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Abstract
Oysters are filter feeders that bioaccumulate bacteria in water while feeding. To evaluate the bacterial genomic 

DNA extracted from retail oyster tissues, including the gills and digestive glands, four isolation methods were used. 
Genomic DNA extraction was performed using the Allmag™ Blood Genomic DNA (Allrun, Shanghai, China), the 
MiniBEST Bacterial Genomic DNA Extraction kits (Takara, Dalian, China), and the phenol-chloroform and boiling 
lysis methods. The concentration of the genomic DNA was measured using a spectrophotometer. The purity of the 
genomic DNA was evaluated by PCR amplification of 16S rDNA followed by determining the cloning efficiency of 
the amplicon into the pMD19-T vector. Furthermore, the bacterial DNA quality was also evaluated by PCR assays 
using a pair of species-specific primers for Vibrio parahaemolyticus. Our results showed that the two commercial 
kits produced the highest purity of DNA, but with the lowest yields. The phenol-chloroform method produced the 
highest yield although it was time-consuming. The boiling lysis method was simple and cost effective; however, it 
was only suitable to isolate genomic DNA from bacteria present in retail samples following an enrichment step. The 
two commercial kits were good candidates for genomic DNA extraction from retail oyster tissues without enrichment. 
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Introduction
It is well known that oysters filter large volumes of water during 

feeding and are able to bio-accumulate bacteria including food-borne 
pathogens from the surrounding water [1,2], therefore, oysters may 
be an important vehicle for dissemination of food-borne pathogens 
[3-6]. In the coastal cities of China, more than 60% of seafood tested 
positive for bacterial pathogens [7,8]. The fact that pathogens could be 
maintained in oysters for at least one month [9] imposes a huge risk for 
human health [3,4]. Vibrio spp. represented the predominant species 
among the bacteria in oysters [2,10,11].

Detection and identification of pathogens in oysters have relied on 
culture-based methods, which are time-consuming and labor intensive 
[12,13]. To improve efficiency, more rapid assays were developed for 
detection of these pathogens in oysters using molecular approaches 
[7,14-16] and immunoassays [17,18]. The molecular assays such as 
PCR have been used widely because of their high sensitivity, speed, and 
convenience [7,19,20]. Efficient amounts of sample DNA of high quality 
is of critical importance for molecular assays. So far, different methods 
have been used to extract the DNA samples, including commercial kits 
[19,21,22], the phenol-chloroform method [15,23] and the boiling lysis 
method [10,24,25]. 

Most molecular assays have focused on the detection of bacterial 
pathogens in oysters after enrichment, rather than direct detection 
[7,26,27]. It was reported that V. parahaemolyticus could be detected 
without enrichment, but no further data were reported [20,24]. 
Generally, seafood samples are subjected to enrichment overnight to 
allow growth of pathogenic bacteria [19,28-30] prior to detection assays. 
The oyster is very different from common agricultural produce due to 
its bio-accumulating nature. The densities of V. parahaemolyticus in 
oysters were > 10-104 CFU/g in oysters [24]. Over 107 CFU of aerobic 
bacteria per gram were found in retail oysters after 1 week storage at 
4°C [31]. Furthermore, it has been reported that the bacteria were 
mainly accumulated in digestive glands and gills [2,6,10,11]. Therefore, 

more bacteria should be accumulated in those tissues compared to 
other types of oyster tissues. There is very little information about the 
detection of food-borne pathogens in oysters without enrichment. To 
address this issue, four methods were compared for bacterial DNA 
isolation from retail oyster tissues for detection of bacteria. The quality 
of the DNA was evaluated to determine a good candidate method for 
DNA extraction.

Materials and Methods
Oyster samples

Field oysters (n=50) were collected randomly from the Jiangyang 
market in Shanghai in May 2011. Five field oysters (n=5) were collected 
randomly and opened with sterilized knives as previously described 
[2,10]. Oyster tissues (~150 grams) were homogenized using a sterile 
grinder at 12000 rpm for 60 sec with 600 ml (1:4) of sterile physiological 
saline. In a separate procedure, five oysters were dissected and specific 
tissues, including digestive glands and gills, were collected (3.0 g) and 
grounded with sterile tissue grinders as described previously [2,5]. 

Samples were centrifuged at 300 g for 3 min at 4°C. The supernatants 
(0.1 mL) were plated onto ChromAgarTM Vibrio plates after making 
10-fold serial dilutions. The plates were incubated at 37°C for 16 h. 
In addition, 25 mL of supernatant from oysters were added into 225 
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mL tryptic soy broth (TSB) (Sparks, MD, USA) medium for sample 
enrichment, and incubated at 37°C for 10 h with shaking at 160 rpm. 
Samples were taken every two hours and plated onto ChromAgarTM 
Vibrio plates. After incubation at 37°C overnight, the violet colonies 
were enumerated. All of the supernatants (0.5 mL) were stored in 20% 
sterile glycerol at -80°C until further use. 

