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ABSTRACT
Background: Age group, sex and underlying comorbidity or disease have been identified as major risk factors in 
COVID-19 severity and death risk. 

Aim: We compare the performance of major decision tree-based ensemble machine learning models on the task of 
COVID-19 death probability prediction, conditional on three risk factors: age group, sex and underlying comorbidity 
or disease, using the US Centers for Disease Control and Prevention (CDC)’s COVID-19 case surveillance dataset. 

Method: To evaluate the impact of the three risk factors on COVID-19 death probability, we extract and analyze the 
conditional probability profile produced by the best performing model.

Result: The results show the presence of an exponential rise in death probability from COVID-19 with the age 
group, with males exhibiting a higher exponential growth rate than females, an effect that is stronger when an 
underlying comorbidity or disease is present, which also acts as an accelerator of COVID-19 death probability rise 
for both male and female subjects. These results are discussed in connection to healthcare and epidemiological 
concerns and in the degree to which they reinforce findings coming from other studies on COVID-19.

Keywords: COVID-19; Machine learning; Probability calibration; Logistic regression; Random forests; Extremely 
randomized trees; Adaboost; Gradient boosted trees; Histogram gradient boosting

INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
become a major global health problem. In the context of the 
SARS-CoV-2 pandemic, the development of data-driven death 
risk profiling is, therefore, a relevant matter, providing healthcare 
authorities with results that can be used for policy-making and 
in the planning of a response to the COVID-19 crisis, also, from 
an epidemiological standpoint, a death risk profile provides for 
a relevant characterization of the virus and the corresponding 
disease, conditioned on risk factors.

Different studies have identified age group, sex and underlying 
comorbidity or disease as critical factors for disease severity and 
mortality risk [1-5]. In the current work, we use these three factors 
as feature variables in machine learning models for extracting a 
profile for COVID-19 death probability, conditional on these 
three risk factors, using the US Centers for Disease Control and 
Prevention (CDC)’s COVID-19 case surveillance data sample which 
contains a large sample of COVID-19 confirmed cases with records 
for these three factors, the version that we worked on was updated 

in November 4, 2020, the data is made available for public use by 
the CDC at: https://data.cdc.gov/Case-Surveillance/COVID-19-
Case-Surveillance-Public-Use-Data/vbim-akqf.

In regards to the age group variable, the CDC defined an ordinal 
scale of nine age groups, we use this ordinal feature variable along 
with the qualitative variables sex and underlying comorbidity 
or disease, which is classified in the database as a “Yes” or “No” 
binary feature. Together, these feature variables provide a set of 
36 alternative configurations for the three critical factors, age 
group, sex and having an underlying comorbidity or disease. Using 
these three feature variables, we compare the performance of 
major tree-based ensemble machine learning models with that of 
standard logistic regression (used as a baseline) in the prediction 
of COVID-19 death probability, and select the alternative that 
shows the best reliability performance in order to extract and study 
a death probability profile, conditional on the combinations of 
values of these three feature variables.

Tree-based ensemble machine learning models have an advantage 
when working with ordinal and nominal variables defined on 
different scales, since they can work directly with qualitative 
features, not suffering from possible problems resulting from 
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performing arithmetic operations on different qualitative variables 
or assuming distance metrics over these types of variables. The fact 
that we are dealing with only qualitative features, since age comes 
pre-classified by the CDC into the age group ordinal variable and 
the remaining two feature variables are binary and qualitative, this 
makes tree-based ensemble models more sound on a statistical 
analysis and interpretability basis, a point to which we will return 
in the materials and methods section.

In the medical and epidemiological context, tree-based ensemble 
algorithms have been successfully applied for mortality risk 
prediction, both in terms of death event prediction and mortality 
risk scoring [6-10]. In the current work, we will be comparing 
the performance of major tree-based ensemble models, namely: 
random forests, extremely randomized trees with and without 
bootstrap sampling, AdaBoost, boosted random forests, boosted 
extremely randomized trees with and without bootstrap sampling, 
gradient boosted decision trees and LighGBM-based histogram 
boosting trees.

To compare the performance of the different models, since we 
are dealing with probability prediction rather than a standard 
classification problem, main classification metrics such as the Area 
Under Curve (AUC), Receiver Operating Characteristic’s (ROC) 
are no longer appropriate measures [11], in this case, reliability 
plots and Brier loss are usually used for performance evaluation 
[11-15].

The work is divided into three sections: materials and methods 
(section 2), results (section 3) and discussion (section 4). In the 
materials and methods section, we provide for an exploratory 
analysis of the three factors in the database, also providing for an 
inferential analysis of death proportions for each risk factor. 

After the exploratory analysis, we review the main probability 
prediction performance evaluation methods and the main decision 
tree-based ensemble algorithms that we will be testing.

In the results section, we apply and compare the performance of the 
different machine learning models, selecting the best performing 
alternative in order to extract a death probability profile that we 
analyze in the second part of the results section. In the discussion 
section, we address the main implications of the resulting profile 
for the fight against the SARS-CoV-2 pandemic.

