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Introduction
Physical phenomena are often governed by partial differential 

equations, which need an essential set of data to solve them. In linear 
elasticity, these data are: the geometry of the solid, the mechanical 
properties of the materials and the boundary conditions. However, 
in many industrial applications, some of these data are unknown and 
have to be identified. This leads to an inverse problem whose resolution 
requires over-specified measured data. In this paper we focus on a 
problem of boundary condition identification in linear elasticity. In 
this case, data measured on part of the easily accessible border are 
often available. However, contrary to the direct problem, two kinds of 
boundary conditions (e.g. displacements and tractions) are imposed 
on the same part of the boundary while no information exists on the 
remaining part of it. Hence, data completion consists in reconstructing 
the boundary conditions for the whole boundary of a domain by using 
the partially overspecified measurements. This is the well-known 
Cauchy problem, which is ill-posed.

The ill-posedness of inverse problems may concern the existence 
and/or the uniqueness of the solution, but their most critical feature 
is their instability: the solution, whenever a problem has one, is not 
continuous with respect to the data, i. e. small measurement errors in 
the data may dramatically amplify the errors in the solution. This is ill-
posedness in the Hadamard sense [1]. The Cauchy problem pertains to 
this kind of inverse problem. Therefore suitable regularizing algorithms 
that are exempt from this ill-posedness phenomenon, are required in 
order to solve the inverse problem correctly.

The Cauchy problem in linear elasticity was first studied by Yeih 
et al. [2]. In this paper, the existence and uniqueness of the solution 
are analyzed as well as the continuity of the solution with respect to 
the data. Others authors have proposed an alternative regularization 
procedure, namely the indirect fictitious boundary method, which is 
based on the simple or the double layer potential theory. The numerical 
implementation of the aforementioned method has been carried out 
by Koya et al. [3] who used the BEM and the Nystrom method for 
discretizing the integrals involved. Marin et al. [4] have determined 
the approximate solutions of the Cauchy problem in linear elasticity 
using an alternating iterative BEM that reduces the problem to solving 
a sequence of well-posed boundary value problems [5]. In Marin and 
Lesnic have used singular value decomposition to solve the same 
problem numerically. A related inverse problem which allows for 
interior displacement measurements and inter-facial crack has been 
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Abstract
In this work we present a numerical data completion method based on the Dirichlet-to-Neumann algorithm, 

by working in a linear elasticity framework. We begin by recasting the problem in terms of the Steklov-Poincaré 
operator which is commonly used in domain decomposition. Then we present the Dirichlet-to-Neumann algorithm 
and state the equivalence between both formulations. The proposed method is applied to identify a contact pressures 
distribution and interfacial cracks.

investigated by Huang and Shih [6]. In Weikel et al. [7] have proposed 
an alternating iterative algorithm in order to reconstruct an internal 
planar crack laying on an a priori known internal surface inside a three-
dimensional elastic body from over determined elastostatic boundary 
data on the outer surface. Furthermore, Koslov and his co-authors 
adapted the iterative Dirichlet-to-Neumann method to approximate 
the solution of the Cauchy-Poisson problem, governed by the Laplace 
equation, and they provide proof of its convergence and its regularizing 
properties [8]. In [9] the iterative Dirichlet-to-Neumann method was 
applied to recover the missing boundary data for the Cauchy Helmholtz 
problem. More recently kadri et al. [10] have used the SteklovPoincaré 
approach relying on domain decomposition for the identification of 
internal planar cracks inside a three-dimensional using elastostatic 
measurements. 

In this work, the iterative Dirichlet-to-Neumann method is applied 
to the linear elastic data completion problem. In section 2, the Cauchy 
problem is presented in the context of linear elasticity. In section 3 
this problem is recast in condensed form that we will refer to as the 
Cauchy-Steklov-Poincaré problem, which leads to the Cauchy-Steklov-
Poincaré equation acting on the boundary of the unknowns. In section 
4 we present the Dirichlet-to-Neumann algorithm and we show that it 
can be interpreted as a preconditioned Richardson procedure for the 
Cauchy-Steklov-Poincaré equation. The numerical procedure and the 
results obtained by FEM discretization of the problem are presented 
in section 5. The method is used to solve two applications borrowed 
from engineering mechanics: the identification of contact pressures 
and coating defect in a double layered composite domain.

