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ABSTRACT

A stochastic chaos model of adaptive financial speculative dynamics is introduced and shown to capture several key 
features of actual financial turbulence, including power law scaling in the squared logarithmic returns’ distribution, 
1/f spectral signatures and multifractal scaling, the model is expanded to a multiple asset artificial financial market, 
leading to a coupled stochastic chaos model of financial speculative dynamics, showing evidence of macroscopic 
financial turbulence, with excess kurtosis, power law signatures, multifractal scaling at the mean field level as well 
as a relation between dynamical synchronization and financial volatility dynamics. The implications for financial 
theory and applications of coupled stochastic chaos models to model complex financial coevolutionary dynamics 
are addressed.
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INTRODUCTION

We introduce a stochastic chaos model of adaptive financial 
speculative dynamics and show that it is able to capture several key 
features of actual financial turbulence, including power law scaling 
in the squared logarithmic returns’ distribution, 1/f spectral 
signatures in the squared logarithmic returns’ power spectrum 
and multifractal scaling, we show that these features are present 
both with and without noise coupling (that is, in the underlying 
deterministic chaos dynamics), but an increasing noise coupling 
tends to lead to an exponential rise in kurtosis and market 
turbulence.

The model is first addressed in a single asset framework and then 
expanded to a multiple asset artificial financial market, leading 
to a coupled stochastic chaos model of financial co-evolutionary 
speculative dynamics, showing evidence of macroscopic financial 
turbulence, with excess kurtosis both at the local asset level and 
at the mean field level, power law signatures, multifractal scaling 
both at the local asset level and at the mean field level as well as 
a relation between dynamical inter-asset synchronization and 
financial volatility dynamics. The implications for financial theory 
and applications of coupled stochastic chaos models to finance are 
also addressed.

In section 2, we provide for the background to the financial 
turbulence modelling problem and main references linked to 
the complexity paradigm underlying the research on power law 

signatures and multifractal scaling in finance, this section reviews 
the main foundations for the nonlinear adaptive market model 
studied in sections 3 and 4.

In section 3, we review Bachelier’s theory of speculation and 
revise it by introducing and studying a single asset stochastic chaos 
model for the financial returns’ dynamics with adaptive speculator 
dynamics consistent with the Adaptive Market Hypothesis (AMH), 
showing that it is already capable of producing the main features 
of financial turbulence, including power law signatures and 
multifractal scaling, both without the noise coupling (deterministic 
chaos) and with the noise coupling (stochastic chaos). In section 4, 
we expand the model to a multiple asset framework introducing 
a speculator driven artificial financial market and in section 5, 
we review the model’s main findings including the sources of 
turbulence and the main patterns associated with macroscopic 
inter-asset synchronization and financial volatility dynamics.

The focus on speculation allows us to work the financial theory 
from its foundations with few assumptions revision, showing that a 
speculator-driven market with adaptive dynamics, where speculative 
build-ups are followed by market correction, coupled with a 
dynamical volatility associated with the size of speculators’ impact 
on the financial returns is already capable of leading to turbulent 
financial dynamics, power law signatures and multifractal chaos, 
as well as a dynamical relation between inter-asset synchronization 
and risk.
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TURBULENCE AND COMPLEXITY IN 
FINANCIAL RETURNS DYNAMICS

Bachelier’s theory of speculation assumed that financial speculators 
process a maximal diversity of information in such a way that 
they operate independently from each other and randomly so, 
compensating for each other’s moves leading to a final Gaussian 
structure for financial price dynamics and a random walk for price 
dynamics in discrete time with the Brownian motion being the 
continuous time limit model, this model was subsequently changed 
to a lognormal model of price dynamics with the assumption 
behind the speculative behavior holding nonetheless and the 
Gaussian structure assumed for the logarithmic returns leading to 
the Geometric Random Walk (GRW) model of price dynamics and 
the geometric Brownian motion as its continuous time limit [1-4].

This theory fails, however, in accounting for actual financial time 
series turbulence, which shows evidence of power law scaling 
and long memory in volatility observables such as the squared 
logarithmic returns of both individual assets and stock market 
indices, multifractal signatures and, even, evidence of some form 
of stochastic chaos dynamics, with chaotic signatures surfacing 
in different studies [5-15]. Since a financial system involves 
multiple assets, considering this evidence raises the plausibility 
of the hypothesis for the presence of stochastic networked chaos 
associated with financial dynamics as the underlying source for the 
emergent turbulence signatures as a form of chaos-induced self-
organized criticality.

Indeed, power law scaling in statistical distributions of dynamical 
variables and in power spectra have been identified as hallmarks 
of a type of dynamics called Self-Organized Criticality (SOC) [16-
19]. In the financial markets, these SOC signatures are associated 
with logarithmic returns volatility dynamics, which ranges in a 
continuous scale.

While “pile of sand” models were initially proposed by Bak, Tang, 
and Wiesenfeld as a basic model for SOC, the possibility of SOC 
associated with chaotic signals, that is, signals coming from chaotic 
dynamics that do not generate a white noise spectrum but rather 
1/f power spectra and power law decay in signals probability 
distributions was raised by Chang regarding magnetic turbulence 
in the dynamics of the Earth’s magnetotail, in this case, the 
SOC included also multifractal scaling. A link also between 1/f 
spectra and chaos in nonlinear dynamical systems was researched 
by Handel, who provided for a “1/f noise criterion for chaos in 
nonlinear systems” with consequences for turbulence modelling, 
strengthening the possibility of chaos as a source of SOC [20].

The existence of chaotic maps that can lead to power law signatures 
in chaotic signals’ densities and power spectra (1/f chaos) as well as 
exhibiting multifractal signatures opens up the possibility of chaos 
as another possible source of SOC with implications for finance 
with chaos being shown to lead to all the hallmarks of SOC in 
applications of coupled chaotic maps to financial economics as well 
as in applications of coupled chaotic maps to neuroscience and 
turbulence modelling [21].

In the present work, we introduce a multiple asset artificial financial 
market based on coupled nonlinear maps of noisy chaotic oscillators 
that is able to capture the above main features of financial turbulence 
including the main power law signatures and multifractal scaling 
that characterize the SOC signatures in finance. The model is 
based on a revision of Bachelier’s main assumption that speculators 

operate independently as uncorrelated individuals, forming beliefs 
on a diversity of information that leads to a probabilistic balancing 
of the reasons for buying and selling, instead, we build a nonlinear 
model for the formation of speculative trends and subsequent 
market corrections with a nonlinear volatility feedback, following 
Lo’s Adaptive Market Hypothesis (AMH), which applies Complex 
Adaptive Systems (CAS) science to financial markets, in this way, 
by revising Bachelier’s original assumption, under Lo’s AMH 
framework, we consider a collective nonlinear adaptive dynamics 
by speculators that can lead to speculative buildups driving market 
upwards or downwards, trends that are broken by market corrective 
movements, coevolving with market volatility, in a coupled multiple 
asset artificial financial market [22].

Microscopic financial modelling based on the construction 
of artificial financial markets provides for a way to study how 
foundational assumptions regarding investor behavior, investment 
strategies and financial microstructure can influence financial 
market dynamics, especially in an attempt to provide for a 
theoretical underpinning on financial market turbulence markers 
and key features [23-26]. This approach, which has characterized 
the complexity approach to economics contrasts with stochastic 
process approaches that provide for top-down probabilistic models 
of financial price dynamics, often making unrealistic assumptions 
in order to obtain analytical tractability.

Coupled chaos models, in turn, offer a bridge between the two 
approaches. These models were introduced to provide for a 
framework on which to study dynamics of spatially extended 
systems with a large number of degrees of freedom, providing for a 
conceptual basis on which to study networks of chaotic oscillators 
and pattern formation as well as being powerful conceptual tools 
in complex systems modelling [27-31]. Networked chaotic maps, 
which include, as two major models, Coupled Map Lattices 
(CMLs) and Globally Coupled Maps (GCMs), are advantageous in 
dealing with networked complex systems where the basic dynamical 
nodes behave as chaotic oscillators, in this context, this leads to 
the research field of high dimensional chaos which shows specific 
features that distinguish it from a basic stochastic process, including 
complex emergent patterns with a high effectiveness in addressing 
networked dynamical systems and turbulence.

