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Introduction
Inferring cause-effect relationships among variables is of primary 

importance in many sciences and is growing in importance as a 
result of very large datasets in health and genomics. There are several 
statistical frameworks underlying causal inference, such as those of 
Rubin’s potential outcome framework [1,2]. Pearl’s structural equation 
modeling framework [3] and Dawid’s regime indicator framework 
[4], that have been established for making causal inference. These 
frameworks are hardly known to most biomedical researchers or 
biostatisticians who could by applying them to address real world 
problems. Large segments of the statistical community and decision 
makers find it hard to benefit from causal analyses. The main reason, we 
believe, is not a philosophical barrier about data analysis establishing 
causality, but rather lack of familiarity with the vocabulary and methods 
in the field. Undertaking statistical causal inference requires systematic 
extensions to the standard language of statistics, and this perspective 
provides a step toward this end.

Among available statistical causal inference frameworks, Pearl’s 
causal networks, which are compatible with structural equation 
models (SEM) [3], can be seen as a pragmatic approach to solving 
real world problems, especially in the age of large data sets. [5] Has 
critiqued Pearl’s framework and suggests that it requires additional 
explicit, methodological and philosophical justifications. The concept 
of the assignment mechanism developed by Rubin [2] describes the 
circumstances by which some individuals are exposed to a treatment 
of interest and some are not. In this perspective, we first connect causal 
networks to the concept of the assignment mechanism (AM). Then, we 
formalize the causal network parameterization using the AM notation. 
After discussing the concept and notations of causal networks and the 
AM, we present effect/causal effect estimation. 

Overview of the Assignment Mechanism 
The questions that motivate most studies in the health, economics, 

social and behavioral sciences are causal relationships and not only 
associations, such as the efficacy of a given drug in a given population. 
The classical approach for determining such relationships uses 
randomized experiments where single or a few variables are intervened 
on. Such intervention experiments, however, are expensive, unethical 
or even infeasible in many of the cases. Hence, it is desirable to infer 
causal effects from so-called observational data obtained by observing 

a system without subjecting it to interventions. Then, to estimate the 
effect of a treatment on a response, we need to know how different 
values of the treatment are assigned. The circumstances by which some 
individuals are exposed to a treatment of interest and some are not is 
called the assignment mechanism (AM). 

To achieve causal inference, the important data elements include 
not only the value of the observations but also the reason why one of 
the possible exposures or treatments has been realized and not others. 
The notation AM (KR) is introduced as the third element (in addition 
to treatment and response value) and is called the causal element [6]. 
The practitioners need to understand the underlying mechanisms 
by which some individuals have a certain exposure level and some 
do not. The knowledge related to response is represented by KR and 
is required to identify the AM. In a randomized clinical trial the AM 
is straight forward (i.e., the treatment assignment mechanism is 
unrelated to response). In an observational study, many covariates 
may influence the AM but only some of them are related to response. 
Variables / covariates that influence both the outcome and the AM are 
termed confounders [7]. The aim of considering the AM is to identify 
individuals with similar confounder distributions as if there were a 
randomization. In an epidemiologic study, this is similar to matching 
[8]. In a data analysis setting, this is equivalent to SEM [3] where the 
AM is understood and modeled. Formalizing the AM in the context of 
causal networks compatible with the SEM is more practical in the age 
of big data. Therefore, in this study, we formalize the AM within the 
context of statistical causal networks. 

Causal networks are illustrations of the AM, the data generating 
process underlying the study observations, and provide a pragmatic 
approach to distinguish confounders of the AM from among the 
covariates, and allows one to analyze observational data as if an 
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Abstract
Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical 

trial. However, in observational studies, which represent the majority of most large-scale epidemiologic studies, causal 
inference is complicated by confounding and lack of clear directionality underlying an observed association. In most large 
scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration 
of causal relationships (i.e., arrows) among the variables (i.e., nodes). A key concept for making causal inference in the 
context of observational studies is the assignment mechanism, whereby some individuals are treated and some are not. 
This perspective provides a structure for thinking about causal networks in the context of the assignment mechanism 
(AM). Estimation of effect sizes of the observed directed relationships is presented and discussed.
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intervention was carried out. It is important to understand and take 
into account that any model in a causal setting is conditioned explicitly 
or implicitly on illumination of assignment mechanism. 