The Cauchy Problem in Linear Elasticity
Let  denote a bounded domain in  2 or 3 with regular boundary 

Γ=∂Ω. The whole domain is assumed to be filled with a homogeneous 
linear elastic isotropic medium. It is assumed th at Γ is splitted into two 
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open subsets Γc, and Γi, Γ = Γc U Γi, where Γc, Γi, Γi=ϕ and c iΓ Γ =∅∩ . 
In what follows, u(X) denotes the displacements field on Ω. 

The local equilibrium equation is given by

( )( )div x          xσ− = ∈Ωu f ,                   (1)

where σ is the stress tensor and f the volume forces. The strain 
tensor ε is given by

( )( ) ( ) ( )( )1x x x
2

ε = ∇ +∇u u u

These tensors are related by the Hooke’s constitutive law, which is

( )( ) ( )( ) ( )( ) ( ) ( )( )x 2 x tr x x x div (x)σ µε λ ε µ λ= + Ι = ∇ +∇ +u u u u u u

where λ and µ are the Lamé constants of the material and I is the 
identity tensor.

Let n(x) be the outward normal vector at Γ and t(x) be the traction 
vector at a point x ϵ Γ defined by

( ) ( )( ) ( )x x xσ σ=t u n x ϵ Γ

In the well-posed direct problem formulation, the knowledge of the 
displacement on a part of the boundary and traction vectors on another 
part of the boundary enables us to determine the displacement vector 
in domain Ω. Then, the strain tensor ε can be calculated from kinematic 
relation (2) and the stress tensor is determined by constitutive law (3).

If a part of the boundary Γi is inaccessible and if it is possible to 
measure both the displacement and traction vectors on the remaining 
part of boundary Γc, this leads to the mathematical formulation of a 

direct problem expressed as follows: 

( )( )
( ) ( )
( ) ( )

c

c

x     

x x           
x x               

σ

υ

 − =
 = Γ
 = Γ





div f in

u on
t on

u

t

Ω

Where 
u  and t  are prescribed vector valued functions. This 

problem is ill-posed because of the formulation of its boundary 
conditions (5). It can be seen that boundary Γc and the traction tis 
overs pecified by prescribing both the displacement 

c|υ υΓ =  and the 
tractions 

c|Γ = t t vectors, while boundary Γi underspecified since both 
the displacement 

i|Γ =u u  and the traction 
i|Γ =t t are unknown and 

have to be determined. Then, this problem can be stated as follows: find 
( ),u t that a displacement field u(x) exists that satisfies:

( )( )
( ) ( )

( )( ) ( )
( ) ( )

( )( ) ( )

c

c

i

i

div x      on 

x x                in 

 x n x        in 

x x                 in 

x x           in 

σ

σ

σ

− = Ω


= Γ


= Γ


= Γ
 = Γ

u f

u u

u t

u u

u n t





This problem, known as the Cauchy problem, is ill-posed in the 
sense that the dependence of u(x), and consequently of ( ),u t , on 
the data ( ),u t  is not continuous. Although the problem may have 
a unique solution, it is well-known that this solution is unstable 
with respect to small parturbation in the data on Γc. In this paper we 
propose to recover the lacking data by using the Dirichlet-to-Neumann 
algorithm introduced by Kozlov et al. in the steady state thermal case 
[8]. However, let us first introduce an operator acting on the boundary 
where data are unknown: the Steklov-Poincaré operator which is very 

familiar in domain decomposition and recently introduced for the 
Cauchy problem of the Laplace equation by Andrieux et al. in [11] and 
by Ben Belgacem et al. in [12,13]. 