From a financial standpoint, artificial financial markets comprised 
of networks of chaotic oscillators, such as the one we study here, 
provide for a basis on which to address multiple assets’ dynamics 
[32]. Indeed, in financial markets, one does not have a single asset 
framework, which means that multiple asset linkages need to be 
taken into account, especially in portfolio risk considerations as 
well as in the study of emergent macroscopic turbulent financial 
dynamics observed in financial indices which show that turbulence 
risk is not erased by portfolio construction. 

Furthermore, financial evidence favors that inter-asset correlations 
are dynamical, rather than fixed as assumed in portfolio theory, 
resulting from complex synchronization patterns between different 
assets’ financial returns, in particular, in periods of high volatility 
as well as in events such as market crashes this synchronization 
seems to occur and reduce the effect of risk diversification from 
portfolio investment.

In this way, coupled chaos models provide for a way in which 
to approach a multi-asset financial turbulence and complex 
synchronization dynamics in financial markets, these models 
were applied in to the construction of an artificial economy with 
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a coupled financial market where direct competitors operating in 
a market for goods also have their shares traded in the financial 
market, this economy was modelled with both deterministic 
coupled chaotic maps and with stochastic coupled chaotic maps 
with different investor types and coevolving investor dynamics, 
already showing evidence of multifractal turbulence in financial 
market dynamics and a joint macroscopically far-from-equilibrium 
economic dynamics, illustrating the effectiveness of coupled chaos 
models in multiple asset microscopic financial modeling [33].

In the current work, we take advantage of coupled chaos to 
study the most basic financial assumption revision around the 
financial theory of speculation, by studying a basic adaptive 
speculation dynamics, under Lo’s AMH, in a multiple asset market 
characterized by coupled stochastic chaotic maps, with a feedback 
between speculator impact on logarithmic returns and volatility, 
leading to a complex coevolutionary dynamics between speculation 
and volatility risk in a multiple asset market. 

As stressed, deterministic chaos and stochastic chaos are not 
mutually exclusive, so that one may have a noisy nonlinear system 
that would behave as a deterministic chaotic oscillator if the noise 
was removed, such a system may exhibit sensitive dependence upon 
initial conditions that can amplify noise-related fluctuations, it can 
also lead to the noise-induced order phenomenon [34]. 

Stochastic chaotic maps, in turn, allow one to model open chaotic 
systems where there is a coupling to high-dimensional noise, which 
makes them effective models for dealing with complex adaptive 
dynamics which include endogenous responses with sensitive 
dependence to initial conditions and complex responses to 
external noise. Non-trivial dynamics occur when such coupling is 
introduced, as we will be seeing in the current work in the financial 
application context.

By extending the single stochastic chaotic map to the coupled 
maps’ context, we are led to a coupled stochastic chaos model, the 
spatial coupling associated with coupled chaotic maps also involves, 
in this case, a complex nonlinear co-evolutionary dynamics with 
respect to the noise itself, leading to another level in networked 
chaos theory, with relevance for complex systems modelling. In 
the current article we will compare the coupled stochastic chaotic 
map with the coupled deterministic map model and also research 
how microscopic noise can affect the coupled market dynamics in 
regards to inter-asset synchronization dynamics.

SINGLE ASSET MODEL AND AN ADAPTIVE 
THEORY OF SPECULATION

As reviewed in the previous section, the foundational mathematical 
model of financial price dynamics was introduced by Bachelier, 
who proposed a theory of speculation which assumed a driving 
Gaussian independent and identically distributed noise term, 
justified on account of speculation being associated with a maximal 
diversity of information in such a way that speculators operated 
independently from each other and randomly, compensating for 
each other’s moves leading to the final Gaussian structure as a limit 
distribution.

The model was eventually corrected to account for nonnegative 
prices, leading to the lognormal probability model for financial 
price dynamics, the Geometric Random Walk model (in discrete 
time) (GRW) and the Geometric Brownian Motion (in continuous 
time) (GBM). The main behavioral assumptions underlying 
speculative dynamics in financial markets assumed by Bachelier 

were still valid for the justification of the GRW and GBM models, 
namely, that speculators operate independently and randomly so, 
in this way forming beliefs on a diversity of information that leads 
to a probabilistic balancing of the reasons for buying and selling, so 
that speculators’ impact on the market’s logarithmic returns should 
be probabilistically modelled by a Gaussian distribution, centered 
around a mean.

Formally, in discrete time, this leads to a model of price fluctuations 
such that the price of a financial asset is described by the equations:

  
( )

0

(t) ( 1)e (1)
3

r tS S t
b

= −
=

  

  0(t) ( ) (2)r r x t= +σ

where 0r  is an average returns rate, σ is a fixed volatility parameter 
and ( )x t is an Independent and Identically Distributed (IID) 
Gaussian noise term ( ) ~ (0,1)x t N , which incorporates the speculation 
impact on financial returns and corresponds to a speculation 
impact variable, the size of this impact being determined by the 
scale factor set by the fixed volatility parameter.

The problem with this model, as reviewed in the previous section, is 
that it does not capture actual market dynamics, more specifically, it 
does not capture financial market turbulence, which is empirically 
observed in actual financial returns, a point that was stressed by 
Mandelbrot, and which included the identification of volatility 
clustering, excess kurtosis, nonlinear dynamics, power law decay 
in the distribution of squared logarithmic returns and multifractal 
scaling in financial data, these findings influenced, as reviewed in 
the previous section, the complexity approaches to financial theory 
and the linked econophysics research lines to search for possible 
sources of the turbulence and multifractal scaling.

Indeed the GRW/GBW models do not produce the volatility 
clustering, the high price jumps and even speculative bubbles 
and crashes. Volatility clustering, nonlinear dynamics, speculative 
bubbles and crashes presuppose a collective dynamics that is not 
consistent with Bachelier’s hypothesis of speculators randomly 
trading in an independent way.

The fluctuations that include volatility clustering, high price 
jumps, bubbles and crashes as well as excess kurtosis with respect to 
the Gaussian distribution, along with the evidence of multifractal 
scaling and long memory in the squared returns, as well as power 
law decay in the distribution of the squared returns imply the 
presence of some type of underlying nonlinear dynamics associated 
with financial trading in which the speculation impact variable 
and volatility may be coupled, with volatility being a time variant 
variable .

Returning to Bachelier’s original proposal and looking at 
speculative dynamics, the turbulence signatures reviewed above 
indicate the need for a revision of the assumption that speculators 
operate independently as uncorrelated individuals forming beliefs 
on a diversity of information that leads to a probabilistic balancing 
of the reasons for buying and selling. Instead, the formation of 
speculative trends and market corrections, including the possibility 
of formation of speculative bubbles and crashes, is more consistent 
with Lo’s Adaptive Market Hypothesis (AMH), under which the 
market is assumed to work as a Complex Adaptive System (CAS) 
and should be modelled as such [22].

Revising Bachelier’s original assumption, under Lo’s AMH 
framework, one needs to consider a collective nonlinear adaptive 
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dynamics by speculators that can lead to speculative buildups 
driving market upwards or downwards, trends that are broken 
by market corrective movements, this coevolutionary dynamics 
is also present in business cycle models that include accelerator 
with adaptive components that lead to a reversal in an upward or 
downward trend, an example of which is the cubic model addressed 
in a macroeconomic context which includes cyclical buildups and 
contra-cyclical adaptive responses and can lead to chaotic dynamics 
in the business cycle [35].

However, the cubic map model of business cycles, while able to 
capture buildups and corrective market movements is insufficient, 
we need to consider the link between the speculative trends and 
market corrections with the processing of risk, that is, we need to 
include the impact in volatility of the speculative dynamics as well 
as a possible feedback from volatility on speculative dynamics, the 
application of the cubic map in a multi-asset market also needs to 
transition from a decoupled to a coupled nonlinear map. In the 
present section, however, we address the single asset model, studying 
its properties and, then, expand it to a multi-asset framework 
building an artificial financial market where N companies’ shares 
are traded on the market, leading to a globally coupled nonlinear 
model, indeed, to better study the coupled model, we need to study 
first the properties of the single asset model.