Assume the assignment mechanism over p variables Y1, ...,YP is 
formalized by a network, here a Directed Acyclic Graph (DAG). The 
distribution P over these variables is:

( ) ( )
p

p j pa(j)
j=1

P Y , ....,Y = P Y | Y∏1  			                 (1)

Where pa (j) denotes the set of predecessors of node j and are 
directly connected to j in the network, called parents of node j. For i ϵ 
pa(j), there is i→j in the DAG. Note that the formula in (1) represents 
the Markov properties over these set of variables compatible with 
the underlying DAG, an illustration of the assignment mechanism 
that governs over this set of variables. This is a strong assumption in 
application of DAGs and can be represented in (1) as

( )) ( )∏
p

1 p R j pa(j)
j=1

P Y , ....,Y | AM(K = P Y | Y

By conditioning factorized distributions on the causal element AM (KR), 
we explicitly represent that the AM is taken into account and the work 
can, therefore, be considered to be within a causal setting.

 Assume the AM over four variables X, Y, Z and H is illustrated 
in Figure 1. The variable of interest is H, and we are typically 
investigating the influence of the other variables on H. To factorize 
the joint distribution over these 4 variables, we first identify potential 
confounders.

Variables X, Y, and Z are all called covariates. However, the effect of 
X reaches to H only through Z and Y. Therefore, X is not a confounder 
of the value of H. The set of confounders for variable H is C (H) = {Y,Z}. 
The interested reader is referred to the backdoor criterion in [3] for 
further information. The joint probability over these variables are then 
factorized as

P(H,Y, Z, X | AM(K )) = P(H | Y, Z)P(Z | X)P(Y | X)P(X
Without conditioning on the causal element, AM(KR), such a 

unique factorization is not possible [9,10].

Formally Representation of Causal Networks 
Assume a DAG D D = (v,ε), where v is a set of nodes with p elements 

corresponds a set of p random variables with joint Gaussian distribution 
and ε is a set of edges which connect the nodes and represent the 
conditional dependencies between two corresponding variables. The 
existence of a directed edge between two nodes shows the direction of 
effect (the flow of information) between the correspondent variables. 
The concept of a DAG D = (v,ε), depends on the nodes in v and edges 
in ε and any inference depends on the set D=(v,ε). Assume P is a joint 
probability distribution over variables Y1,…,Yp corresponding with 
nodes in DAG D = (v,ε). D and P must satisfy the Markov condition, the 
strong assumption in causal inference using networks. These variables 
have a joint distribution which satisfies the Markov property with 
respect to the DAG D and all marginal and conditional independencies 
can be directly obtained from the graph D: every variable Yi, i ϵ v, is 
independent of any subset of its predecessors conditioned on the set 
of its direct or immediate causes of Yi, corresponding with parents of i, 

{ ( )} ( ))⊥ ∈i k pa(i) RY Y ; i & k v \ pa i | Y , AM(K

Where Yk occurs before Yi and parental set pa(i) denotes the set of 

directly connected nodes to i relatives to AM formalized by DAG D( 
= (v,ε).

In SEM and under the assumption of a Gaussian distribution, we 
can write 

i-1

i R ij j i
j=1

Y | AM(K ) = Y + Uλ∑  			                 (2)

where Ui is distributed normally and is independent of the Yj  is in the 
right side of the model. λij ≠ 0 is equivalent with an edge j→i in DAG 
D which is due to compatibility of SEM and the AM formalized as the 
DAG D. SEM is a deterministic form of probability models where all 
uncertainties are confined in the variable U. 

