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Introduction
Formerly, we reported that vitamin E levels in thalassemic patients 

are decreased, only slightly in non-transfused thalassemia minor 
patients, but less than 30% of normal values in regularly transfused 
thalassemia major patients [1]. Thus, the varying spectrum of clinical 
pictures in thalassemia mirrors the wide range of reduced vitamin E 
levels.

Hence, it is recommended to thalassemic patients to replenish their 
vitamin E levels. The major target of vitamin E supplementation is 
considered the red cell membrane, because it is the biological structure, 
which is primarily attacked by free radicals in thalassemic patients and 
may thus be sensitive to depletion and supplementation. 

It was shown that in thalassemic RBC membranes, proteins and 
lipids are impaired [2]. Proteins are impaired in two ways: first, they 
are the primary aim of hemoglobin radicals [3] and second they can 
hardly fulfil their physiological task in a pathologically modified lipid 
environment in which they are embedded. 

Apart from its antioxidant effect vitamin E is known to exert various 
functions in membranes [4] including also a cholesterol-like structural 
function [5], in which its phytanyl tail may be involved [6,7]. 

In this study, we compare the concentrations of vitamin E, 
which are effective on lipid peroxidation induced by incubation with 
tertiary butylhydroperoxide (t-BHP) [8] representing its function 
as an antioxidant and on impaired glucose transport in thalassemic 
erythrocytes, which may rather represent its structural function.

Materials and Methods
As vitamin E, DL-alpha-tocopherol (Merck, Darmstadt, Germany, 

cat. 613420) was used. 

Hemoglobin determination

For hemoglobin determination, routine HPLC data were used on 
one hand as provided with blood samples. On the other hand, Hb had 
to be determined in the frame of our own experiments. In these cases, 
Hb Kits Merck (cat. 1.03298) or Enzo Life Sciences (cat.nr. ADI-907-
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After pre-incubation of isolated RBC membranes with 2 mM 
t-BHP ghosts were subsequently treated with increasing concentrations 
of racemic α-tocopherol and thiobarbituric acid reactive substances 
(TBARS) were measured (Figure 1). Serial tocopherol treatment started 
at 10 ppm, which immediately reduced TBARS 15.5 nM in thalassemic 
vs. 6 nM in normal RBC membranes. 

Levels of TBARS further decrease both in normal and thalassemic 
RBC membranes up to the final concentration used, 200 ppm. The 
slope of decrease is steeper in thalassemic than in normal membranes 
demonstrating that thalassemic RBC membranes are more sensitive 
both to pro-oxidative processes (Table 1) and to antioxidative treatment 
with tocopherol (Figure 1). 

The thiol status of the isolated RBC membranes (Table 2) was 3.9 
± 1.4 nmol per mg of protein in normal blood samples and 70% of this 
value in membranes from thalassemic patients (2.7 ± 1.1 nmol; p<0.05 
vs. controls). Treatment with 2mM t-BHP diminished reactive thiols 
by about 70% to 1.2 ± 0.5 nmol in normal controls (p<0.05) and by 
about 85% to 0.4 ± 0.3 nmol in thalassemic samples (p<0.05). After pre-
treatment with 2mM t-BHP racemic α-tocopherol at concentrations 
between 50 and 100 ppm increased reactive membrane thiols about 
two-fold to 60% of the original value in normal controls and 4- to 5-fold 
to 70% of the original value in thalassemic samples. Table 2 presents 
the representative values obtained with 60 ppm racemic α-tocopherol.

The time course of glucose transport across the isolated RBC 
membranes (ghosts) was measured up to 25 min from normal and 
thalassemic samples. Between 1 and 10 min, a linear time-dependent 
increase was observed and a subsequent plateau between 10 and 25 
min. Glucose transport has a much lower time-dependent rate in 
thalassemic than in normal RBC membranes (Figure 2). It was decided 
to carry out experiments with racemic α-tocopherol at 5 min. 