MATERIALS AND METHODS

The dataset and exploratory data analysis

The CDC’s COVID-19 case surveillance data is available for public 
use and, in the November 4 updated version, which we use in the 
present work, contains a sample of 5,760,066 individuals, with 
5,462,778 confirmed cases and 297,288 probable cases. Since our 
goal is to study the death probability of people with confirmed 
COVID-19, conditioned on the three major risk factors that we 
are addressing: age group, sex and the presence of underlying 
comorbidity or disease. 

Our focus is on the confirmed cases and in these three feature 
variables that are present in the database. One of the main reasons 
to choose this database was the fact it contains these three risk 
factors for a large number of individuals.

Of the 5,462,778 confirmed cases, there are missing values for all 
of the three risk factor variables that we work with, these missing 
values must be removed in a preprocessing stage in order to be 

able to work with the machine learning models in a way that may 
produce a death probability profile given definite values for the 
three critical risk factors, which is our main objective.

For the sex variable, there are three defined sex categories, male, 
female and other, which might lead to the possibility of working 
with the sex variable as a non-binary feature variable, in this case, it 
is not clear if the third category other refers to gender identification 
rather than biological sex, in which case, it would correspond to 
a third gender, the problem here is that there is an insufficient 
number of cases in the classification, which is 14 for the category 
other, while the male sample size is 391,060 and the female is 
436,541. The small sample size of the category other does not 
provide a sufficient number of cases for machine learning, these 14 
cases are all laboratory confirmed cases and neither of them died.

Removing all the missing values from the features plus extracting 
the 14 cases classified as other in the sex feature variable, we get 
a sample of 827,601 confirmed cases of COVID-19, with definite 
values for the target and feature variables. In this sample, 66,686 
individuals have died while 760,915 have not, which gives a sample 
death rate of around 8.7639% for the confirmed cases, in the 
database.

In Table 1, we provide the sample distributions for the final 
database of 827,601 confirmed cases and each of the three critical 
factors. In terms of medical condition, the majority of cases in the 
database (430,758) exhibit an underlying comorbidity or disease. 
Regarding the sex variable, there are more female cases than male 
(436,541 female cases against 391,060 male cases), of the female 
cases, 52.4283% show an underlying comorbidity or disease while, 
for the males, this percentage is 51.6256%. 

Regarding the nine age group categories, the main frequency counts 
are situated in the four age groups from 20-29 years to 50-59 years, 
all with more than 100,000 cases (Table 1).

Table 1: Sample distribution by feature variable.

Features Number of cases

Medical condition

Yes 4,30,758

No 3,96,843

Sex

Male 3,91,060

Female 4,36,541

Age

0-9 Years 23,564

10-19 Years 74,291

20-29 Years 1,49,286

30-39 Years 1,21,476

40-49 Years 1,18,988

50-59 Years 1,24,876

60-69 Years 95,906

70-79 Years 61,150

80+ Years 58,064

The presence of underlying comorbidity or disease rises with age 
with a pattern that is close to a sigmoid curve, as shown in Figure 
1. In Table 2, we show the 95% confidence intervals for the death 
proportion, conditional on each feature variable.
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The death proportion’s 95% confidence intervals’ lower and 
upper bounds exhibit an exponential rise with age, as shown in 
Figure 2, which indicates, inferentially, with 95% confidence, an 
exponentially rising death probability for confirmed COVID-19 
cases. We will see that the machine learning models capture well 
this exponential profile.

Considering the feature space, as stated before, we have a finite 
discrete qualitative feature set, which is comprised of 36 alternative 
feature values, this type of structure has consequences in the 
evaluation methodologies for machine learning models applied to 
probability prediction, as we now discuss.

Evaluation methods of machine learning algorithms 
applied to probability prediction problems

Probability prediction problems, in the context of supervised 
learning, involve the prediction of class probabilities rather than 
class labels, therefore, the main objective is to predict probabilities 
in such a way that the distribution predicted by the learning 
algorithm fits well the sample proportions [11-15].

In medical applications, the risk profiling associated with the 
development of a disease and mortality risk assessment fits into 
this type of problem. When dealing with an epidemiological 
scenario, the profiling of death probabilities, conditional on 
subjects’ features, can help identify risk groups and guide response 
strategies. In this context, when dealing with the assessment of 
death probability profiles, the target is binary, with 0 labeling a 
person who survived and 1 a person who died.

When evaluating different machine learning algorithms in 
probability profiling, for a binary target, the performance metrics 
must be directed at calibration performance [11], in this sense, 
while the AUC can be reported and used as a class label prediction 
metric, in probability profiling tasks, it does not provide for a good 
indicator of performance [11]. In this case, evaluation methods 
have been proposed and used, with the Brier loss and reliability 
plot-based metrics standing out for these tasks [11-15].

The Brier loss, also known as Brier score, for a binary target and a 
sample of size is calculated as the mean squared difference between 
the predicted Bernoulli success probabilities , produced by the 
machine learning model for each case, and the observed sample 
values  [11-13].