In the single asset model, we revise the logarithmic returns equation 
replacing equation (2) with the following:

  0(t) ( ) ( ) (3)r r t x t= +σ

In this case, we get a time varying volatility ( )tσ multiplied by 
( )x t which, keeping with Bachelier’s root, is the main dynamical 

variable for the impact of speculation on financial returns, the 
speculation impact variable, in turn, coincides with the volatility 
adjusted excess returns for the trading round:

  0(t)( ) (4)
( )

r rx t
t
−

=
σ

In this way, while, in the GRW, there is a fixed impact size of 
speculation on the financial logarithmic returns, given by a fixed 
volatility parameter σ , in equation (3) this impact size is time 
varying. This correction is common in time varying volatility 
models including the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models [5]. There are two possible 
assumptions, one is that ( )tσ  is independent of the speculation 
impact dynamical variable, the second is a dependence of ( )tσ
upon that dynamical variable, as assumed, for instance, in 
heteroskedasticity models like the GARCH models, these models, 
however, show a cutoff in the memory, not capturing the power law 
signatures and multifractal scaling as stressed.

From a theoretical standpoint, the dependence of ( )tσ  on ( )x t
means that the speculative dynamics not only affects returns 
through the main speculation impact variable ( )x t , but it also affects 
the dynamical volatility variable ( )tσ  which, in turn, determines 
the size of the speculation impact on logarithmic returns, this is 
especially linked to trading volume and market orders which lead 
to a time-varying impact of the speculation impact variable ( )x t  on 
the logarithmic returns. In turn, it is reasonable to assume that 
there is a processing of volatility risk by speculators which may 
lead to a feedback from the volatility variable to the speculation 
impact variable, a feedback that, as per equation (4), affects each 
trading round’s volatility adjusted excess returns. To capture this 
coevolutionary dynamics we need a coupled nonlinear map that 
works with this feedback.

The model that we study is a stochastic nonlinear dynamical model, 
( )x t  where incorporates speculative trend reinforcement dynamics 

and market correction dynamics, which is consistent with the AMH 
when applied to a speculator-driven market, the volatility variable   
is, in turn, given by a fixed scale factor multiplied by a second 
dynamical variable that contains an autoregressive component 
but that also depends upon ( )x t . Below are the single asset main 
equations, which we now analyze from a financial standpoint.

  ( ) ( ( 1)) (5)x t g x t= −

  
( ) . (t) (6)t c u=σ

 0 1.( (t 1)) ( 1), ( 1)) .w( ) (7)b bg x f x t u t l t− = − − +
 

  0 1 0

3
. 1 1( ( 1), ( 1)) (1 ) ( ( 1)) b ( 1) ( 1) (8)b b bf x t u t b f x t u t x t− − = − − + − −

  
2 2

0 1 2 3( ) ( 1) ( ) ( 1) ( ) (9)u t v v u t v x t v u t x t= + − + + −

  0

3
0 0( ( 1)) b ( 1) (b 1) ( 1) (10)bf x t x t x t− = − − + −

where ( )w t  is uniform IID noise ( ) ~ ( 1,1)w t U − and ( ) [ 1,1]x t ∈ − .

In order to explain the model and understand its dynamics from 
a financial standpoint, let us consider first the special case where 

1 0b =  and 0l = , in this case, there is no stochastic component, and 
the dynamics for the speculation impact variable is given by the 
cubic map 

0
( ) ( ( 1))bx t f x t= −  which incorporates speculative trend 

and self-correction cycles leading to cyclical and contra-cyclical 
adaptive responses and exhibits chaotic dynamics. The volatility 
is, in this case, driven by the chaotic dynamics of the speculation 
impact variable  ( )x t   with no feedback to ( )x t . An example of the 
map for 0 3b =  is shown in Figure 1.

To understand the map’s dynamics from a financial standpoint we 
need to consider the map’s two inflection points:

  0

0

(11)
3( 1)

bx
b± = ± +

Given the two inflection points, we can analyze the different 
regions of values for the map. The first two relevant regions are

( 1) 0x x t≤ − <  and 0 ( 1) ,x t x+< − ≤ , these are trend reinforcing 
regions, in the sense that if the value of ( 1)x t − is negative then 
so will be the value of ( )x t , with ( )x t  decreasing with ( 1)x t − until 
the minimum is reached at x− , likewise, for 0 ( 1) , ( )x t x x t+< − ≤ , is 
positive and grows with ( 1)x t −  until the maximum is reached at 
x− , given the dependence of the returns on ( )x t , as per equation 
(3), this means that the financial returns are driven by the trend 
reinforcing dynamics, in these two regions.

For the region ( 1)x t x−− ≤ , we get a market reversal dynamics, 
such that x(t) grows with decreasing x(t – 1) and decreases with 
increasing x(t–1) which incorporates a trend reversal dynamics, a 

Figure 1: Cubic map for 0 3b = .
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trend reversal profile is also obtained for ( 1)x t x+− > . Finally, when 
( 1) 0x t − =  so is x(t), that is,  ( 1) 0x t − =  is a fixed point of the map.

In Figure 2, we show a simulation of the financial returns, with , 
0b 3=  illustrating how the single asset model can already generate 

turbulent market dynamics without any external noise term.

The emergence of the usual turbulence markers, including 
volatility clustering (volatility bursts) and large jumps in the 
returns, can be seen in the model’s simulation. Thus, the model 
shows how financial turbulence can emerge endogenously under 
a basic speculation reinforcement and correction dynamics. There 
are various power law signatures associated with the generated 
financial series in regards to volatility risk and tail risk for Figure 
2’s simulation.

First of all, the estimated Fisher’s kurtosis for Figure 2 simulation 
is 19.766319, with zero kurtosis being the reference for a Gaussian 
distribution, and the Jarque-Bera test of normality applied to the 
financial returns gives a test statistic of 162778.780642 and a 
p-value of 0.0, which means that there is a statistically significant 
deviation from the Gaussian distribution due to excess kurtosis, 
which is one of the stylized points of actual financial markets.

Therefore, when we depart from the assumption of randomly 
independently trading speculators to include speculation 
collective trends and market correction associated with a theory 
of speculation dynamics as an adaptive dynamics, a theory that is 
consistent with Lo’s AMH, then, we find that the basic nonlinear 
dynamics associated with this speculation adaptive dynamics, and 
its nonlinear impact in volatility, can lead to a chaotically driven 
volatility and endogenously generate excess kurtosis.

However, excess kurtosis is not the only marker in financial market 
turbulence, another marker is the power law decay of the statistical 
distribution of squared logarithmic returns 2 ( )r t , which are used 
as an observable measure of financial volatility, such a power law 
decay is linked to a fractal structure in the distribution of the 
squared logarithmic returns and is one of the markers of SOC in 
the financial markets dynamics, as reviewed in the previous section.

In this case, we find that the squared returns for Figure 2’s 
simulation exhibit evidence of a power law scaling in their 
statistical distribution; this is shown in Figure 3 (left) which is a 
plot of the histogram with the logarithm of the bin centers versus 
the logarithm of the relative frequencies. In Figure 3 (right), we also 
show the log-log plot of the histogram for the time-varying volatility 
, which also shows a convergence to power law decay. These are 
not, however, the only power law signatures, indeed, the power 
spectrum of the volatility variable    also shows a power law decay 
with increasing frequencies (Figure 4), another feature of SOC. 

The simulation illustrated in Figures 2-4 provides an example of 
the registered SOC features in finance reviewed in the previous 
section, the simulation also produces as we will now see emergent 
multifractal signatures in the returns signal.

While power law signatures are consistent with actual financial 
turbulence, this turbulence has also shown evidence of multifractal 
scaling, which led Mandelbrot to propose that financial 
turbulence has an underlying multifractal dynamic. Indeed, one 
of the peculiar traits of financial returns is the emergence of long-
memory in market observable volatility measures like the squared 
returns, which could point to a unifractal scaling associated with 
this measure, Mandelbrot, however, identified the presence of 
multifractal scaling rather than a unifractal process in financial 
data, a feature that was further confirmed by different authors 
and that points to the financial market operating as a nonlinear 
dynamical system with multifractal scaling. 

The presence of multifractal scaling can be analyzed through 
different methods; the method we use here is Multifractal 
Detrended Fluctuation Analysis (MFDFA) with polynomial fitting 
[36]. Due to its implications in terms of interpretability regarding 
algorithmic financial risk measurement over different investment 
horizons, a point that we will return to as we review this method. 
In the MFDFA, given a time series with T data points, we can 
calculate the cumulative sums, for t=1,2,…,T: 

  
1
( ( ) ) (12)

t

t
k

C y k y
=

= −∑
Where is the sample average taken over the T periods.