The Cauchy-Steklov-Poincare Equation
To keep the notational complexity to a minimum let us remove 

x from the notations. Let λ denote the unknown displacement vector 
on Γi. We consider both Dirichlet and Neumann elliptic problems 
obtained by duplicating the solution u into a couple of vectors uN, uD. 
The Cauchy problem (6) is then split into:

( )( )
( )( ) ( )

( )( )
( )

N D

N c D c

D iN i

x       x       

x x    x      
      

σ σ

σ
λλ

 − = Ω − = Ω
  = = Γ = Γ 
  = Γ= Γ  





div f in div f in

t n in in
inin

u u

u t u u
uu

         

If the pair ( ),u t is compatible (i.e. a vectors field exists that verifies 
(1) for

Which ( ),u t are the Cauchy data on Γc, the solution of the 
Cauchy problem (1-5) is recovered, i.e. u=uD=uN in Ω,  if and only if  

( )( ) ( )( )D N i on σ λ σ λ= Γu n u n

Now for µ, a displacements vector defined on Γi , the linear parts 

of uN (µ) and uD (µ) are denoted ( )0
N µu and ( )0

D µu which solve 

respectively: 

( )( )
( )( )

( )

0
N

0

0

0      

0   

   
N c

N i

div in

t n in

in

σ µ

σ µ

µ µ

− = Ω
 = = Γ
 = Γ

u

u

u

( )( )
( )
( )

0

0

0

      

0      
   

D

D c

D i

div f in

n in
in

σ

µ
µ µ

− = Ω
 = Γ
 = Γ

uì

u
u

We consider also *  Nu and *
Du such that:

( )
( )

( )* *

* *

**

          

      0     
 0    0   

σ σ

σ

− = Ω − = Ω
  = = Γ = Γ 
  = Γ= Γ  



N D

N c D c

D iN i

div f in div f in

t n in f in
inin

u u

u t u
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And, by superposition, we obtain ( ) ( )0 *
N N Nµ µ= +u u u  and

( ) ( )0 *
D D Dµ µ= +u u u . With this partition, condition (8) is written as

( )( ) ( )( ) ( ) ( )0 0 * *
D N N Dσ λ σ λ σ σ− = −u n u n u n u n on Γi

Using the following notations: 

( ) ( )( ) ( ) ( )( )0 0 * *( ) ( ( )) , andλ λ λ λ λ σ λ χ σ σλ= = = −D D N D N DS u n S u n u u n  

Equation (11) becomes : S(λ)=SD(λ)-SN(λ)=χ  on   Γi

Equation (12) is called the Steklov-Poincar´e interface equation 
and S is the Steklov-Poincar´e operator. It is familiar in the domain 
decomposition framework [14] for the direct boundary value problem. 
More precisely, things happen as if vectors uD and uN were defined on 
two different domains with common boundary Γi. In this case, the 
equation (12) expresses the Neumann transmission condition, but the 
(-) sign in S would be (+) in the domain decomposition formulation 
[14]. The (-) sign which appears in S is at the origin of ill-posedness 
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of the Cauchy problem. From the discrete point of view, the finite 
element discretization of S leads to the Schur complement matrix 
[14]. It corresponds to having all interior nodes eliminated by static 
condensation [15]. In Ben Abdallah [16] a numerical study of the Shur 
complement matrix is performed for the Cauchy-Poisson problem. We 
will propose a study of the Cauchy problem in elasticity based on the 
Stecklov-Poincar´e equation in a forthcoming paper.

We now continue with the analogy with domain decomposition 
and show how the Cauchy-Steklov-Poincar´e equation can be 
expressed, as in domain decomposition, in terms of the Dirichlet-to-
Neumann problem.

The Dirichlet-to-Neumann Solver for the Cauchy 
Problem

When describing the Dirichlet-to-Neumann approach it should 
be noted that when the complete data are available on Γ, we have an 
overspecified boundary value problem ( )      div u f inσ− = Ω

( ) ( ) ,         ,        ;σ σ= = Γ = = Γ

 c iu n t u u on u n t u u on ;     

This problem can be split into two well-posed subproblems with 
different boundary conditions. For one of them (Neumann/Dirichlet) 
conditions are Imposed on (Γc/Γi)

( )ˆ      div u f inσ− = Ω

( )    ˆ   cu n t onσ = Γ

     ˆ  iu u on= Γ
¡

     div u f inσ  − = Ω 
 

¡
     cu u on= Γ

¡
      iu n t on cσ   = Γ 

 

Solving the Cauchy system (1)-(5) is achieved when extension

( ),t u makes û and 
¡
u coincide so the solution is then 

¡
ˆu u u= = .