The lower the Brier loss is, the better is the performance of the 
machine learning model at predicting the probabilities. Besides the 
Brier loss, which works with the squared deviations between the 
predicted probabilities for each sample case and the corresponding 
true labels, reliability plot-based metrics can be calculated for the 
direct comparison between observed proportions and predicted 
probabilities [14,15]. Reliability plots are major tools to visually 
evaluate probability prediction calibration and have been used 
to detect risk assessment biases in measures like the Brier loss, as 
analyzed in [13] about the use of this score for medical diagnosis.

The advantage of reliability plots is that they address directly 
probability prediction, since one is comparing predicted 
probabilities with observed frequencies. However, when the feature 
variables range in a continuous scale, binning must be used, with 
the researcher selecting the number of bins for the plot, this has 

Table 2: 95% confidence intervals for the death proportion conditional 
on each feature variable.

Features
95% Confidence intervals for 

death proportion

Medical condition

Yes (0.147151, 0.149275)

No (0.006904, 0.007431)

Sex

Male (0.092362, 0.094188)

Female (0.068454, 0.069962)

Age

0-9 Years (0.000519, 0.001311)

10-19 Years (0.000373, 0.000718)

20-29 Years (0.001555, 0.001988)

30-39 Years (0.006051, 0.006963)

40-49 Years (0.015765, 0.017220)

50-59 Years (0.042469, 0.044742)

60-69 Years (0.119847, 0.123998)

70-79 Years (0.272681, 0.279785)

80+ Years (0.505483, 0.513633)

The results show that having an underlying comorbidity or disease 
significantly rises the death risk. The male sex also indicates a 
higher level of death risk, in inferential terms. The death risk also 
rises with age, with the age group of 80+ Years exhibiting a 95% 
confidence interval for the death proportion with a lower bound of 
0.505483 and an upper bound of 0.513633 Figure 2.

Figure 1: Percentage of cases with underlying comorbidity or disease by 
age group.

Figure 2: Upper and lower bounds of 95% confidence intervals for the 
death proportion conditional on the age group variable.
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led to the calculation of approximations to reliability plot error 
metrics, estimated from binning [14,15].

On the other hand, when feature variables are qualitative, which is 
our case, then, no additional binning is needed, in these cases, an 
exact feature space can be used to calculate the Bernoulli success 
proportions, so that the reliability plot works with a frequencist 
underlying logic, since it compares, for each alternative feature 
variables’ configuration, observed Bernoulli success proportions 
and the machine learning-based probability predictions, without 
any binning involved. 

If the number of samples for each qualitative feature variables’ 
configuration is large enough for the law of large numbers to hold, 
then, we can use the reliability plot’s underlying frequencist logic 
and estimate calibration metrics, from the reliability plot, without 
any binning decisions involved in the process. 

In our case, reliability-plot main metrics can be employed to 
evaluate the machine learning models’ performance, without 
binning impact considerations entering into play, since, as shown 
in the previous subsection, we are dealing with a finite discrete set 
of feature variables and an exact conditional sample proportions’ 
distribution, without having to resort to any additional binning 
to get the reliability plot, noticeably, while age is a continuous 
quantitative variable, the CDC’s age group is already pre-binned 
into nine age groups, becoming an ordinal feature variable, so 
that for our base dataset no additional binning considerations are 
involved in obtaining the reliability plot.

Indeed, when dealing with a finite discrete set of alternative vector 
values for feature variables, which is the case when only qualitative 
features are being used, the reliability plot becomes the plot of the 
following ordered pairs’ finite set   

Where          is the predicted conditional probability for the Bernoulli 
success by the machine learning model when an individual is 
characterized by the feature vector x and p(x) is the corresponding 
conditional sample proportion.

In this case, of finite discrete alternative feature values’ set X, the 
number of points N in the reliability plot coincides with the size 
of the set X, that is, it coincides with the size of the feature space, 
therefore, working with the reliability pairs, one can calculate, for 
a such reliability plot, a Reliability Plot Root Mean Square Error 
(RPRMSE) defined as follows:

If the number of calibration points     is sufficiently large, the 
reliability plot’s RPRMSE becomes a statistically relevant metric 
for the deviation between the machine learning-predicted success 
probabilities and the observed success proportions.

The lower the RPRMSE is, the closer are the predicted probabilities 
to the observed sample proportions. This measure has the 
advantage that it directly addresses the reliability plot and penalizes 
deviations where risk is underestimated or overestimated, which is 
a problem that has been identified in regards to the Brier loss in 
the medical context, since this loss can penalize less cases of risk 
underestimation as addressed in [13].

The reliability plot’s explained variance score is another possible 
metric that can also be estimated for a reliability plot with a finite 

discrete feature space, when the number of plotted reliability 
points is sufficiently large (that is, when is large), so that we have 
the following Reliability Plot Explained Variance (RPEV):

These metrics, which are used in machine learning regression 
problems, can be applied to the reliability plot, worked as a 
scatter plot, where the observed Bernoulli success proportions are 
compared with the predicted success probabilities.