If measured at 5 min, glucose transport in thalassemic membranes 
is 76% of normal controls. With 50 ppm and 120 ppm of tocopherol, 
glucose transport does not improve (it is even slightly lower than 
without tocopherol), but it improves with 75 and 100 ppm by roughly 
10%. This difference is statistically significant (p<0.05) with 75 ppm 
tocopherol (Table 3).

034) were used: Into the test tube, 5 mL of the respective Hemoglobin 
Kit containing potassium hexacyanoferrat (II) and potassium cyanide 
were added to 20 µL of blood. Incubation followed at room temperature 
for 5 minutes; subsequently, absorption was read at wavelength λ= 540 
nm in a Shimadzu UV-vis spectrophotometer. 

Sampling

Twenty-eight blood samples from thalassemia patients obtained 
from Thalassemia Center Jakarta and twenty-four normal blood 
samples from the Indonesian Red Cross were used in this study. All 
donors from the Thalassemia Center had signed their informed consent. 
In all experiments more than 20 blood samples were evaluated (n>20).

Preparation of red blood cells

Blood samples were collected in vacutainer tubes with EDTA as 
anticoagulant. To separate red blood cells and serum the samples were 
centrifuged at 2000xg for 5 min. Red blood cells were then washed 
using physiological saline solution (phosphate buffered saline, PBS). 
Subsequently, red blood cells were suspended at 20% (w/v) in PBS. 
Preparation procedures followed Dodge et al. [9] and Ling et al. [10]. 
Protein concentration was measured by Lowry et al. [11].

Testing the effect of α-tocopherol on experimentally induced 
oxidative stress

The experimentation followed the method of Trotta et al. [8]; 
α-tocopherol was added at final concentrations of 10 to 200 ppm to 
the suspension of red blood cells in 500 µL of PBS. The suspension was 
incubated for 30 min at 37°C, washed and centrifuged as above. Then, 
the red blood cell sediment was incubated with 2 mM t-BHP at 37°C for 
30 min. The suspension was washed and centrifuged as above, before 
the supernatant was tested for TBARS [12].

Testing the effect of α-tocopherol on glucose transport of 
isolated red blood cell ghosts 

We used the method developed by Sahib [13] for glucose transport 
experiments in red blood cell ghost. Glucose levels were determined 
photometrically by the Nelson-Somogyi reaction [14]. Testing the 
effect of tocopherol, we followed the same experimental steps after 
incubation with the respective concentrations of tocopherol. 

Results
For all data evaluation 21 samples from thalassemia patients and 

21 controls were used (n=21), except for the experiments of glucose 
transport, where 24 samples from patients and controls were used 
(n=24).

Table 1 demonstrates that the basic level of TBARS is almost 
twice as high in thalassemic than in normal erythrocyte membranes. 
Incubation with t-BHP increases TBARS roughly ten-fold both in 
normal and in thalassemic RBC membranes. Thus, we had a start point 
of serial tocopherol treatment of 19.59 nM in thalassemic vs. 11.42 nM 
in normal RBC membranes (Table 1 and Figure 1).

Measurement of thiobarbituric acid reactive substances (TBARS) expressed 
as nM MDA per mg protein after pre-incubation of isolated RBC membranes 
with 2 mM tertiary butylhydroperoxide (t-BHP) and subsequent treatment with 
increasing concentrations of racemic α-tocopherol
Figure 1: Thiobarbituric acid reactive substances (TBARS) as indicators of 
lipid peroxidation (LPO) expressed as malondialdehyde (MDA).

No Normal RBC 
nM MDA / mg prot.

Thalassemic RBC
nM MDA /mg prot. Treatment

1 1.02 ± 0.64 1.85 ± 1.37$ -
2 11.42 ± 3.39 19.59 ± 6.82$ t-BHP 2mM

Table 1: Basic data, thiobarbituric acid reactive substances (TBARS) expressed 
as malondialdehyde (MDA) levels with tertiary butylhydroperoxide (t-BHP); signifi-
cance: $ normal vs thalassemic RBC samples.
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Discussion
Lipid peroxidation (LPO) is widely used as parameter of 

oxidative membrane damage; in our case we use it in experimental 
oxidation with tertiary butylhydroperoxide (t-BHP). Thiobarbiturate 
reactive substances (TBARS) are indicators of LPO, in the first place 
malondialdehyde (MDA) as one of the major by-products of LPO, 
especially in our in vitro model with unambiguous experimental 
conditions [15,16].