Basically, the iterative method proposed for the Cauchy-Poisson 
problem and studied in Kozlov et al. [8], is derived from these 
observations: starting from an arbitrary prediction of the Dirichlet 
condition (here the displacement vector û ) on Γi, we add several 
corrections by solving alternately a Dirichlet on Γc/Neumann on 
Γi problem, where at each iteration the appropriate boundary data 
are inferred from the solution computed in the previous step. More 

specifically, we construct a sequence of a pair of vectors ( ) ( )( ),k k
N D k

u u

from the following recurrence: given ( )0
Du , the following systems are 

solved for each :k≥0

( )( )
( )( )

( ) ( )

( )( )
( )

( )( ) ( )( )

1 1

1 1

1 11

            

        

      

σ σ

σ

σ σ

+ +

+ +

+ ++

 − = Ω − = Ω
 
 = Γ = Γ 
 

= Γ= Γ 





k k
N D

k k
N c D c

k kk k
D N iN D i

div u f in div u f in

u n t on u u on

u n u n onu u on

The convergence of the alternating method toward the solution of 

the Cauchy problem and its stabilizing properties are established by 
Kozlov et al. [8] for the steady state thermal case. In the linear elastic 
framework, no convergence result has been proved till now but the 
result of convergence established by Koslov et al. may be applied for 
any elliptic operators. When convergence is achieved, we may obtain 
( ) ( )( ), ,t u u n uσ= on Γi. By using straightforward computations, 
it can be established that the Dirichlet-to-Neumann scheme can 
be interpreted as a preconditioned Richardson procedure for the 
CauchySteklov-Poincaré equation. For this purpose, the Dirichlet-
to-Neumann algorithm is rewritten, using the previous notations, as 
follows: Given λ0, 

( )( )
( )

( ) ( )

( )( )
( )

( )( ) ( )( )

1 1

1 k 1
D c

1 k 1 k 1
D N i

            

   (u ) t      

   u u    

σ σ

σ

λ σ σ

+ +

+ +

+ + +

 − = Ω − = Ω
 
 = Γ = Γ 
 = Γ = Γ  





k k
N D

k
N c

k k
N i

div u f in div u f in

u u on n on

u on n n on

The last equality ( )( ) ( )( )k 1 k 1
D N iu n u n  on σ σ+ += Γ , can be written as 

( )( ) ( ) ( )( ) ( )0 k 1 0 k 1* *
D D N Nu n u n u n u nσ σ σ σ+ ++ = + .

Since ( )( ) ( )0 k 1 k 1
D Du n Sσ λ+ += and ( )( ) ( )0 k 1 k

N Nu n Sσ λ+ = on Γi it follows 

that ( ) ( )k 1 k
D NS Sλ λ χ+ = + , and therefore ( ) ( ) ( )k 1 k 1 k

DS Sλ λ λ χ+ −= − − We are 

thus left with a Richardson procedure for the Cauchy-Steklov-Poincaré 
equation (12) with the operator SD as a preconditioner. In the following 
section we will discuss the efficiency of the Dirichlet-to-Neumann 
algorithm presented above as a numerical solver for several particular 
Cauchy problems in linear elasticity.

Applications
This section is devoted to the presented method in two situations 

taken from engineering mechanics. The first example concerns contact 
identification on an inaccessible contact area. The second deals with 
coating defect identification.

Contact pressures identification

Domain Ω is a square plate (1.*1.) with a circular hole (R=0.20225), 
where a fixed rigid disc R=0.2 is placed. Figure 1 shows the geometry and 
boundary conditions applied to the plate. The mechanical properties 
of the plate are given in Table 1. When tractions are applied on the 
plate, it comes into contact with the lower part of the disc (Figure 1). 

 

Figure 1: Geometry of the problem studied.
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The problem is to identify the contact pressure distribution and the 
displacements on the interface between the plate and the disc, by using 
overs pecified data provided for the external boundary. These overs 
pecified data are generated by solving a direct problem using Hertz’s 
analytical contact law. Here, we consider a frictionless contact so that 
only normal pressure is taken in account. Moreover, plane strain 
hypothesis is assumed.

The results obtained by solving the corresponding Cauchy problem 
are the normal stress components and the displacements field on Γi. 
Hence, the contact zone is the part of the boundary where the normal 
stress components are not null.