Reliability plot-based metrics have the advantage that they directly 
address the probability prediction task, comparing observed 
proportions with predicted probabilities. A basic statistical 
assumption is that there is a sufficiently large number of samples 
for each alternative feature variables’ configuration so that the law 
of large numbers applies to each estimated sample proportion, in 
this case, the closest the predicted probabilities are to the sample 
proportions, with the law of large numbers holding, the better 
performing is a machine learning model at probability prediction, 
in the sense that it may be capturing better the theoretical 
probabilities, this is a basic assumption underlying the reliability 
plot itself, which compares observed proportions with predicted 
probabilities. 

For model selection, given the critical role of reliability plots in 
finding well-calibrated models that neither underestimate nor 
overestimate risk, overcoming some of the reported problems of 
the Brier loss applied to the medical context [13], and considering 
also the nature of the feature variables’ space that we are working 
with, we will use the RPRMSE and the RPEV as main model 
selection criteria, even though we also report both the Brier loss 
and the AUC metrics.

Tree-based ensemble machine learning models

Decision trees are discriminant-based hierarchical models 
for supervised learning that lead to a bridge with rules-based 
artificial intelligence systems, since the resulting final tree can be 
expressed as a set of branching if-then rules, which makes these 
models interpretable and good for use in clinical diagnosis, 
another advantage of tree models is that for ordinal or nominal 
feature variables, a numeric encoding is less problematic than for 
estimators that work with sums of values of the feature variables 
multiplied by weights, as is the case with logistic regression and 
also for other models like neural networks, in these last cases, if not 
carefully done, the encoding can lead to problems when weighted 
sums over numerically encoded qualitative feature variables are 
used to produce a prediction as well as when different numerical 
encoding scales are warranted.

The downside of decision trees is, however, that single-tree models 
suffer from high variance and sometimes can lead to poorer results 
when compared with alternative machine learning models, which 
reduces their applicability. Tree-based ensemble models were 
developed to overcome the problem of the high variance and lower 
performance, making tree-based methods competitive as machine 
learning solutions.

There are two major tree-based ensemble methods: randomization 
and boosting [16]. Randomization methods try reduce the variance 
of trees by introducing randomization into the learning algorithm 
and/or into the learning sampling process, with the predictions 
being aggregated by an average or a majority vote, boosting 
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methods use weak learners and an adaptive process for increasing 
performance. Randomization and boosting can also be combined 
with each other. The randomization models that we will compare 
are the following:

• Random forest with bootstrap sampling and Out-Of-Bag (OOB)
scoring;

• Extremely randomized trees without bootstrap sampling;

• Extremely randomized trees with bootstrap sampling and OOB
scoring.

Random forests were introduced by Breiman [17] as a way to 
improve tree-based ensembles’ performance, while not increasing 
the bias significantly [16,17]. Random forests have been applied in 
the medical context [7-10], including, most recently, to the SARS-
CoV-2 pandemic [18,19].

In a random forest, each tree in the ensemble is sampled 
independently, with the same distribution for all the trees in the 
forest, and such that the generalization error converges almost 
surely to a limit with an increase in the number of trees [17].

The method employs bootstrap samples, where each tree in the 
ensemble is trained on a sample drawn with replacement from 
the training set, which makes random forests effective learners for 
smaller datasets, this bootstrap sampling can be enhanced with 
Out-Of-Bag (OOB) samples, used to estimate the generalization 
accuracy, which may reduce the tendency of trees to over fit and 
increase the performance on test data. 

For small data, where training, validation and test samples would 
greatly reduce the number of examples, the use of OOB samples is 
a useful way to integrate a validation process in learning, increasing 
the generalization ability and reducing over fitting.

Another source of randomness in random forest models comes 
from the criterion for splitting nodes in the trees, in this case, the 
best fit can be found either from all input features, or, alternatively, 
by taking a random subset of features of a predefined size.

The bootstrap sampling with OOB scoring and the random choice 
of features for each split are aimed at decreasing the variance and 
reducing the tendency for over fitting.

The variance reduction and increased performance is strongly 
linked to the randomness in the ensemble, which tends to lead 
to trees with low correlated or even decoupled prediction errors 
[16,17], so that by taking the average over the trees, the overall error 
and variance tend to be reduced.

Throughout the work, we will use Python’s scikit-learn library, 
which introduces a further element over the original random forest 
model proposed by Breiman [17], in the scikit-learn library, the 
ensemble classifier combination is obtained by averaging over the 
trees’ probabilistic prediction, instead of the approach in which 
each tree in the ensemble votes for a single class.

A decision tree ensemble randomization method alternative 
to random forests was proposed in [16], this method is called 
extremely randomized trees, which takes randomization one step 
further, selecting a cut-point at random, independently of the 
target variable, at each tree node there is also a random choice of a 
number of attributes among which the best one is determined [16].

The extremely randomized trees method generates a higher 
diversity of trees, since it builds randomized trees whose structures 

are independent of the target variable values of the learning sample. 
The method shares with random forests the fact that a random 
subset of candidate features is used for tree expansion, but, instead 
of looking for the most discriminative thresholds, these thresholds 
are randomly drawn for each candidate feature, such that the 
thresholds with the best performance are used for splitting.