The second step is to section the data into non overlapping 
segments of length s , leading to  ( / )sT int T s=   segments [36]. 
Since the dataset size is not always a multiple of the segment’s 
length one needs to discard the last data points and then apply the 
same procedure but to the first data points leading to 2 sT segments 
[36] to which one fits a polynomial ˆ

vC of order n and calculates the 
difference of the data to the polynomial fit leading to the variance 
function:

  ( )( 1)

2

( 1)
1

1 ˆ( , ) (13)
v s k

s

v s k
k

F v s C C
s − +− +

=

= −∑

Figure 2: Simulated logarithmic returns ( )r t  (left) and time varying 
volatility ( )tσ  (right), 100,000 iterations after 10,000 iterations 
removed for transients, uniformly randomly chosen initial conditions,  

0 1 0 0 1 2 3b 3, b 0, 0.1, 0.01, 0.01, 0.2, 0.01, 1.2, 0.c r v v v v l= = = = = = = = =

Figure 3: Histograms calculated for the squared returns  2 ( )r t  (left) 
and ( )tσ  (right), plotted on a doubly logarithmic scale for the class 
centers versus frequencies, calculated on Figure 2’s simulation.

Figure 4: Power spectrum of the volatility variable ( )tσ  from Figure 
2’s simulation.



6

Gonçalves CP

Int J Swarm Evol Comput, Vol. 11 Iss. 7 No: 1000261

From a financial standpoint, polynomial fitting to different 
segments of a series captures an important point which is the ability 
for basic trend following algorithms to capture information in data. 

Now a q-th order fluctuation function can be extracted by averaging 
over the variance functions values evaluated for each length s 
interval, leading to:

  
1/

/2

1

1( ) ( ( , )) (14)
S

qN
q

q
vS

F s F v s
N =

 
=  
 

∑
If the data exhibits power law correlations, these can be uncovered 
by studying the log-log plot of ( )qF s with respect to s , studying the 
presence of power law scaling of the form:

   ( )( ) ~ (15)h q
qF s s

where h(q) are the generalized Hurst exponents. 

If the data is monofractal, these exponents will be fixed, all parallel 
lines in the log-log plot have the same slope or at least will not 
vary much with respect to the series’ main scaling so that h(q) 
will either all coincide with each other or, at least, fluctuate in a 
small interval around the true scaling exponent which is the Hurst 
exponent or Hurst index H. Multifractal dynamics is visible in the 
power law scaling exhibiting different slopes in the log-log plot, and 
a generalized Hurst exponent scaling over a wider rage. Linked to 
generalized Hurst exponents are the scaling exponents:

  ( ) ( ) 1 (16)q qh q= −τ

The above algorithm is the MFDFA with polynomial fitting. Using 
the squared returns as a basic volatility measure and the source 
signal for the above multifractal analysis, the analysis up to the 
calculation of the variance function provides for a relevant financial 
point. First of all, the cumulative deviations provide for a sum of 
deviations between the squared returns over an investment period 
t and the average sample volatility measured in terms of the mean 
squared returns over the T sample periods:

  2 2

1 1

1( ) ( ) (17)
t T

t
k m

C r k r m
T= =

 = − 
 

∑ ∑

Large cumulative deviations are expected to occur in turbulent 
periods associated with volatility clustering and large price jumps. 
A prediction of these cumulative deviations provides for an attempt 
at anticipating transformations in volatility risk, in this sense, the 
polynomial fitting can be seen as a basic benchmark algorithm for 
predicting cumulative deviations over transaction horizons, with 
these transaction horizons being defined in terms of the size s of 
the sample segments.

Now, in this case, the variance function, described in equation (13) 
provides for a measure of dispersion with respect to the predicted 
cumulative deviations in volatility risk and is, in itself, a risk 
measure associated with market volatility in each segment.

The q-th order fluctuation function, in turn, when calculated for 
the squared returns provides for a risk measure calculated for the 
original squared returns signal over different scales defined by the 
order, in this sense, the link between multifractal scaling signatures 
and market volatility risk are captured in the MFDFA analysis, with 
polynomial fitting operating as a basic benchmark for a volatility 
risk trend following algorithm that uses the squared returns as a 
reference for dynamical volatility measurement.

In Figure 5, we show the plot of the estimated fluctuation function, 
the corresponding generalized Hurst exponents, the scaling 
exponents and the histogram of the generalized Hurst exponents 
calculated for the squared returns 2 ( )r t  of Figure 2’s simulation.

As shown in Figure 5, there is a power law scaling at different lags, 
characterized by different slopes in the log-log plot of the fluctuation 
function, a point that is further reinforced by the histograms, 
indicating that the squared returns series is not monofractal, 
instead exhibiting different slopes, therefore different exponents, 
this can be further confirmed by looking at the generalized Hurst 
exponents. In the plot of the exponents versus the order (Figure 5 
bottom left) the exponents rise exponentially from negative orders 
to positive orders, achieving a peak at positive order and then 
decreasing. The histogram, while showing a dominance of lower 
exponents, also shows a rise for higher exponents.

Now, this dynamics was generated for the model without the 
volatility feedback on the speculation impact variable, that is, with 

1 0b =  and also without the noise coupling, before proceeding to the 
multi-asset model, we need to consider the impact of the volatility 
feedback and of the noise coupling. We begin by addressing the 
volatility feedback with no noise and then study the effects of 
noise coupling, which lead to a stochastic chaos model of adaptive 
speculation dynamics.

From a financial standpoint, the volatility feedback is justified, 
in the sense that volatility may impact trading decisions and 
speculative movements, in the case of the present model, with 
no noise coupling, the volatility feedback leads to the following 
dynamical equation for the speculation impact variable:

  ( )( )3 3
1 0 0 1( ) 1 (t 1) ( 1) (t 1) (t 1) (t 1) (18)x t b b x b x b x= − − − + − + − −σ

We have a weighted average between the cubic map, in which the 
cube of the speculation impact variable appears with a negative 
factor, and a volatility modulated term that results from the 
product of (t 1)−σ and 3 (t 1)x − , the higher the volatility the greater 
the positive impact of 3 (t 1)x − . This term is trend reinforcing with 
respect to speculative dynamics and accelerates both for negative 
and positive values of (t 1)x − with a greater impact depending upon 
the volatility (t 1)−σ .

In this sense, there is a weighted average between the adaptive 
dynamics associated with speculative trends formation and market 
corrections with trend reversal, which is incorporated in the cubic 
map, with an associated weight of 11 b− , and a speculative trend 
reinforcing term which is associated with the volatility modulated 
impact of 3 (t 1)x − , with an associated wight of 1b .

While, at first sight it might seem that this would lead to a greater 
volatility, the actual effect is that the market becomes less volatile, 

Figure 5: Estimated fluctuation function (top left), generalized Hurst 
exponents (bottom left), scaling exponents (top right), histogram of 
the generalized Hurst exponents (bottom right), calculated for the 
squared returns of figure 2’s simulation.
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which means that the volatility feedback ends up operating as a 
turbulence dampener; this is linked to the impact of the coupling 
on the bifurcations structure of (t)x . Indeed, as is shown in 
Figure 6, the effect of increasing volatility coupling is a progressive 
shift of the bifurcation plot to the right, both for positive and 
negative initial conditions, since the two are plotted in Figure 6. 
As a consequence of the shift, the chaos region of the cubic map 
becomes progressively smaller until all chaos is suppressed. 

The chaos suppression is not the only relevant point, the 
dependence on the sign of the initial value and its implication 
for the financial dynamics is also relevant. Indeed, in Figure 7, we 
show two bifurcation diagrams for (t)x , zooming in on the chaos 
region; the top diagram is for 1 0b =  the bottom is for 1 0.1b = .

The diagrams represent in blue color the value of a positive initial 
condition and in red its symmetric, the diagrams show that if the 
initial condition is positive the period doubling route to chaos 
leads to a wide region of chaotic fluctuations for (t)x , interrupted 
by periodic windows, fluctuating in a positive values band, which 

means that the returns will only be positive. For the symmetric 
initial condition, which is negative, the period doubling route 
to chaos leads to a mirror image of chaotic fluctuations, in this 
case, fluctuating in a negative values band, which means that the 
returns will only be negative. There is a threshold, however, for the 
cubic map’s parameter ob  beyond which the two initial conditions’ 
regions of fluctuations overlap, leading to a fluctuation over both 
positive and negative values (t)x  of for both initial conditions. 

