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Abstract

Regeneration of the ocular tissues to the healing of the wounds required many complex processes as migration,
mitosis, and differentiation of epithelial cells and stromal fibroblast. Currently, corneal transplantation is the most
common treatment for any damage to these layers; however, that procedure is associated with a higher risk of
transplant rejection and limited by the availability of donor tissue. In order to develop more robust treatments for
corneal damage, growing research has been focusing on corneal stem cell. Over the last few years, stem cells have
constituted a therapeutic revolution in the regeneration of damaged organs and tissues and restoring both integrity
and function. Several types of stem cells have been investigated and applied in experimental models and clinical
trials, including bone marrow stem cells, adipose‐derived stem cells, endothelial progenitor cells, human dermal
fibroblasts, and keratinocytes for wound healing. Corneal stromal stem cells maintain a corneal phenotype through
many population doublings, and modulate the host immune response; thus, generating bioengineered stromal
constructs in the cornea. Previous research addressed the positive impacts of corneal stromal stem cells on
repairing corneal damage, corneal scarring, and blindness, in addition to the utility in bioengineering stromal tissue.
In this review, we aimed to address the current progress and clinical applications of corneal stromal stem cells in
stromal wound healing.

Keywords: Stem cells; Wound healing; Bioengineering; Corneal
stromal remodeling

Introduction

Cornea stromal anatomy
The human corneal layers can be classified into five layers; three

cellular layers (epithelium, stroma, and endothelium) and two
interface membranes (Descemet membrane and Bowman membrane)
(Figure 1) [1,2]. The main bulk of the structural framework of the
cornea is provided by corneal stroma that constitutes up to 85% of the
thickness of the cornea. In the seventh week of gestation, and due to
the neural crest migration, the stroma is formed after the
establishment of the primitive endothelium [2-5]. Histologically, it's
considered as a cellular collagenous structure; however, it differs from
other collagenous structures in many aspects as transparency, the
organization of collagen fibrils, and extracellular matrix (ECM) [5].

The corneal stroma is formed of three parts; collagens,
proteoglycans, and cells. Moreover, it has specialized glycoproteins and
ions that responsible for organizing the collagen fibrils to maintain
transparency [2,6]. The collagen fibrils of the stroma are arranged in
parallel bundles called fibrils, which are laid down within layers or
lamellae, which have a variable thickness (300-500 lamellae); increases
peripherally at the limbus and decreases centrally, with higher packing
density in the anterior lamella than in the posterior ones [7,8]. These

organized fibrils work on reducing forward light scatter and have a
significant role in the transparency of the stroma [9].

Figure 1: Structure of cornea showing corneal epithelium, stroma,
and Descemet's membrane.

It was found that the stromal collagen fibrils are composed of type I
and a large amount of type V collagens. Type I collagen is found in a
heterodimeric complex with variable diameters, while type V provides
a unique and small diameter [10]. These structures are surrounded by
a kind of matrix gel contains mucopolysaccharides, keratan sulphate,
chondroitin sulphate, and dermatan sulphate. This gel is defined as
glycosaminoglycans (GAGs) which are attached to a core protein, they
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called the whole molecule a proteoglycan [5,11]. These sulfate groups
are very important for the function of proteoglycans; dermatan sulfate
binds water at the hydration level, while the keratan sulfate are not and
this suggests that the keratan sulfate acts as a reserve for hydration
[12,13]. Furthermore, the whole size of the proteoglycans is small
enough to fit the spaces between the collagen fibrils [12,14]. The
proteoglycan has an important role in the regulation of stromal
hydration and corneal transparency. There are four types of core
proteins of major proteoglycans in the adult corneal stromal ECM:
mimecan, decorin, keratocan and lumican [5]. The core proteins have
a similar size ranged between 35-40 kD. In terms of stromal cells, the
major cell type is keratocytes that have a significant contribution in
maintaining the ECM environment and synthesizing the collagen
molecules and GAGs [2]. The corneal stroma performs numerous
critical roles within the eye. Optically, it is the main refracting lens and
thus has to combine almost perfect transmission of visible light with
precise shape, to focus incoming light. Besides, mechanically it has to
be very firm to preserve the inner contents of the eye. Its structure at
all hierarchical levels governs these functions.