Oxidative stress is basically higher in thalassemic than in normal 
erythrocyte membranes and incubation with t-BHP further increases 
LPO about ten-fold. Serial treatment with tocopherol up to 200 ppm 
reduces TBARS in thalassemic and in normal RBC membranes, 
the slope being steeper in thalassemic than in normal membranes. 
Our results demonstrate that thalassemic RBC membranes are more 
sensitive to pro-oxidative processes but also to antioxidative treatment 
with vitamin E. 

For comparison, we measured the thiol status of our RBC 
preparation. In normal RBC, thiol status decreased with t-BHP to 

roughly one third and in thalassemia to one sixth of the original 
value. The latter was already much lower in RBC membranes from 
thalassemic patients (less than 70%) than in normal RBC. Vitamin E 
increased the thiol status in normal and thalassemic RBC to similar 
levels. This picture reflects the pro-and antioxidant balance of our RBC 
preparation. 

Concerning the effect of tocopherol concentrations, the picture 
differs between antioxidant activity and glucose transport across the 
RBC membrane. In the latter, we do not have a continuous effect from 
10 to 200 ppm but a bell shaped effect with its peak at 75 ppm. 

Time-dependent glucose transport rate is lower in thalassemic 
than in normal RBC ghosts and only improves significantly with 75 
ppm of tocopherol. Thus, the optimum of tocopherol concentration 
under our experimental conditions is at 75 ppm (or possibly slightly 
higher, but certainly below 100 ppm). This bell-shaped effect on glucose 
transport mirrors a similar bell-shaped structural effect of anti-diabetic 
type II metformin normalizing the fluidity of rigidified isolated RBC 
membranes [17,18]. With respect to reactive thiols in membrane-
integral proteins, maintenance of redox potential is essential to keep 
active cysteine thiols in a reduced state, but also membrane-structural 
effects to stabilize the functional protein conformation via dithiol 
bonds in cystine (=di-cysteine). 

In erythrocytes GLUT1 is responsible for the transport of glucose 
across the membrane. Its structure was widely investigated and a 
conformation with 8 of its 12 transmembrane helices forming inner 
water channel with hydrophilic amino acid residues responsible for 
the glucose transport across the hydrophobic membrane moiety. 
These hydrophilic amino acid residues, i.e., hydroxyls and amides, 
were suggested to form hydrogen bonds with the hydroxyls of glucose 
[19]. In GLUT1, thiols appear to be more important in stabilizing 
protein conformation as cystines than actively participating in glucose 
transport as reduced cysteines, which may explain the concentration-
limited effect of tocopherol as a stabilizer of membrane structure and 
protein conformation rather than functioning as an antioxidant. 

Vitamin E is discussed to have a broad spectrum of biological 
effects apart from its action as antioxidant [20-24]. No wonder, that also 
structurizing membrane components like tocopherol have differing 
concentration-dependent effects [25] if compared to the antioxidant action.

Another aspect is the difference between synthetic all-rac (DL) 
tocopherol and natural (RRR) vitamin E. However, it appears more 
relevant to compare these differences in vivo since in the body bio-
kinetic or pharmacokinetic effects differ considerably between synthetic 
and natural tocopherols [26,27]. 

In conclusion, the antioxidant effect of vitamin E on experimental 
lipid peroxidation in thalassemic RBC membranes as measured by 
TBARS shows a continuous reduction up to a concentration of 200 
ppm. On the contrary, glucose transport across thalassemic RBC 
membranes shows a bell-shaped effect with a peak at a concentration 
of 75 ppm indicative of a primarily non-antioxidant action but possibly 
rather a structural membrane-effect of tocopherol. 
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