This method is aimed not only at increasing accuracy through 
the threshold randomization, it also reduces the variance of the 
ensemble since it produces a greater diversity of trees that are 
randomized in such a way that is independent of the output values 
of the learning sample [16].

A major difference is that the randomized trees method does not 
apply bootstrap samples, using, instead, the whole training dataset. 
However, one can also implement the method with bootstrapping 
and OOB scoring, incorporating Breiman’s bagging [17], a feature 
that is allowed by the scikit-learn library and that we will employ 
and compare with the case without bootstrapping.

The boosting methods that we will test are AdaBoost and gradient 
boosting methods. AdaBoost predates random forests, indeed, 
Breiman [17] introduced random forests as an alternative method 
to AdaBoost, which was developed by Freund and Schapire [20].

AdaBoost works with an ensemble of weak base learners, for 
instance, small decision trees, the method, then, uses randomly 
drawn sequences of training examples of ordered pairs of values 
for the feature variables and target, these are the labelled instances, 
the initial probability that a labelled instance is used for the j-th 
learner is set equal to 1/N, at each iteration the probability weights 
are modified in such a way that the training examples that were 
incorrectly predicted have their weights increased while those that 
were correctly predicted have their weights decreased, so that the 
ensemble exhibits an adaptive dynamics progressively learning to 
predict better that which it failed to predict well in the previous 
iterations.

The use of weak learners is aimed at avoiding over fitting, while 
the repeated use of the training data also allows the method to 
work well on small training datasets. In a classification problem, 
at the end of training, the ensemble-based prediction is such that 
the predictions from all of the learners are combined through a 
weighted majority vote for a final prediction.

Like random forests, the method also reduces variance and increases 
prediction performance and was introduced as an extension of 
online prediction to a general decision-theoretical setting [20], 
which was applied in the original article to a general class of 
learning problems involving decision making, including gambling, 
multi-outcome prediction and repeated games, indeed, Freund and 
Schapire’s proposed method was introduced in the original article 
as a decision-theoretic generalization of online learning and an 
application to boosting [20].

Even though random forests were proposed by Breiman as an 
alternative to AdaBoost, the two methods can be combined, 
indeed, Leshem and Ritov [21] did combine these two methods, 
using random forests as the base learners, applying random 
forests boosted with AdaBoost to predict traffic flow, this led to 
boosted random forests as the next type of boosting algorithm, 
that combines the randomization methods and bagging with the 
AdaBoost.

Boosted random forests have been most recently applied to 
COVID-19 in [19], using patients’ geographical, travel, health 
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and demographic data to predict the severity of the case and the 
possible outcome, including, recovery or death, with an accuracy 
of 94% and an F1 Score of 0.86, the analysis developed in [19] 
revealed that death rates were higher among Wuhan natives when 
compared to non-natives and that male patients had a higher 
death rate when compared to female patients, with the majority of 
affected patients in ages ranging from 20 to 70 years.

We will expand here on boosted random forests and include 
also, in the tested models for COVID-19 death probability 
prediction, boosted extremely randomized trees with and without 
bootstrapping.

Besides standard AdaBoost, boosted random forests and boosted 
extremely randomized trees, we will also test two other boosting 
methods: gradient boosting decision trees and histogram gradient 
boosting.

Gradient boosting methods have been successfully applied 
to COVID-19 prognostic prediction using as features Lactic 
Dehydrogenase (LDH), lymphocyte and high-sensitivity C-Reactive 
Protein (hs-CRP) [6].

The gradient boosting decision trees method, introduced by 
Friedman [22,23], combines, sequentially, decision trees as base 
learners so that each new decision tree fits to the residuals from 
the previous step, which increases the accuracy and accelerates the 
learning process.

Recently, in [24], a new gradient boosting method called 
LightGBM was proposed, which, as the authors showed, was 
capable of outperforming leading gradient boosting decision trees’ 
accelerating algorithms, including XGBoost, both in terms of 
training time and accuracy. In this sense, LightGBM is a big data 
scalable method with state-of-the-art results. This method has been 
applied to EEG analysis and has been shown to have state-of-the-art 
performance when compared with convolutional neural networks, 
gated recurrent units, support vector machines, and large margin 
nearest neighbor models, outperforming these models in real-time 
EEG mental state prediction [25]. 

The LightGBM-based histogram gradient boosting algorithm, 
which is implemented by scikit-learn, bins the training data, which 
may be an advantage for quantitative continuous-valued feature 
variables, however, it may also be seen as a disadvantage for discrete 
qualitative data, and one needs to be careful in considering the 
ordering of variables in a numeric recoding process, however, if 
feature variables are ordinal, and a good recoding is achieved, 
defining, for binary variables, the order in terms of the Bernoulli 
success, with one-hot encoding used for qualitative nominal 
variables, this method can still be used to accelerate the gradient 
boosting learning process, where the bins can lead to the discovery 
of patterns that may increase accuracy, especially in the case of 
many-features leading to a combinatorially sufficiently high number 
of alternative values for the full discrete finite feature space. 

