

Contemporary Directions in Autoimmune Blood Disorder Care

Margarida Rivella*

Department of Hematology, University of Porto, Porto, Portugal

DESCRIPTION

Autoimmune Hemolytic Anemia (AIHA) is a disorder in which the immune system mistakenly targets and destroys red blood cells, leading to varying degrees of anemia, fatigue, jaundice and organ stress. The condition is generally classified into warm AIHA, cold agglutinin disease, mixed-type AIHA and drug induced forms. For decades, treatment centered on corticosteroids, immunosuppressive agents and transfusion support. Although these methods remain useful, they may not fully control the disease in every patient, and some individuals experience recurrent symptoms or medication-related complications. Recent scientific advances have broadened the therapeutic landscape, producing several new strategies that target specific components of the immune response. These developments aim to reduce red cell destruction, improve long-term stability and minimize toxicity. This article outlines emerging treatments and examines how they expand clinical possibilities for individuals with AIHA.

For many years, first-line management relied on corticosteroids because of their ability to reduce antibody formation and dampen immune activity. While effective for a portion of patients, long-term steroid exposure carries significant risks including weight gain, metabolic changes, bone loss and increased infection risk. The expanding understanding of AIHA's immune mechanisms has opened the door for targeted therapeutic agents. Instead of suppressing the immune system broadly, these agents focus on specific pathways involved in antibody production, complement activation and phagocytosis. Targeted immunotherapy has created opportunities for improved disease control with reduced toxicity.

One of the most active areas of investigation involves agents that interfere with B-cell survival and function. Since B cells play a central role in autoantibody formation, reducing their activity can limit red cell destruction. Several next-generation B-cell-directed therapies are under evaluation, offering alternatives to rituximab and helping patients who relapse after standard regimens. New drugs targeting B-cell pathways provide more nuanced methods of suppressing autoantibody formation.

Agents designed to inhibit B-cell Activating Factor (BAFF) or APRIL (a proliferation-inducing ligand) can reduce the survival signals that allow autoreactive B cells to persist. By interrupting these pathways, these drugs decrease the pool of cells capable of producing antibodies against red cells.

Another class of therapeutics focuses on plasma cells, which are responsible for sustained antibody production. Proteasome inhibitors, previously used in multiple myeloma, are being investigated for refractory AIHA. They interfere with plasma cell function and can reduce ongoing autoantibody generation. While early data appear encouraging, further study is needed to understand long-term benefits and risks. Warm AIHA often involves extravascular hemolysis, where antibody-coated red blood cells are cleared by macrophages in the spleen and liver. This process is mediated by Fc receptors on macrophages. Blocking or modulating these receptors can reduce red cell destruction and improve hemoglobin stability.

Several therapies aim to interrupt the interaction between antibody-coated red cells and macrophage receptors. Fc receptor inhibitors prevent macrophages from binding to red cells, thereby reducing clearance. Additional agents are being developed to modify downstream signaling in macrophages, dampening the phagocytic response. Patients with secondary AIHA associated with systemic lupus erythematosus, lymphoproliferative disorders, or infections often require individualized treatment strategies. Emerging therapies offer additional choices for these individuals, especially when traditional methods prove inadequate.

Pregnant patients represent another group requiring careful consideration. Some newer agents may be inappropriate during pregnancy due to limited safety data. Ongoing research will help clarify which therapies can be safely used to protect both mother and fetus. The therapeutic landscape of autoimmune hemolytic anemia is undergoing rapid expansion. While corticosteroids, rituximab and immunosuppressive agents remain important, newer therapies offer additional avenues for individuals who experience persistent or severe forms of the disease. Advances in B-cell targeting, complement inhibition, Fc receptor modulation and cellular therapy continue to broaden clinical options.

Correspondence to: Margarida Rivella, Department of Hematology, University of Porto, Porto, Portugal, E-mail: mrvella@up.pt

Received: 29-Aug-2025, Manuscript No. JBDT-25-30354; **Editor assigned:** 01-Sep-2025, PreQC No. JBDT-25-30354 (PQ); **Reviewed:** 15-Sep-2025, QC No. JBDT-25-30354; **Revised:** 22-Sep-2025, Manuscript No. JBDT-25-30354 (R); **Published:** 29-Sep-2025, DOI: 10.4172/2155-9864.25.S16.078

Citation: Rivella M (2025). Contemporary Directions in Autoimmune Blood Disorder Care. *J Blood Disord Transfus.* S16:078.

Copyright: © 2025 Rivella M. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.