Wound Healing Events and The Role of Growth Factors
Regeneration of the ocular tissues in order to the healing of the

wounds required many complex processes as migration, mitosis, and
differentiation of epithelial cells and stromal fibroblast. After a few
hours of injury, the epithelial cells begin to interact with the ECM and
migrate from the edge of a wound [15]. A new layer of stratified
squamous epithelial cells is formed from repeated mitosis of the
surrounding cells to replace the migrating cells and resurface the
defect. These processes are regulated by many peptide growth factors
as a Keratinocyte Growth Factor (KGF), Epidermal Growth Factor
(EGF), Platelet-Derived Growth Factor (PDGF), Hepatocyte Growth
Factor (HGF), and Transforming Growth Factor (TGF)-b [16]. It was
observed that the tear film contains some molecules of EGF that can
penetrate the injured epithelial layer to stimulate the epithelial cells.
This mechanism can occur through an autocrine pathway; the
epithelial cells contain EGF mRNA that can be synthesized into EGF to
stimulate the healing processes [17,18]. The central corneal cells have
very sensitive HGF receptors that rapidly expressed to the released
HGF from the fibroblast after the epithelial injury to re-epithelialize
the wound. Moreover, HGF works on inducing the motility of the cells
through transactivation of the EGF receptor [19]. In human corneal
epithelial cells, the binding of HGF to c-Met activates mitogen-
activated protein kinase (MAPK) pathways through the receptor-
Grb2/Sos complex to the Ras pathway or through protein kinase C
(PKC) [20]. Many biological factors are required for the epithelial cell
survival as a phosphatidylinositol-3 kinase (PI3K) and p70 S6 kinase
(S6K) that are regulated by PKC and protein kinase B [21].

In case of a corneal stromal wound, an increased expression of actin
was observed, which lead to differentiate the keratocytes into spindle-
shaped fibroblasts (a migratory phenotype) to proliferate and migrate
towards the injured area. During this differentiation, some keratocyte
proteins such as keratan sulfate proteoglycans and corneal crystallins
are down-regulated to remodel the wounded ECM [22,23]. The corneal
wound bed is formed as a product of these processes. Furthermore, the
fibroblasts differentiate into myofibroblasts, which are characterized by
the expression of α-smooth muscle actin (α-SMA) that has a
significant role in corneal wound contraction [24]. All of these
differentiation, proliferation, and transformation processes of

Keratocyte-Fibroblast-Myofibroblast (KFM) are regulated by TGF-β1
and PDGF [25].

Carrington and his colleague investigated the effects of HGF and
KGF on early corneal epithelium and stromal wound healing. They
reported that the KGF accelerated the epithelial coverage of the wound,
while the HGF did the opposite. However, the presence of HGF
enhanced the keratocyte repopulation of the denuded area under the
wound, while it decreased in response to KGF. Therefore, they
recommended inhibiting HGF in case of persistent epithelial defects
[26]. Pastor and Calonge conducted an RCT multicenter study to
investigate the effect of EGF on corneal wound healing. They randomly
assigned 47 patients to topical EGF and 57 patients to placebo [27]. At
the end of the trial, they found that the EGF significantly (p<0.01)
decreased the time of healing in the group of EGF (44.17 h) compared
with the placebo group (61.05 h). In contrast, Dellaert et al. showed
that there is no significant acceleration of corneal re-epithelialization
in the topical EGF group when compared with the placebo group [28].
They explained this by the possible down-regulation of the receptor
sites after the keratoplasty. However, this finding was confirmed by
Cohen et al. who reported that the topical application of
epidermal growth factor onto partial-thickness wounds in human
volunteers does not enhance re-epithelialization [29]. Regarding the
fibroblast growth factor, Meduri et al. showed that the combination of
basic fibroblast growth factor and cysteine was significantly accelerated
the corneal re-epithelialization after keratectomy in patients with
myopia [30].

General Overview on Stem Cells and Characteristics of
Corneal Stromal Stem Cell

Over the last few years, stem cells have constituted a therapeutic
revolution in the regeneration of damaged organs and tissues and
restoring both integrity and function [31]. Several types of stem cells
have been investigated and applied in experimental models and
clinical trials, including bone marrow stem cells, adipose-derived stem
cells, endothelial progenitor cells, human dermal fibroblasts, and
keratinocytes for wound healing [32-34]. Stem cell
immunomodulation has been extensively researched for their anti-
fibrotic/pro-regenerative effects in wound healing in various organs
[35,36]. The cornea is one of these organs. The cornea contains three
cell types, the stratified surface epithelium, the stromal keratocytes,
and the innermost endothelial cells. Trauma or infecting to these layers
may lead to corneal scarring, visual impairments, and blindness.
Currently, corneal transplantation is the most common treatment for
any damage to these layers; however, that procedure is associated with
a higher risk of transplant rejection and limited by the availability of
donor tissue. In order to develop more robust treatments for corneal
damage, growing research has been focusing on corneal stem cells.