For our main dataset, the binning done by sciki-learn’s LightGBM-
based method becomes equivalent to defining subsets from 
the whole discrete feature space, which is a finite set of size 36, 
accelerating the gradient boosting process, the maximum number 
of bins can, therefore, in our case, be set to 36.

Considering the above review, we will be comparing the following 
major tree-based ensemble machine learning models in COVID-19 
death probability prediction on the CDC dataset:

• Random Forest (RF)

• Extremely Randomized Trees (ERTs)

• Extremely Randomized Trees with bootstrap sampling and OOB
scoring (BERTs)

• AdaBoost

• Boosted Random Forest (Boosted RF)

• Boosted Extremely Randomized Trees (Boosted ERTs)

• Boosted Extremely Randomized Trees with bootstrap sampling
and OOB scoring (Boosted BERTs)

• Gradient Boosting Trees (GBTs)

• Histogram Gradient Boosting (HGB).

We also compare the performance of the above methods with that 
of logistic regression, used as a basic benchmark, we chose the 
logistic regression for a benchmark, since it is a major machine 
learning model used when dealing with probability prediction in 
risk contexts, especially in the healthcare context, and it has been 
successfully applied to COVID-19 symptoms modeling [26]. 

For performance evaluation, we use the metrics reviewed in the 
previous subsection and choose the best performer on test data to 
extract the probability profile for further analysis.

RESULTS

Main results and performance evaluation

In this section, we analyze the performance of the logistic regression 
and the main tree-based ensemble models reviewed in the previous 
section. The training set was a randomly chosen sample of 413,800 
cases, leaving 413,801 cases in the test sample, which gives an 
around 50/50 distribution of cases.

For the logistic regression, the inverse of regularization strength was 
set equal to 10, we also employed 5-fold cross-validation with L2 
penalty and lbfgs solver. For the RF, ERTs, boosted RF and boosted 
ERTs models, we used 100 trees, and Gini impurity measure.

In the case of the RF model, we employed bootstrap sampling with 
OOB scoring, in the case of the ERTs, we employed the method 
without bootstrap sampling and with bootstrap sampling which 
also employed OOB scoring.

For the boosting algorithms, the AdaBoost used 100 trees of 
maximum depth equal to 2, and SAMME.R algorithm, the 
maximum number of features when looking for the best split was 
set to the square root of the number of features, we tried with 
other parameters and got worse results for the algorithm. In the 
case of the boosted RFs and boosted ERTs we also used 100 base 
estimators, each comprised of 100 trees.

For the GBTs we used Friedman mean squared error, 100 estimators 
and a subsample of 75%, the choice of a subsample was aimed at 
variance reduction, and was set to value 75% rather than lower due 
to a tradeoff with bias. For the HGB, we used a learning rate of 7% 
and an L2 regularization of 2%, the maximum number of bins was 
set equal to 36 which is the full size of the discrete feature space, we 
also did not employ early stopping.

We experimented on different parameters and found the results 
to be resilient for all the models being tested, for the histogram 
boosting, however, we found that there was a small region of 
learning rates and regularization parameters that yielded a good 
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performance, a learning rate of 7% and a regularization of 2% 
yielded the best results.

For the training and testing of the different machine learning 
models, scikit-learn version 0.23.1 was employed, using Anaconda 
3 package with Spyder IDE version 3.8, which works with Python 
version 3.8.3.

In Figure 3, we show the logistic regression’s reliability plots, for the 
training and test data, while, in the upper plot region, the predicted 
probability versus the observed proportion shows a good fit, there 
is some dispersion in the lower region.

The identification of risk factors for severe SRs led to a Significant 
Reduction in fatalities to SCIT, although complete prevention has 
not yet been achieved. SLIT, born with the aim of a higher safety, 
met this need, since no fatality has ever been reported. However, 
since the treatment is self-administered by the patient, it is essential 
that the first dose is received under medical supervision and that 
the patient receives all information to avoid dosing errors.

Considering the RFs, ERTs and BERTs, as shown in Figure 4, all 
models exhibit a good fit to the diagonal line in the reliability plots, 
therefore, in terms of visual analysis, all these models seem to show 
a good calibration, that also seems to be better than the logistic 
regression model.

Evaluating, now, the reliability plots for AdaBoost, boosted RFs, 
boosted ERTs and boosted BERTs, unlike in the previous models, 
we find a poor calibration, as can be seen in the reliability plots 
shown in Figure 5.

In order to work these models, we need to employ calibration 
methods, in order to correct for the poor calibration [11]. Platt’s 
calibration and isotonic regression, which is a generalization of 
Platt’s method by fitting an isotonic function instead of fitting 
a sigmoid as in Platt’s calibration, are the two main methods of 
calibration that have been worked for binary targets [11] and that 
can be used to correct for miscalibration.

For this dataset, we found a better performance using isotonic 
calibration, so we applied isotonic calibration to the four boosted 
models that employed AdaBoost.

After calibration, all the four models exhibit a good fit to the 
perfect calibration line (the main diagonal) in the reliability plot, 
as shown in Figure 6.

The two other gradient boosting models GBTs and HGB show a 
good fit both in training and in testing, without the need for the 
application of a calibration method, as shown in Figure 7.