As the volatility coupling parameter is increased, the progressive 
translation to the right of the bifurcations structure leads to a 
reduction of this region. There is a point of increasing values of 
the volatility coupling parameter beyond which the bifurcations of 

(t)x  lead to a complete separation between the two regions which 
means that the negative initial condition will lead only to negative 
returns and the positive initial condition will lead only to positive 
returns. Thus, from a financial standpoint the volatility feedback 
on the speculation impact variable (t)x  cannot be too large in 
order to lead to positive and negative fluctuations.

Another point about the coupling is that the bifurcation structure 
of the volatility gets displaced to the right in tandem (t)x  with ’s 
bifurcations, as shown in Figure 8 where the dynamics of ln( (t))σ
are plotted for different values of ob  obtained from the same data 
as Figure 7, which plots the volatility variable in logarithmic scale 
for a better visualization. 

The displacement of the bifurcation structure to the right is again 
visible, the reason for this displacement and reduction of the 
regions of chaos is due to the fact that as the volatility coupling 
increases (increase of 1b ) the bifurcations of (t)x  conserve the 
basic structure but are delayed, leading to the displacement to the 
right effect, with a reduction of the chaotic region, in the volatility 
variable, the consequence is a reduction in the fluctuations of  ( )u t  
and, hence, of ( ) . ( )i it c u t=σ , which means that the market will show 
a reduction in turbulence, this can be seen in Figure 8.

Now, the presence of noise leads to a stochastic chaos model, 
with two effects on (t)x , one is that, for a sufficiently high noise 

Figure 6: Bifurcation plots for ( )x t , 0b  from 0 to 3, for different 
values of 1b . (0)x  Randomly chosen with uniform distribution in 
(0,1) with bifurcations plotted along with its symmetric (0)x−  also 
plotted, 0 0 1 2 30.1, 0.01, 0.01, 0.2, 0.01, 1.2, 0c r v v v v l= = = = = = =  .

Figure 7: Bifurcation plots for ( )x t  with varying 0b  from 
2 to 3, for  1 0b =  (top) and 1 0.1b =  (bottom). In blue is 
represented a positive initial condition, in red it’s symmetric, 

0 0 1 2 30.1, 0.01, 0.01, 0.2, 0.01, 1.2, 0c r v v v v l= = = = = = = .

Figure 8: Bifurcation structure for ln( (t))σ  obtained from Figure 7’s 
computation, the purple color results from the coincidence of the 
blue (positive) and red (negative) initial conditions.
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coupling, periodic windows are destroyed, the second is that 
the superposition of the negative and positive initial conditions 
fluctuations starts at lower values of the parameter ob  as is shown 
in Figure 9. 

The impact of noise on the financial returns dynamics is, in turn, 
nontrivial, in the case of a leptokurtic turbulent market dynamics, 
we find that the noise tends, initially, to reduce the kurtosis but 
as the noise coupling is increased the kurtosis starts to increase 
exponentially, this is illustrated in Figure 10, with 1 0.1b = , and 2.9ob =

, in the Figure it is shown the average kurtosis for 100 simulations 
of 100,000 steps each, after 10,000 initial steps being dropped for 
transients, and each initial condition being randomly chosen with 
uniform distribution over the variable’s fluctuation range ((-1,1) for 

(t)x  and (0,1) for ( )u t ). A large enough noise coupling can produce 
an explosive behavior and lead to overflow divergence.

 

Also, the average value of the kurtosis in repeated simulations 
rises exponentially with ob  approaching 3, as is shown in Figure 
11 for a noise coupling l=0.07, where we find the presence of three 
dynamical regimes, a platykurtic regime, a leptokurtic regime 
with kurtosis rising with ob , leading to markets with increasingly 
turbulent returns, and a transition between the two regimes which 
is nearly Gaussian on average.

In this case, the GRW’s Gaussian dynamics is recovered with 
adjustment of the parameter ob , but it depends upon the initial 
conditions, thus, for instance, while 2.64152ob = led to a close to an 
average kurtosis estimate of 0.000217 in 100 simulations with the 
same parameter set as that of Figure 11, which is close to the normal 
distribution for the logarithmic returns, the maximum kurtosis 
obtained in the 100 simulations was 0.319141 and the minimum 
was -0.103179, which is a wide range of values.

A key parameter that sets the scale for the volatility fluctuations 
is 3v , which is associated with the interaction term between the 
previous round’s volatility dynamical component ( 1)u t −  and the 
round’s speculation impact variable, indeed, if we increase   beyond 
a certain level we get the usual market turbulence with the power 
law scaling markers and multifractal signatures and a too high 
value of   may lead to very high jumps or even a blow up in the 
computations, especially with rising noise levels. The values for 
which this divergence occurs depends upon the parameter ob , thus, 
for instance, we already obtain blow up dynamics and overflow 
errors for 3ob = , 3 1.9v =  and a noise level l equal to 0.08.

The kurtosis scales exponentially with 3v , as illustrated in Figure 
12 for different values of the parameter both without and with 
different noise coupling levels. 

As shown in Figure 12, the dynamics can, again, be classified in 
three regimes, the platykurtic regime, the leptokurtic regime and a 
transition between both which leads to nearly Gaussian dynamics 
with the Fisher’s kurtosis transitioning from negative to positive 
and from a non-turbulent market to a progressively more turbulent 
market. 

Figure 9: Bifurcation plots for ( )x t  with varying 0b  
from 1.6 to 3, for l = 0.01, 0.025 and 0.05. In blue is 
represented a positive initial condition, in red its symmetric, 

0 0 1 2 3 10.1, 0.01, 0.01, 0.2, 0.01, 1.2, 0.1c r v v v v b= = = = = = = .

Figure 10: Average kurtosis obtained with l ranging from 0 to 0.12 
in steps of 0.01, in each case the average kurtosis values for the 
returns’ distribution were obtained for 100 simulations with random 
uniformly chosen initial conditions, each simulation comprised of 
100,000 iterations, after 10,000 iterations dropped for transients,  

0 0 1 0 1 2 30.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01, 1.9c r b v v v v= = = = = = = = .

Figure 11: Average kurtosis obtained for 0b  ranging from 2.61 to 
3 in steps of 0.001, in each case the average kurtosis values for the 
returns’ distribution were obtained for 100 simulations with random 
uniformly chosen initial conditions, each simulation comprised of 
100,000 iterations, after 10,000 iterations dropped for transients, 

0 1 0 1 2 30.1, 0.01, 0.1 0.01, 0.2, 0.01, 1.9 0.07c r b v v v v l= = = = = = = = .

Figure 12: Average kurtosis obtained for l=0, 0.05, 0.1, 3v ranging 
from 0 to 2 in steps of 0.1, the average kurtosis values for the 
returns’ distribution were obtained for 100 simulations with random 
uniformly chosen initial conditions, each simulation comprised of 
100,000 iterations, after 10,000 iterations dropped for transients, 

0 0 1 0 1 20.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01c r b v v v= = = = = = = . Note: ( ) 
I=0; ( ) I=0.05; ( ) I-0.1
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The Gaussian structure, which recovers the Gaussian assumption 
of the GRW model is thus also present in this case as a transitional 
regime between the platykurtic and the leptokurtic power law 
scaling volatility, contrasting, however, with the previously analyzed 
mesokurtic transition that occurs with a variation of ob , this 
transition occurs with smaller dispersion, indeed, as an illustration, 
for the same parameters as in Figure 12, when 3 1.1651v = , in 100 
simulations with initial conditions randomly chosen, each time, 
with uniform distribution over the variables’ fluctuation ranges 
(-1,1) for and (0,1) for (t)x , we got an average kurtosis for ( )u t
the returns of 0.001035, a maximum p-value of 0.999661 for the 
Jarque-Bera normality test applied to the returns distribution and a 
minimum p-value of 0.013193, which is not statistically significant 
at the 1% significance level, showing the predominance of the 
Gaussian as a transition distribution between the platykurtic and 
the leptokurtic turbulent regime. 