Genomic DNA extraction

Pre-treated supernatants (0.2 mL) were centrifuged at 10,000 
g for 5 min at 4°C, including supernatants from whole oysters and 
isolated tissues, and sample enrichment. The pellets were washed twice 
with sterile physiological saline and resuspended in 0.1 mL sterile 
physiological saline. Genomic DNA was extracted by four separate 
methods as follows: 1) Commercial kits: the extraction protocols of 
the AllmagTM Blood Genomic DNA kit (Allrun, Shanghai, China) 
and the MiniBEST Bacterial Genomic DNA Extraction kit (Takara, 
Dalian, China) were performed in accordance to the manufacturer’s 
instructions; 2) Phenol-chloroform method: extraction was performed 
as previously described [32]; 3) Boiling lysis method – extraction was 
performed as previously described [10]. The total DNA was eluted 
or diluted with 0.1 mL sterile water. The concentration of extracted 
DNA was measured using the Nanodrop 2000C (Thermo Scientific, 
DE, USA) using sterile physiological saline as the blanking solution. 
The quality of DNA was evaluated by OD260/OD280 ratios (>1.8). In 
addition, the DNA samples were also visualized on 0.8% agarose gel. 
All bacterial DNA was stored at -80°C until further use. 

Amplification of 16S rDNA genes and cloning of PCR 
products

To evaluate the quality of the DNA extracted by different methods, 
16S rDNA genes were amplified by Polymerase Chain Reaction (PCR) 
in a PTC-200 thermocycler (MJ research, CA, USA). The bacterial 
DNA from different tissues and enrichment samples was amplified 
using the 27F and 1492R primers [33]. The PCR mixture consisted of 
1.0 μl of template, 2.0 U TaqE (Fermentas, Vilnius, Lithuania), 5.0 μl 
PCR buffer (with Mg2+), 1.0 μL of 10.0 mmol/L dNTPs, 1.0 μL of 10.0 
μmol/L for each primer (27F: 5’-AGAGTTTGATCMTGGCTCAG-3’ 
and 1492R: 5’-GGTTACCTTG TTACGACTT-3’) [33] and deionized 
water for a total reaction volume of 50.0 μl. The cycling conditions were 
as follows: initial denaturation at 94°C for 5 min; 35 cycles consisting 
of template denaturation at 94°C for 30 s, primer annealing at 55°C for 
30 s, and primer extension at 72°C for 2 min; and then a final extension 
at 72°C for 15 min. The PCR products were visualized on 1.5% agarose 
gels stained with ethidium bromide. All PCR reactions were performed 
three times.

The PCR products were recovered using the Gel DNA Recovery 
kit (Takara, Dalian, China) and cloned into the pMD19-T vector 
(Takara, Dalian, China) according to the manufacturer’s instructions. 
The ligation products were transformed into JM109 competent cells, 
which were then plated onto Luria-Bertani (LB, OXIOD, Ltd, England) 
agar plates with 50 μg/mL ampicillin (Sigma, MO, USA), X-gal and 
isopropyl β-D-1-thiogalactopyranoside. The white colonies were 
enumerated after incubation at 37°C for 16 h.

Detection of V. parahaemolyticus by PCR

To confirm that the genomic DNA from oyster tissues could be 
used to detect foodborne pathogens, a species-specific gene (irgB) of 
V. parahaemolyticus was used as the target for the PCR as previously 
described [15].

Statistical analysis

Each experiment was repeated three times (N=3) with triplicates 
in each experiment (n=3). One way analysis of variance (ANOVA) or 
Tukey test was used for statistical analysis by Origin 8.0 (OriginLab, 
MA, USA).

Results and Discussion
This study evaluated extraction of bacterial genomic DNA from 

oyster tissues by different methods. Our results indicated that the 
boiling lysis method produced the highest concentration of DNA 
from oyster samples compared with the other three methods (Table 
1). The concentration of DNA was highest from digestive glands 
regardless of the method used (Table 1). The DNA yields were lower 
with commercial kits compared to the other two methods. There was 
no significant difference (P>0.05) in the recovery of DNA between 
the two kits whereas significant differences were found between the 
other methods (Table 1). There was a significant difference between 
the quantities of DNA recovered from the gills and other tissues. In 
addition, there was no significant difference (p>0.05) between the 
quantities of DNA recovered from isolated digestive glands and the 
whole oyster.

