+Wiley&hl=en&sa=X&ei=-q6sUPnKGY2srAfFsYCwCw&ved=0CCwQ6AEwAA
http://jcp.aip.org/resource/1/jcpsa6/v21/i6/p1087_s1?isAuthorized=no
http://www.jstor.org/discover/10.2307/2242477?uid=3738256&uid=2&uid=4&sid=21101463632677
http://www.stat.columbia.edu/~gelman/research/published/baystat5.pdf
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1992.10475856
http://books.google.co.in/books/about/Markov_Chain_Monte_Carlo_in_Practice.html?id=TRXrMWY_i2IC
http://amstat.tandfonline.com/doi/abs/10.1198/106186002501
http://www.jstor.org/discover/10.2307/4356165?uid=3738256&uid=2&uid=4&sid=21101463632677
http://biomet.oxfordjournals.org/content/82/4/711.short
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.7072
http://www.isds.duke.edu/~scs/Courses/Stat376/Papers/TransdimMCMC/SissonJASA2005.pdf
http://www.ncbi.nlm.nih.gov/pubmed/7569514
http://www.ncbi.nlm.nih.gov/pubmed/7569514
http://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476708
http://www.sciencedirect.com/science/article/pii/S0967066197100259
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1996.10476961
http://130.203.133.150/showciting;jsessionid=6ED0355DC417B12269123BDDFD598598?cid=8674555
http://www.ncbi.nlm.nih.gov/pubmed/17990086
http://books.google.co.in/books?hl=en&lr=&id=7p59iir822sC&oi=fnd&pg=PR9&dq=Subset+selection+in+regression+2001&ots=Z3cPtjkiT1&sig=VCMUinxCHMY45m7PL-JlbWcGZ1Y#v=onepage&q&f=false
http://www.ncbi.nlm.nih.gov/pubmed/1287200
http://www.ncbi.nlm.nih.gov/pubmed/15379381
http://garfield.library.upenn.edu/classics1981/A1981MS54100001.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12645999
http://www.ncbi.nlm.nih.gov/pubmed/16307207
http://www.tandfonline.com/doi/abs/10.1198/016214501753208780
http://www.ncbi.nlm.nih.gov/pubmed/16023764
http://link.springer.com/article/10.1023%2FA%3A1008824606259?LI=true
http://biomet.oxfordjournals.org/content/85/2/363.short

	Title
	Abstract
	Corresponding author
	Keywords
	Introduction
	Methods
	Bayesian estimation
	Model selection
	Model selection

	Discussion
	Acknowledgements
	Figure 1
	References