In Figure 13, we show a simulation of the returns with 3 1.1651v =
, zero noise coupling, and the remaining parameters as those of 
Figure 12.

The estimated Jarque-Bera test statistic, for Figure 13 data is 
0.515714 and the p-value is 0.772706, which means that we get an 
approximately Gaussian distribution for the financial returns, in 
this case, however, we do not have the standard GRW driven by 
Gaussian IID noise, even though the returns do follow a Gaussian 
distribution, indeed, rather than IID noise, the system’s dynamics 
are being driven by a deterministic chaotic attractor as shown in 
Figure 14, which resembles Cheshire Cat’s smile, this structure we 
will show, will be key to understand the source of turbulence in the 
returns.

In Figure 15, we show another attractor, in this case for 3ob = and 
3 1.31v = , which leads to an approximately Gaussian distribution 

for the logarithmic returns, with a Jarque-Bera test statistic value 
of 2.698160 and a p-value of 0.259479. Again, we have the smile 
structure.

These two examples, while leading to shapes that have a few 
differences, both share the general shape of a smile, such that, for 
intermediate values of  (t)x ,  the volatility parameter ( )tσ is smaller, 
increasing as (t)x  tends to its maximum and to its minimum 
values. The seed for the observed turbulence lies here, since, as 3v
is increased, this attractor shape is distorted with the intermediate 
level contracting and the extremes expanding in volatility values, 
which leads to the returns jumps and laminar phases. This 
contraction is illustrated in Figure 16, where we increase the values 
of 3v  to the turbulence region.

Figure 16 shows the compression of the attractor’s middle section 
with the high volatility dispersion in the extremes, in the case of 
Figure 16(right), we get an estimated sample kurtosis of 37.032034, 
a Jarque-Bera test statistic of 40042650.407619 and a p-value of 0.0.

While the rise in the parameter 2v  also leads to a rise in kurtosis, 
its effect is a rescaling of the attractor with a smaller impact in the 
volatility, not leading to the turbulence features in the returns, as 
shown in Figure 16, this is because the rise in the parameter 3v  
leads to a sharp compression of the middle section, and expands 
the extremes leading to the jumps, the compression reinforces 
laminar phases while the expansion reinforces the large jumps. 

Now, the effect of the noise coupling on the leptokurtic turbulent 
regime is also the reduction of the middle section with the expansion 
of the extremes, which explains the volatility amplification shown 

Figure 13: Logarithmic returns obtained from a 100,000 iterations 
simulation of the single asset model after 10,000 iterations removed 
for transients, uniformly randomly chosen initial conditions, 

0 0 1 0 1 2 30.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01, 1.1651 0c r b v v v v l= = = = = = = = = .

Figure 14: Attractor for the speculation versus volatility variable 
obtained from a 200,000 iterations simulation with the same 
parameters and initial conditions as Figure 13’s simulation.

Figure 15: Attractor for the speculation versus volatility variable 
obtained from a 200,000 iterations simulation, after 10,000 iterations 
removed for transients, uniformly randomly chosen initial conditions, 

0 0 1 0 1 2 30.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01, 1.31 0c r b v v v v l= = = = = = = = = .

Figure 16: Attractors for the speculation versus volatility variable 
obtained from 200,000 iterations simulations of the single asset model, 
after 10,000 iterations removed for transients, with the same initial 
conditions as in Figure 14, with  3 2v = (left) and  3 2.2v =  (right), 

0 0 1 0 1 20.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01, 0c r b v v v l= = = = = = = =  .
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in Figure 10. This effect is illustrated in Figure 17. In this sense, of 
the two parameters associated with the dependence of the volatility 
variable ( ) . ( )i it c u t=σ  on the speculation impact variable (t)x , 

3v is a key parameter in setting the scale for excess kurtosis and 
turbulence, another relevant parameter is 1v . 

Table 1 illustrates the impact of rising 1v  for two values of  0b   
showing the rise in average kurtosis from rising values of 1v .

Table 1: Average kurtosis obtained for rising values of 1v ,   0 2.9b =
and 0 3b = , and 100 simulations each with random uniformly chosen 
initial conditions, 100,000 iterations, after 10,000 iterations dropped for 
transients, 0 1 0 2 30.1, 0.01, 0.1, 0.01, 0.01, 1.9 0c r b v v v l= = = = = = = .

1v 0 2.9b = 0 3b =

0 0.77413 0.607

0.05 1.04309 0.86239

0.1 1.45656 1.28795

0.15 2.16738 1.9362

0.2 3.56075 3.25828

The 1v  parameter is related to an autoregressive volatility 
component, in this case, the autoregressive component leads to a 
rise in the Fisher’s kurtosis. In the next section, we will also see 
the relevance of the parameter 1v in setting the impact of the 
autoregressive component in ( )u t ’s dynamics and influencing the 
kurtosis with impact on the financial returns’ mean field. Having 
addressed the single asset’s main features, we now introduce the 
multi-asset market and study the effects of global coupling.

MULTIPLE ASSET MODEL

Considering a market comprised of N companies operating in the 
same industry with traded common stocks, we transition to a multi-
asset artificial financial market, in this case, we need to include 
a global coupling in the speculative dynamics. Globally coupled 
maps constitute the simplest example of a network of chaotic 
elements exhibiting a dynamic many-to-many relation; it is also 
a useful model in social, economic and financial applications of 
chaos theory.

In the present case, since we are dealing with a market of N competing 
companies, the global coupling is sound and, in our model, it is 
associated with common industry-wide speculative dynamics, 
implying multi-asset positions and portfolio reconfigurations as 
well as expressing common collective factors affecting an industry’s 
shares’ values, reflected in collective speculative motions. In the 

chaotic regime, the global coupling of chaotic oscillators introduces 
a tension between microscopic chaotic divergence and macroscopic 
mean field driven synchronization.

Extending from the single asset model, each company’s logarithmic 
returns are characterized by the dynamical equation:

   0( ) ( ) (t) (19)i i ir t r t x= +σ

for , with the speculation impact variable now characterized by the 
globally coupled nonlinear map:

    
( ) ( )

1
(t) (1 ) ( 1) ( 1) (20)

N

i i j
j

x g x t g x t
N =

= − − + −∑εε

( ) ( )
0 1,b( 1) ( ( 1), ( 1)) . ( ) (21)i b i i ig x t f x t u t l w t− = − − +

   ( ) ( ) ( )( )
0 1

3 3
,b 1 0 0 1( 1), ( 1) 1 ( 1) 1 ( 1) ( 1) ( 1) (22)b i i i i i if x t u t b b x t b x t b t x t− − = − − − + − + − −σ

With ( ) ~ U( 1,1)iw t −  and,  ( ) [ 1,1]ix t ∈ −  the volatility dynamics is in 
turn, given by:

  ( ) . ( ) (23)i it c u t=σ    
2 2

0 1 2 3( ) ( 1) ( ) ( 1) ( ) (24)i i i i iu t v v u t v x t v u t x t= + − + + −

Due to the dependence of the time varying volatility component    
x ( )i t  upon  ( )iu t  which follows a globally coupled nonlinear 
map with mean field coupling, the volatility dynamics will be 
nonlinearly affected by the mean field, by way of the squared value 
of x ( )i t . The map g(x ( 1))i t −  is the single asset map studied in the 
previous section, which incorporates an asset specific stochastic 
chaos dynamics, the mean field coupling, in turn, decomposes as 
follows:

  
0, 1

1 1 1

.( ( 1)) (x ( 1), u ( 1)) ( ) (25)
N N N

j b b j j j
j j j

lg x t f t t w t
N N N= = =

− = − − +∑ ∑ ∑ε ε ε
 

Therefore, we have a deterministic component for a globally coupled 
map of N chaotic oscillators plus a factor that depends upon the 
sum of N independent and identically distributed uniform noise 
terms, this means that, at the “microscopic” level (the market for 
the company’s shares), there is the local stochastic chaos driver 
given by the noisy nonlinear map g which has a weight of  1−ε  
but the speculative dynamics also depends upon a collective 
dynamics associated with the market for the N companies’ shares, 
this coupling also includes a deterministic and noisy component 
and incorporates industry-wide common speculative trading 
actions, which also affect volatility through 2x ( )i t , leading to a 
complex feedback network between local speculative dynamics, 
volatility dynamics and the industry-wide speculative motions, with 
both local speculation impact variables and volatility affecting the 
speculation impact variable mean field and the speculation impact 
variable mean field, in turn, affecting each local speculation impact 
variable and volatility.