The corneal stem cells reside at the limbus, the border of the cornea
and sclera, and involve two cell types; the epithelial and stromal stem
cells [37-40]. The epithelial stem cells in the cornea are generally
known as the limbal stem cells. Transplantation of limbal cells are
commonly used for treating patients with corneal epithelial damage
such as for in situ epithelial regeneration, or ex vivo expanded sheets of
replacement cells [41,42]. The corneal stromal cells contain a highly
organized extracellular matrix interspersed with keratocytes. The roles
of keratocytes involve supporting the corneal epithelium, maintaining
the extracellular matrix, and producing collagen lamellae and
proteoglycans which in turn keep the transparency of the corneal
stroma [8,12,43]. A highly organized corneal extracellular matrix is
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essential for light transmission, but this structure may be interrupted
during injury or disease, resulting in vision impairment.

The limbal stem cells are commonly used in corneal repair more
than corneal stromal stem cells; however, recent evidence has shown
that the corneal stromal cells have great therapeutic potential in this
area, especially in tissue-engineering approaches [44,45]. Thus, corneal
stromal cells are essential in the provision of cells for corneal
maintenance and regeneration. Also, corneal stromal cells are able to
reorganize a disrupted matrix and restore transparency in scarred
corneas [17,46].

In addition to characteristics of adult stem cells, the corneal stromal
stem cells have shown another interesting effect when injected into
mouse corneal stroma, which did not cause immune-mediated
rejection of these cells. A transient inflammatory response, mostly
neutrophils, occurred but diminished within a week. A similar
transient response with significantly higher CD45+ cells occurred after
injection of human corneal fibroblasts within one week. After two
weeks, the injection of corneal fibroblasts displayed CD3 T cells;
however, there were no T cells in tissue injected with corneal stromal
stem cells. Further, the eyes injected with stromal stem cell were clear,
while the eyes injected with fibroblast displayed visible haze within two
weeks. Finally, after corneal stromal stem cells injection in chimeric
mice rescued with green fluorescent protein-bone marrow cells, a
transient influx of green cells occurred. Contrary, injection with
corneal fibroblasts resulted in a robust influx of green cells into the
cornea within ten days. All the previous data prove the
immunomodulatory function for corneal stromal stem cells [44].

The Clinical Applications of Corneal Stromal Stem
Cells

Corneal stromal stem cells maintain a corneal phenotype through
many population doublings, and modulate the host immune response;
thus, generating bioengineered stromal constructs in the cornea. These
constructs could help in replacing the scarred stroma by partial
thickness transplantation. Also, such constructs could provide an
alternative substance without complications which decrease the use of
cadaveric donors. Evolving of stromal replacement constructs with
corneal stromal stem cells will consequently progress the therapeutic
applications of these stromal cells. Besides its use in bioengineering
stromal cells, corneal stromal stem cells may play a role in producing a
direct cell-based treatment for patients with corneal scars [47].

Du et al. reported such a model of cell-based treatment using
murine mice with corneal opacity similar to that of scar tissue as a
result of disruption of stromal collagen structure. After injection with
human stromal stem cells, stromal thickness, collagen fibril defects,
and corneal transparency were restored to normal. An interesting
finding was that corneal stromal stem cells did not elicit an immune T-
cell response [44]. The ability of stromal cells to suppress T-cell
rejection may help in avoiding immune rejection of most allogenic
tissue transplants. Such a feature of these cells, maintained in vitro,
could provide a therapeutic tool for mediating inflammatory response
and tissue rejection in transplants or other situations.