Figure 3: Training and test data reliability plots for the logistic regression.

Figure 4: Training and test data reliability plots for the RF, ERTs and 
BERTs.

Figure 5: Training and test data reliability plots for the AdaBoost with 
decision trees, boosted RF, boosted ERTs and boosted BERTs.
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After analyzing the main reliability plots, we now need to analyze the 
main calibration performance metrics which are shown in Tables 
3 and 4. Considering the results shown in these tables, we find 
that all machine learning models exhibit a high sample calibration 
performance, in both training and testing, with all models having a 
more than 98% of reliability plot explained variance Figure 7.

Table 3: Main metrics for the machine learning models in the training 
data.

Method Brier AUC RPRMSE RPEV

Logistic Regression 0.0528436 0.9174214 0.0205491 0.981044

RF 0.0526933 0.9191003 0.0003487 0.9999943

ERTs 0.0526929 0.919101 0 1

BERTs 0.0526932 0.9191061 0.0003821 0.999993

Calibrated 
AdaBoost

0.052692 0.919184 0.002269 0.9997612

Calibrated 
Boosted RF

0.0526934 0.9191359 0.0008183 0.9999692

Calibrated 
Boosted ERTs

0.0526929 0.9191255 0.0007929 0.9999698

Calibrated 
Boosted BERTs

0.0526934 0.9191359 0.0008183 0.9999692

GBTs 0.052694 0.9191395 0.0017032 0.9998609

HGB 0.0526929 0.919101 0.0001473 0.999999

Table 4: Main metrics for the machine learning models in the test data.

Method Brier AUC RPRMSE RPEV

Logistic 
Regression

0.0527035 0.9179402 0.018492 0.9844724

RF 0.0525347 0.9196267 0.0056403 0.9986259

ERTs 0.052535 0.919627 0.0054633 0.9987093

BERTs 0.0525348 0.9196267 0.0053414 0.9987733

Calibrated 
AdaBoost

0.0525351 0.9196238 0.003961 0.999323

Calibrated 
Boosted RF

0.0525348 0.9196226 0.0059652 0.9984652

Calibrated 
Boosted 

ERTs
0.0525348 0.9196262 0.0054924 0.9986929

Calibrated 
Boosted 
BERTs

0.0525348 0.9196226 0.0059652 0.9984652

GBTs 0.0525355 0.919606 0.0049337 0.9989557

HGB 0.0525347 0.919627 0.0055371 0.9986714

The logistic regression has a good performance, with a Brier 
loss, for the training data, of 0.0528436 and, for the test data, of 
0.0527035. The AUC is of 0.9174214, for the training data, and of 
0.9179402, for the test data.

Considering the reliability plot’s RMSE and explained variance, 
the logistic regression has a training data RPMSE of 0.0205491 
and a test data RPMSE of 0.0184920, the training data RPEV is 
0.9810440 and the test data RPEV is 0.9844724, which shows that 
the logistic regression’s COVID-19 predicted death probabilities, 
conditional on the feature values, explains slightly more than 98% 
of the variability of the conditional sample proportions. 

Overall these results show a good performance of the logistic 
regression in COVID-19 death probability prediction, however, 
when we turn to the ensemble tree-based models, we find that they 
all perform even better than the logistic regression, with a RPEV 
that is higher than 0.99, in both training and test data, that is, 
these models’ probability predictions, conditional on the feature 
values, account for more than 99% of the conditional sample 
proportions’ variability. The RPRMSE for all tree-based models 
also show a value lower than 1%, both in the training data and in 

Figure 6: Training and test data reliability plots for the RF, ERTs and 
BERTs.

Figure 7: Training and test data reliability plots for GBTs and HGB.
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the test data, outperforming the logistic regression in the reliability 
plot metrics, which confirms our previous visual analysis.

Considering the Brier loss, we find that the best performer in the 
training data is the AdaBoost with isotonic calibration, which is 
also the model with the highest AUC. In the test data, the best 
performer, in accordance with the Brier loss, is the ERTs model, 
which, along with the HGB model, has the highest AUC. In this 
case, the two estimated AUC values do coincide. 

As a note, although the test data Brier score has the same value, 
up to a seventh decimal place approximation, to that of HGB and 
RF, the values are actually different, the ERTs model has a test 
dat Brier score of 0.0525346880585105, while the HGB and the 
RF models have test data Brier scores of 0.0525347010331709 
and 0.0525347253515783, respectively, so that the ERTs model is 
indeed, the one with the lowest Brier score in the test data.

However, the Brier loss can be misleading, as argued in [13]. If 
we look at the RPRMSE and RPEV we find an inverse relation: 
the ERTs model is the best performer in training but not in the 
test data, where we find that the best performer is the isotonic 
calibrated AdaBoost.

For the ERTs model, there seems to be an over fitting in training, 
where the ERTs capture the training sample proportions with 
approximately 100% explained variance and 0 RPRMSE, but when 
we look at the test data, the RPRMSE rises to 0.0054633 and the 
RPEV decreases to 0.9987093.