To characterize the global financial dynamics we will analyze 
another mean field, which is the logarithmic returns’ mean 
field, corresponding to the average of the logarithmic returns at 
each trading round, allowing us to characterize the mean returns 
dynamics:

  
1

1( ) ( ) (26)
N

i
i

r t r t
N =

= ∑
Considering first a noise free market, with l=0, which leads to 
a standard deterministic globally coupled network of chaotic 
oscillators, in Figure 18, we show a simulation of the mean field for 
the logarithmic returns with no global coupling and small global 
coupling. 

Figure 17: Attractors for the speculation versus volatility variable 
without noise and with 0.1 noise coupling, from a 200,000 
iterations simulation, after 10,000 iterations removed for 
transients and random uniformly chosen initial conditions, 

0 0 1 0 1 2 30.1, 0.01, b 2.9 0.1 0.01, 0.2, 0.01, 1.9c r b v v v v= = = = = = = =  .
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With no global coupling the market exhibits large swings in prices 
but no turbulence markers (Figure 18 (left)), with a small coupling 
of just 0.01, the mean field dynamics changes to the usual turbulent 
market dynamics, with jumps at multiple scales (Figure 18 (right)), 
the kurtosis in this case goes from 0.409493 (Figure 18 (left)) to 
70.084854 (Figure 18 (right)).

In the first case, the squared value of the logarithmic returns mean 
field’s distribution does not exhibit a power law decay, decaying 
faster than the power law Figure 19, in the second case we find 
the presence of the usual power law decay (Figure 19 (right)) with 
the fitted slope of -2.988916 and an 2 0.979940R = , also exhibiting 
multifractal signatures (Figure 20). The transition to turbulence 
can be explained at the single asset level, indeed, at the company 
level, for a randomly chosen company, when 0=ε , the simulation 
parameters lead to the attractor for the local speculation and 
volatility variables shown in Figure 21 left, however, when  the 
attractor is changed to the one shown in Figure 21 right, which 
shows a number of features that explain the turbulence.

First, there is, at the company level, the compression of the 
fluctuation region with a concentration of volatility fluctuations, 
which account for laminar periods, then, there are two divergence 
bands, one near  | x ( ) | 0.49i t ≈   and another one at the extremes of 
x ( )i t , these two regions show that the market can jump in volatility 
for intermediate values of the speculation impact variable and for 
extreme values of the speculation impact variable. Once more, 
a compression of the chaotic attractor with divergence bands is 
shown to be the source of the turbulent dynamics.

While low coupling can lead to turbulence, high coupling can 
recover the initial attractor, for instance, a 0.55 coupling is enough 
to recover the uncoupled attractor shown in Figure 21, leading 
locally to the same attractor shape as in Figure 21(left), this is the 
case for higher global coupling values with no noise. With noise 
coupling, however, turbulence resurfaces as shown in Figure 22, 
for a noise coupling of 0.025 and a global coupling of 0.55, the 
estimated sample kurtosis for the mean field of the logarithmic 
returns is of 375.406009, showing an excess kurtosis.

While, in the above case, the increase in global coupling between 
companies’ trading recovers and reinforces the initial attractor, with 
noise coupling being the source of turbulence, this is not always 
the case, namely, for other parameters, higher global coupling 
does not recover the initial dynamics and can lead to turbulence, 
this occurs in Figure 23, where we simulate the external noise free 
market with  1 0.1b = , 3 2.1v = , no noise coupling and the remaining 
parameters as those of Figure 18, we find, in this case, a clear 
difference as a consequence of high coupling, where high coupling, 
instead of recovering the non-turbulent attractor, leads to global 
financial returns turbulence and changes the squared value of 
the logarithmic returns’ mean field’s distribution to a power law 
scaling distribution, with an estimated slope of -3.537517 and an  

2R  of 0.990442, without any noise coupling involved.

Figure 18: Simulated returns mean field for N = 10 companies, 
no global coupling (left) and global coupling of 0.01 (right), 
100,000 iterations shown, after 10,000 initial iterations removed 
for transients, the same randomly chosen initial conditions 
on the left were used on the right for comparison purposes, 

0 0 1 0 1 2 30.1, 0.01, b 3, 0.05, 0.01, 0.2, 0.01, 1.9, 0c r b v v v v l= = = = = = = = =  .

Figure 19: Histograms calculated for the squared value of the 
logarithmic returns’ mean field of Figure 18 with no global coupling 
(left) and 0.01 global coupling (right), plotted on a doubly logarithmic 
scale for the class centers versus frequencies, calculated on Figure 18’s 
simulations.

Figure 20: Fluctuation function (left), generalized Hurst exponents 
(right) estimated on Figure 18 (right)’s simulation data for the squared 
value of the logarithmic returns’ mean field.

Figure 21: Attractors for the speculation versus volatility variable of 
a local randomly chosen company, in Figure 18’s simulation, the left 
figure shows the dynamics without global coupling and the figure on 
the right shows the dynamics with 0.01 coupling.

Figure  22: Simulated returns mean field for N = 10 companies, with 100,000 
iterations shown, after 10,000 initial iterations removed for transients,

0 0 1 0 1 2 30.1, 0.01, b 3, 0.05 0.01, 0.2, 0.01, 1.9, 0.025, 0.55c r b v v v v l= = = = = = = = = =ε .     
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We also find a difference in the multifractal spectra associated with 
Figure 23’s simulations, while, in both cases, there is evidence of 
multifractal scaling for the squared value of the logarithmic returns’ 
mean field, for the 0.7 coupling we get a wider range of slopes in 
the fluctuation function, while the zero coupling exhibits more 
parallel lines, as shown in Figure 24. With the zero coupling there 
is an increasing sigmoid curve in the generalized Hölder exponents, 
while the 0.7 coupling leads to a decrease for higher lags (Figure 24 
in the right).

Low versus high global coupling, in this last case, also affects the 
dynamics with respect to the parameter   2v , with low coupling 
leading to a fluctuation of the kurtosis around 3 with increasing 
values of  2v  , while for high coupling we get higher kurtosis values 
and an exponential increase in this kurtosis with increasing values 
of 2v , as illustrated in Table 2, therefore, the sensitivity profile 
to the parameter 2v  can change for different combinations of 
parameters.

Table 2: Sample kurtosis for different values of 2v , 0.01=ε   and 0.7=ε
, with the remaining parameters and initial conditions equal to Figure 23.

2v 0.01=ε 0.7=ε

0.01 6.04217 17.3715

0.02 2.31133 18.0164

0.03 2.99802 22.9131

0.04 3.74571 45.201

0.05 3.64901 58.8756

The autoregressive parameter also plays a key role in setting the 
scale for turbulence, similarly to 3v , indeed, increasing values of 
the parameter leads to an exponential rise in kurtosis, especially 
as the parameter approaches the value 0.2, as illustrated in Table 
3, for N=10 companies and N=1000 companies. Of notice, for 
a high coupling, which is characteristic of markets for shares in 
companies in the same industry, more companies does reduce the 
kurtosis with respect to less companies the profile is similar with 
the estimated kurtosis value when N=1000 surpassing by far that of 
N=10, when 1 0.2v = , this means that turbulence, in this case, is not 
necessarily reduced by increase in market size in terms of number 
of companies. The number of companies does, however, affect the 
synchronization dynamics as we will now show.

Table 3: Sample kurtosis for different values of 1v ,  2 0.04v = ,  0.7=ε , 
with the remaining parameters equal to Figure 23.