Estimation of Causal Effect and Association 
Given a causal network structure, the goal in this section is to 

discuss effect/causal effect estimation and distinguish it from mere 
association. To estimate the effect of Y on Z, we consider the causal 
element AM (KR) embodied in the DAG in Figure 2, which illustrates 
the assignment mechanism behind the observed variables Y and Z. To 
obtain the effect of Y on Z, variable X in the path Y←X→Z is called a 
confounder. In other words, X confounds the assigning mechanism Y 
on Z since X influences both Y and Z. Recall that the causal network 
structure in Figure 2 is an illustration of the assignment mechanism 
over these three variables and all discussions and equations for the 
effect measurement is given the assignment mechanism. 

To find the effect of Y (and not X) on Z and under Gaussian 
assumption, we first adjust for the effect of X on Y by 

R yx yx yxY | K X eΑΜ( ) = α + β +  		                (3)

 
Figure 1: The illustration of the assignment mechanism of variable H formalized 
as a DAG over four variables. 

 
Figure 2: Illumination of the assignment mechanism for the variable of interest 
Z. In this structure, variable X is a confounder to measure the effect of Y on Z.
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and then find the effect of variations in Y on Z by 

R z yxZ | AM(K ) = + e + eα γ z  			    (4)

Equation (4) represents the degree to which variable Y is responsible 
for the variation in Z, excluding the effect of X. Therefore, the coefficient 
ᵞ is interpreted as a causal effect. However, in the regression of Z on Y
as

Z = + Y + e∗ ∗α λ  				    (5)

the coefficient λ shows only association between Y and Z since some of 
the variations in Z attributed to Y is due to the confounder X.

We estimate the effect of X on Z excluding Y by:

Re | AM(K ) = + X + eα βz

where ez is the residual Z after removing the effect of Y on Z. The 
coefficient β is interpreted as the effect of X on Z excluding the effect 
of Y. A mediator effect has not been discussed in this section and 
interested readers are referred to [11-13].

A Numerical Example for Effect and Association 
Estimation

To illustrate the above principles, we simulated three variables based 
on the underlying network in Figure 2 with the primary interest in the 
effect of Y on Z excluding any effect of X. We simulated 50 set of data 
and average of estimated effects and average of degree of association 
over 50 sets are tabulated in Table 1 for three different values of true 
effects. The standard deviations are presented in parenthesis in the 
Table 1. The degrees of associations are measured by regressing Z on Y.

We estimated the effects and the degrees of association using 
equation 3 through 5 while substituting estimate of eyx in equation 4.

Conclusion
We have provided a short and selective perspective of causal 

inference, including network analysis, the concept of the assignment 
mechanism, and effect size estimation. A unique aspect of causal 
inference compared to traditional applied statistics is captured in the 
concept of the assignment mechanism. To achieve causal inference, 
the assignment mechanism must be understood and requires close 
collaboration between analysts and other biomedical scientists. 
Taking the AM into account, we are able to identify confounders and 
distinguish the effect from association. The assignment mechanism, 
here formalized in a DAG, can be either known a priori or estimated 
by an algorithm for directed structures. In this perspective, we assumed 
that the assignment mechanism is known. In the case of known AM, 
confounders can be identified from the AM and the measurements 
remain in a causal setting. 

In most of the cases, the AM is not known and needs to be estimated. 
An ambitious approach is data integration. We have introduced an 
algorithm called granularity DAG (GDAG), which generates causal 
networks using data integration [14]. In an application, genomic 
information is extracted from SNPs scattered across genome by first 

selecting a subset of informative SNPS using hierarchical clustering and 
linkage disequilibrium [15] and second principal component analysis. 
The extracted genome information is used to generate a causal network 
over phenotypic variables (e.g. body mass index and blood cholesterol 
levels) of interest.
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Table 1: Average of estimated effects and degree of associations for three different 
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