After extraction by the various methods, the DNA was amplified 
by PCR using 16S rDNA universal primers that were designed 
specifically for bacterial detection [33]. The PCR products were 
cloned into the pMD19-T vector, and the numbers of white colonies 
on the selective plates were enumerated. Although DNA from oyster 
tissues extracted by the boiling lysis method has the highest yield, it 
could not be amplified by the primers specific for bacterial 16S rDNA 
(data not shown). This indicates that the DNA from samples without 
enrichment did not contain enough bacterial DNA to be amplified by 
PCR. Alternatively, the DNA samples may have contained some PCR 
inhibitors that may have blocked PCR amplification. The DNA samples 
produced by the MiniBEST Bacterial Genomic DNA Extraction kit 
resulted in the highest number of transformed clones (Table 2). There 
were significant differences in the number of transformed colonies 
(P<0.05) among all methods and all tissues (Table 2), but no significant 
difference (P>0.05) was found among all methods and all tissues after 
enrichment. Furthermore, the results indicated that both the quantity 
and quality of DNA extracted from digestive glands was the highest 
amongst the tissues tested.

Our previous work showed that Vibrio spp. was found to be 
predominant in oysters [11]. All genomic DNA extracted by different 
methods from different tissues was further evaluated by PCR using 
primers for the species-specific gene (irgB) of V. parahaemolyticus [15]. 
Genomic DNA purified by the two commercial kits produced positive 
results for PCR without enrichment (data not shown). The presence 
of V. parahaemolyticus in oysters was also confirmed by plating onto 
ChromAgarTM Vibrio plates. After enrichment, V. parahaemolyticus 
was detected in all samples by PCR, regardless of the DNA extraction 

Method Gills
(μg/sample)

Digestive glands
(μg/sample)

Oyster
(μg/sample)

AllmagTM Blood Genomic 
DNA kit 55.4 ± 4.3aA 65.6 ± 2.2bA 60.0 ± 2.9abA

MiniBEST Bacterial 
Genomic DNA Extraction kit 57.3 ± 2.2A 63.5 ± 2.5A 57.5 ± 3.4A

Phenol-chloroform method 132.9 ± 6.2aB 154.3 ± 8.2bB 143.9 ± 7.0abB

Boiling lysis method 187.7 ± 10.7aC 267.8 ± 10.8bC 271.4 ± 8.8bC

a-c: statistical analysis on rows; A-C: statistical analysis on column 
Table 1: Yields of DNA from oyster tissues by four different isolation methods.
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methods used. Our results indicated that the pathogen could be 
detected in retail oysters with enrichment. Thus, the four methods 
could be used to recover the bacterial DNA for detection by the PCR 
after enrichment.

The boiling lysis method has been used extensively in food 
pathogen detection and clinical diagnosis due to its high yield of DNA, 
convenience, and low cost [7,10,34]. Our results suggest that the method 
was not suitable for molecular detection if the retail oyster samples 
were not subjected to enrichment (Table 2). It has been reported that 
only 6.1% of the samples were positive for V. parahaemolyticus without 
enrichment [24]. In the absence of any treatment, PCR inhibitors may 
be present in the oyster, which interfere with PCR amplification [19,35]. 
Many investigators have developed protocols to reduce the presence of 
PCR inhibitors for testing for the safety of seafood [22,36-38]. However, 
the boiling method is simple and efficient, and still remains a good 
candidate for extraction of bacterial DNA with sample enrichment. 
Another major problem with detecting pathogenic bacteria in shellfish 
tissue without enrichment is the high level of shellfish DNase present 
in the tissue which must be removed before cell lysis. These problems 
have been previously addressed [39,40]. 

The phenol-chloroform method is simple and has been widely used 
for several decades. The yield is generally higher than the absorption-
based kits (Table 1); however the results are often not reproducible, and 
the procedure involves the use of several toxic reagents. For all of the 
four methods, the cost and working time were evaluated (Table 3). The 
boiling lysis method was relatively fast and cost effective. In contrast, 
the MiniBEST Bacterial Genomic DNA Extraction kit method was 
relatively time-consuming. Although the commercial kits were more 
expensive relative to the other methods, they offer superior DNA 
quality. Our results show that the MiniBEST Bacterial Genomic DNA 
Extraction kit took almost 4 hours to perform, while the AllmagTM Blood 
Genomic DNA kit took only 30 minutes to complete, and required 
fewer reagents. The AllmagTM Blood Genomic DNA kit, which utilizes 
magnetic silica in the extraction procedure produced high DNA quality 
that was suitable for subsequent molecular assays, which is consistent 
with the previous reports [37,38], and this could be used for extraction 
of DNA from oyster samples.

Our data show that among DNA yields and cloning efficiencies 
of PCR products generated from various tissues, the digestive glands 

gave the highest yields by methods used (Tables 1 and 2), suggesting 
this tissue is a better candidate for the detection of pathogenic bacteria 
in oysters. Oysters easily bio-accumulate pathogens in the course of 
feeding in seawater [5,6,41,42]. The digestive glands could be used as 
target tissues for food safety monitoring of shellfish [5,6]. These results 
were consistent with our previous studies [2,5,11,35]. In summary, four 
DNA isolation methods were compared, and the digestive glands of 
oysters were also identified as a suitable tissue for pathogen detection. 
Our work enhances the ability to detect pathogens in seafood and may 
benefit the seafood industry and consumers.
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