1v N =10 N =1000

0 2.1811 2.13888

0.05 3.80407 2.92959

0.1 4.65971 4.67501

0.15 10.628 7.36895

0.2 45.201 137.744

When dealing with a multi-asset market, the issue of dynamical 
synchronization is a key problem, in this case, we find a relation 
between synchronization in assets’ returns, the financial turbulence 
and the number of companies, with implications for financial 
diversification. If we calculate the market standard deviation of the 
financial returns for the N companies at each interaction, we get 
the series of standard deviations that measure the dispersion of the 
N companies’ returns at each trading round, the lower the value 
of this indicator is, the higher is the synchronization in financial 
fluctuations:

  
1

2 2

1 1

1 1(t) ( ) ( ) (27)
N N

i j
i j

sd r t r t
N N= =

  
 = − 
   
∑ ∑

For high coupling, we find that this standard deviation is not only 
low, which means that we have a high synchronization, it fluctuates 
in dispersion bands, as exemplified in Figure 25 where the market 
standard deviation around the mean returns is plotted, for a high 
coupling zero noise case with 10 companies, to plot this series 
we used a scatterplot, which makes the fluctuation bands visible, 
these fluctuation bands increase with the number of companies, 
as shown in Figure 25 (right), where the number of companies is 
increased to 100, therefore the market size, in this case, matters 
since it increases the number of fluctuation bands for the standard 
deviation of the financial returns around the mean field.

Figure 23: Simulated returns mean field for N=10 and respective 
histograms for its squared value with class centers plotted versus 
the relative frequencies plotted in log-log scale, 0=ε  (left), 

0.7=ε  (right), 100,000 iterations shown, after 10,000 initial 
iterations removed for transients, the same randomly chosen initial 
conditions on the left were used on the right for comparison, 

0 0 1 0 1 2 30.1, 0.01, b 3, 0.1 0.01, 0.2, 0.01, 2.1, 0c r b v v v v l= = = = = = = = =  .

Figure 24: Fluctuation functions and generalized Hurst exponents 
estimated on Figure 23’s simulation data for the squared value of the 
logarithmic returns’ mean field.

Figure 25: Time series scatterplots of the dynamics of ( )sd t  , for 10N =   (left) 
and  100N =    (right), 100,000 iterations in each case after 10,000 initial iterations 
removed for transients, uniformly randomly chosen initial conditions,  

0 0 1 0 1 2 30.1, 0.01, b 3, 0.1, 0.01, 0.2, 0.05, 2, 0.55, 0c r b v v v v l= = = = = = = = = =ε .
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The presence of noise breaks down the bands and increases the 
standard deviation interval, the resulting dynamics leads to a 
tension between the global coupling, the underlying chaotic 
dynamics and the stochastic component, in this way, while the 
chaotic dynamics with the spatial coupling produces a band 
structure, with high synchronization, the activation of the stochastic 
component is incorporated in the market dynamics in a way that 
produces greater deviations from synchronization, feeding into the 
chaotic component, in this way, without noise, the high coupling 
may reduce the effect of diversification on portfolio risk due to the 
high market synchronization.

While noise might seem to benefit to some degree diversification 
leading to divergence between the different assets, the nonlinear 
coupling extends to the noise itself which is also incorporated 
in the local chaotic dynamics through the speculation impact 
variable’s mean field coupling and fed back into that mean field’s 
dynamics, in the case of low noise this leads to a positive relation 
between synchronization and periods of high volatility risk, indeed, 
for low values of l, while the stochastic component leads to higher 
deviations in each trading round between the market dynamics for 
the different companies, the diversification effect is lost in high 
volatility periods, as illustrated in Figure 26.

When l is small there is a skew occurring in trading rounds with 
high mean field volatility measured by the squared value of the 
returns mean field, in this way, high volatility and large price 
jumps tend to occur with low inter-asset dispersion (high inter-
asset synchronization), that is, the market tends become collectively 
volatile in the high volatility events, reducing the portfolio 
diversification effect (Figure 26 in the left), on the other hand, 
as shown in Figure 26 (right), for a high enough value of l, the 
dynamics is reversed, the higher jumps occur for the cases where 
there is more inter-asset dispersion, despite the fact that the asset 
dispersion is low, which means that these jumps occur for higher 
inter-asset dispersion moments, this is the scenario where some 
large jumps move the market upwards or downwards with a few 
stocks as market movers for which the size of the speculation impact 
on the market is higher, a similar profile is shown in Figure 27, for 
another parameter setting.

Considering the above results, the stochastic chaos model shows 
how collective speculative dynamics can lead to macroscopic 
turbulence, including a time varying synchronization between 
different company’s stock market returns so that the effects of 
diversification can be lost in the periods of higher price jumps 
where the mean value of the logarithmic returns shows the highest 
jumps, as well as another profile where the noise impact level 

leads to a few stock movers driving the market’s mean returns, a 
phenomenon that is linked with differing transaction volumes and 
thus differentiated size of speculator impact on different company’s 
shares. The profile depends upon the noise level. However, as is 
illustrated in Figure 27, while generally characterized by the second 
profile, the largest jump, which in this case was a market loss of 
around 0.33 in the logarithmic returns mean field, occurred due 
to synchronization with a lower dispersion value, which means that 
the two profiles may coexist and are not mutually exclusive. In both 
profiles macroscopic losses can occur and lead to high portfolio 
level losses.

DISCUSSION AND CONCLUSION

Bachelier’s theory of speculation assumed that speculators trade 
randomly and independently from each other, averaging out. In the 
GRW model this assumption and general theory still holds but for 
a Gaussian distribution associated with the speculation impact on 
logarithmic returns, leading to a lognormal distribution of prices. 
In the GRW model, Bachelier’s theory supports a fixed volatility, 
with the volatility parameter setting the scale for a speculation 
impact variable as an IID Gaussian noise term affecting logarithmic 
returns. Instead, financial markets show evidence of power law 
signatures, nonlinear dependences and even chaos signatures, as 
well as multifractal scaling, characteristic of some form of chaos 
induced SOC. 

In this work, following Lo’s AMH, we departed from Bachelier’s 
main assumption that speculators operate independently from 
each other, addressing speculators as having an adaptive behavior 
with collective self-correcting dynamics, in this case, we showed 
that a basic feedback dynamics of speculative trends and market 
corrective motions incorporated in a cubic map model coupled 
with a changing volatility variable is enough to lead to the main 
financial turbulence features, in a single and multiple asset setting.

We showed that, for this adaptive speculative dynamics, the 
market exhibits different dynamical behaviors, including non-
turbulent platykurtic regime and a turbulent leptokurtic regime 
for a wide parameter range with features of chaos induced SOC 
with multifractal scaling for the logarithmic returns, the lognormal 
regime showing up as a transitional regime in the simulated market 
dynamics for specific parameters.

The turbulence is explained in the model by a distortion of 
the financial returns versus volatility attractor, which shows a 
volatility compression for the middle values of the speculation 
impact variable and a divergence in volatility at the extremes, 

Figure 26: Scatterplots for ( )sv t versus the squared value of 
the returns mean field, N=100, 100,000 iterations, after 10,000 
initial iterations removed for transients, 0.001l =  (left) and  

0.05l =  (right), the randomly chosen initial conditions used 
in the left simulation were the same as those used in the right,  

0 0 1 0 1 2 30.1, 0.01, b 3, 0.1 0.01, 0.2, 0.05, 2, 0.55c r b v v v v= = = = = = = = =ε  .

Figure 27: Scatterplots for ( )sv t   versus the squared value of the returns 
mean field, N=100, 100,000 iterations, after 10,000 initial iterations 
removed for transients, uniformly randomly chosen initial conditions, 

0 0 1 0 1 2 30.1, 0.01, b 3, 0.1 0.01, 0.2, 0.05, 2.1, 0.55, 0.05c r b v v v v l= = = = = = = = = =ε .
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this distortion coupled with the speculative trend formation and 
subsequent market corrective dynamics explain the alternation 
between laminar periods and turbulent periods characterized by 
high clustering volatility and price jumps.

In the artificial financial market with multiple assets and globally 
coupled stochastic chaos, we also found that global speculative 
dynamics are capable of producing macroscopic turbulence with 
SOC signatures and nontrivial dynamical synchronization patterns 
with higher volatility periods and price jumps occurring in high 
synchronization periods as well as possible stock movers driving the 
market upwards or downwards possibly leading to large portfolio 
gains or even losses with volatility rising for greater inter-asset 
dispersion, both these dynamical profiles can occur in a same 
simulation and both these dynamics will feedback into the local 
speculative dynamics through the mean field.

More research into artificial financial markets taking advantage of 
coupled nonlinear maps, connecting complex adaptive financial 
speculation dynamics with multiple asset types, as well as investor 
types, is relevant in order to produce possible explanatory 
frameworks to understand financial risk dynamics and sufficient 
conditions with which complex turbulent patterns can arise, as well 
as providing new tools and insights into portfolio management and 
financial risk management.
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