When carrying out an identification based on measurements, it 
must be kept in mind that measured data are subject to noise whose 
effects have to be studied. In this case, the data are synthetic, and 
therefore suffer from some errors (approximation error, roundoff error, 
. . . etc). We added a noise generated by a MATLAB routine (randn) to 
the computational noise. The displacement measurements are polluted 
by a noise level at 5%. Figure 2 depicts the horizontal (resp. vertical) 
displacements U (resp.) reconstruction on the internal boundary of the 
plate. Figure 3 shows the identification of the normal stress distribution 
on the internal boundary of the plate. As expected, displacements 
reconstruction is better than that for the stresses, particularly when the 
data are noisy. The reason is that the stresses are homogeneous with 
the displacements gradient and it is well known that the derivation 
is an ill-posed operation (the influence of noise is considerable). The 
identification is very satisfactory free noisy data. For noise-free data. 

For noisy data, the contact zone is well localized and the contact 

pressures are recovered correctly. However, some fairly significant 
oscillations appear on the free boundary.

Coating defect identification

The identification of inter-facial cracks is a crucial issue in detecting 
coating defects or delamination in composite material. Our second 
experiment focuses on the detection of curved inter-facial cracks. We 
consider a double-layered annular domain centered at the origin with an 
inner-radius 0.6 (Γc-), middleradius 0.8 (Γi) and an outer-radius 1 (Γc+) 
as shown on Figure 4. The coating defect lies at Γi.  The simulation is run 
using synthetic data generated by a finite element resolution of the direct 
problem. The direct problem is solved with prescribed displacements 
on the inner boundary and with prescribed surface tractions acting on 
the outer boundary. The cracks are approximated by two thin cavities 
on which a homogeneous Neumann condition is prescribed. In order 
to detect the coating defect, two Cauchy problems are solved. The first, 
P+, is defined on subdomain Ω+ where the overspecified data are given 
on the external boundary Γc+ and the unknowns are identified on the 
boundary Γi. The second Cauchy problem P_ is defined on subdomain  

 

Figure 2: Reconstruction of horizontal (U) and vertical (V) displacements 
on the internal boundary of the plate for noise free (N. L.=0%) and noisy (N. 
L.=5%) data.

 

Figure 3: Reconstruction of the normal stress distribution on the internal 
boundary  of the platefor noise free (N.L.=0%) and noisy (N.L.=5%) data.

 
Figure 4: Geometry of the domain with a coating defect.

Disc and plate Aluminium
Modulus of elasticity E=70000 MPA 
Poison coefficient  υ=0.31
Friction coefficient µ=0
Load applied to the plate F=1+7 N/m

Table 1: Mechanical characteristic of the plate and the disc.
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Ω_ where the overspecified data are given on internal boundary Γc- 
and the unknowns are identified on boundary (Figure 5). Among the 
unknowns we are only interested in the displacements. In fact, if we 
use u+ (resp. u-) to denote the displacements field on Γi provided by P+ 
(resp.P-),  the cracks will appear as the part of Γi where the jump of the 
displacements vector [u+-u-] does not  vanish.

Two interfacial cracks with different widths are simulated. In this 
case also we tested the reconstruction algorithm in the case of noise 
free and noisy data. The displacements were polluted with noise at 5% 
and 10% level. The reconstructed u- and u+ and the reconstruction of 
the jump [u+-u-]  across the interface are plotted in Figures 6 and 7. 
It can be seen again that good agreement is achieved with the exact 
solution, even for noisy cases. It seems that the width of the crack has 
no influence on the accuracy of the reconstructed procedure: both 
cracks are well recovered.

Conclusion 
In this work we presented a numerical method for solving the 

Cauchy problem in the framework of linear elasticity. The method 
proposed was applied in two practical situations taken from engineering 
mechanics: contact pressure recovery and coating defect identification. 
We also presented an alternative formulation of the Cauchy problem 
which lead to an operator acting on the boundary of the unknown: the 

Steklov-Poincaré operator. The study of the properties of this operator 
for Neumann and Dirichlet variable, comparison with the energy 
approach recently presented by Baranger et al. [17,18] and its use in 
practical situations will be subject of a forthcoming paper [19-22].
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