Previous research addressed the positive impacts of corneal stromal
stem cells on repairing corneal damage, corneal scarring, and
blindness, in addition to the utility in bioengineering stromal tissue
[48]. Basu et al. assessed the effectiveness of limbal biopsy-derived
corneal stromal stem cells on a mouse model with corneal scarring.
After engrafting into the corneal wound of the mouse, corneal stromal

stem cells prevented the fibrotic formation and induced regeneration
of transparent native corneal tissue [49]. In an experimental study by
Morgan et al. corneal stromal stem cells significantly increased wound
healing after laser in situ keratomileusis-like flap while maintaining
corneal transparency. This may be due to the deposition of
extracellular connective tissue similar to the normal tissue, and by the
reduction of activated keratocytes, which are recognized to scatter a
large amount of the incident light [50]. Hertsenberg et al. investigated
the mechanism by which corneal stromal stem cells prevent the
formation of fibrotic tissue. They found that a neutrophil infiltration
played a role in the fibrotic response to the damaged cornea and that
corneal stromal stem cells up-regulated the secretion of TSG-6, a
protein that regulates neutrophil migration, which prevented scarring
[51].

Another study by Mukhey et al. reported that human corneal stem
cells have the ability to generate cells and organize extracellular matrix
in Real Architecture For 3D Tissues equivalents for transplantation.
Thus, they may be a valuable bioengineering method to control cell
phenotype simultaneously [52]. A recent study showed that a mixture
of engineered silk films and corneal stromal stem cells produced an
optically and mechanically functional corneal stromal tissue equivalent
in a 3D multi-lamellar structure [53].

Furthermore, it was reported that corneal mesenchymal stromal
cells have favorable antiangiogenic effects. Eslani et al. found that
corneal mesenchymal stromal cells achieved high levels of
antiangiogenic factors and low levels of the angiogenic factor. In vivo,
application of corneal mesenchymal stromal cells to injured mouse
corneas inhibited the growth of corneal neovascularization. These data
point to the direct antiangiogenic roles of corneal mesenchymal
stromal cells and their promoting clinical application for preventing
pathologic corneal neovascularization [54].

Guo et al. induced corneal stromal cells to form an extracellular
matrix by adding a vitamin C derivative. Parallel arrays of fibrils with
alternating directions were constructed within the extracellular matrix,
and they were similar to the developing mammalian stroma. This
model may offer a scaffolding appropriate for tissue engineering a
biomimetic stroma [55]. Another study by Carrier et al. used both
dermal and corneal fibroblasts and reported that the natural stromal
cells could be imitated [56].

Recent Advances and Future Research
Progress in corneal stem cell research offers an optimistic

opportunity for their use in regenerative medicine and tissue
engineering. Corneal stroma engineering has been actively investigated
by developing functional corneal stroma substrates through chemical,
morphological, and mechanical cues [57]. There are other approaches
for the corneal stromal engineering such as animal sources as an
alternative to the native tissue. Given the high risk of immune-
mediated rejection, the fully acellular cornea has been recommended
to overcome this rejection.

A decellularized animal tissue provides a three-dimensional
extracellular matrix, advantageous biocompatibility, sufficient
biomechanical tension and high transparency that mimics the native
cornea and can be applied with or without the addition of a cellular
component [58]. Animal sources such as pigs, cats, and cows are used
for grafting [59-63]. Decellularized corneal stroma maintains basement
membrane structures; therefore, it was used as a carrier for epithelial
transplantation in experimental animals, and as a matrix scaffold for
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limbal stem cell expansion in vitro, with good outcomes [64,65].
Decellularization could be utilized not only in xenogeneic but also in
the allogeneic cornea for transplantation. Theoretically, this would
decrease the associated complications and improve clinical results of
allogeneic corneal transplants.

Future studies could assess the utility of pluripotent stem cells or
other adult stem cells to restore the corneal stroma, with guaranteeing
safety measures before transplantation. Cell treatments for each
corneal layer will focus on a specific disorder, instead of a full or partial
thickness corneal transplant, which is the present therapy. Moreover,
one donor cornea will potentially treat multiple patients if the cells are
successfully cultivated, and certainly, this would have an optimistic
effect on the shortage of donor corneas worldwide. Further studies
should be conducted and focused on exploring human stromal stem
cells, their immune privilege, and their potential in tissue engineering.

Conclusion
In conclusion, the currently published experimental studies support

the beneficial impact of corneal stromal stem cells on repairing corneal
damage, corneal scarring, and blindness, in addition to their utility in
bioengineering stromal tissue. Future studies could assess the utility of
pluripotent stem cells or other adult stem cells to restore the corneal
stroma, with guaranteeing safety measures before transplantation. Cell
treatments for each corneal layer will focus on a specific disorder,
instead of a full or partial thickness corneal transplant, which is the
present therapy.
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