The best performer in test data is the calibrated AdaBoost which 
is the only one with higher than 0.999 test data RPEV, with all 
the other tree-based algorithms exhibiting RPEV slightly higher 
than 0.998 but lower than 0.999, in the test data. Also, with the 
exception of the GBTs and calibrated AdaBoost models, all the 
ensemble tree-based models have a test data RPEV that is higher 
than 0.005.

The calibrated AdaBoost model does not fit as well as the others in 
the training data, in what regards the reliability plot metrics, but it 
gains in generalizability with relatively stable results in these metrics, 
from training to testing, showing an RPRMSE of 0.0022690 in the 
training data and of 0.0039613 in the test data, which shows that 
there is no significant loss of calibration performance.

A similar pattern to the RPRMSE can be seen in AdaBoost’s 
RPEV which has a value of 0.9997612 in the training data and of 
0.9993227 in the test data, showing a consistent performance in 
both training and test data, with the model explaining more than 
99.9% of the conditional sample proportions variability. 

Given these results, we will use the calibrated AdaBoost model 
for the profiling. Nevertheless, we show, in Table 5, the death 
probability profile provided by the calibrated AdaBoost side by side 
with the one provided by the ERTs.

Table 5: Probability profiles for the Calibrated AdaBoost and the ERTs.

Sex Age group
Medical 

condition
Calibrated 
AdaBoost

ERTs Deviation

Female 0-9 Years No 0.000662 0.000672 9.85E-06

Female 0-9 Years Yes 0.001094 0.000814 2.81E-04

Female 10-19 Years No 0 0 0.00E+00

Female 10-19 Years Yes 0.001541 0.001801 2.59E-04

Female 20-29 Years No 0.000194 0.000216 2.28E-05

Female 20-29 Years Yes 0.002962 0.003243 2.82E-04

Female 30-39 Years No 0.000662 0.000734 7.19E-05

Female 30-39 Years Yes 0.00757 0.007668 9.81E-05

Female 40-49 Years No 0.001543 0.00179 2.47E-04

Female 40-49 Years Yes 0.018027 0.017878 1.49E-04

Female 50-59 Years No 0.004398 0.003963 4.35E-04

Female 50-59 Years Yes 0.044294 0.044567 2.73E-04

Female 60-69 Years No 0.012529 0.012203 3.26E-04

Female 60-69 Years Yes 0.114547 0.114555 7.87E-06

Female 70-79 Years No 0.050531 0.04876 1.77E-03

Female 70-79 Years Yes 0.262284 0.263278 9.94E-04

Female 80+ Years No 0.229577 0.228674 9.03E-04

Female 80+ Years Yes 0.490248 0.490292 4.37E-05

Male 0-9 Years No 0.00052 0.000435 8.50E-05

Male 0-9 Years Yes 0.000662 0.000713 5.11E-05

Male 10-19 Years No 0.000122 0.000154 3.22E-05

Male 10-19 Years Yes 0.002263 0.002217 4.58E-05

Male 20-29 Years No 0.00052 0.000406 1.14E-04

Male 20-29 Years Yes 0.00757 0.007817 2.47E-04

Male 30-39 Years No 0.001541 0.001342 1.99E-04

Male 30-39 Years Yes 0.02231 0.022233 7.68E-05

Male 40-49 Years No 0.004846 0.004935 8.87E-05

Male 40-49 Years Yes 0.044693 0.044556 1.37E-04

Male 50-59 Years No 0.010987 0.011164 1.77E-04

Male 50-59 Years Yes 0.090999 0.090938 6.05E-05

Male 60-69 Years No 0.026159 0.026145 1.40E-05

Male 60-69 Years Yes 0.193004 0.192963 4.11E-05

Male 70-79 Years No 0.081416 0.081068 3.48E-04

Male 70-79 Years Yes 0.355986 0.355941 4.48E-05

Male 80+ Years No 0.280218 0.266824 1.34E-02

Male 80+ Years Yes 0.596808 0.596867 5.92E-05

As can be seen from Table 5 results, the deviation between the two 
algorithms is not that significant, with the largest deviation being 
of around 0.013394 (which occurs for male individuals with no 
underlying comorbidity or disease of the 80+ age group), therefore, 
from Table 5 results it follows that the general pattern of the profile 
that we now analyze for the calibrated AdaBoost also holds for 
the ERTs, a point that reinforces the robustness of the findings, 
it is also worth stressing that the test data Brier score difference 
between the calibrated AdaBoost and the ERTs is small, of around 
4.434E-07.

COVID-19 death probability profile

In Figure 8 and Table 6, we show the probability profile produced 
by the calibrated AdaBoost model, we find that the predicted death 
probability increases exponentially with age, a pattern that we also 
saw in the inferential analysis for the age factor, but the rate of this 
increase depends upon the sex and medical condition.

Table 6: Probability profile for the age group, sex and underlying 
comorbidity or disease, extracted from the calibrated Adaboost model. 

Age Group
No underlying comorbidity 

or disease
With underlying 

comorbidity or disease

Male Female Male Female

0-9 Years 0.00052 0.000662 0.000662 0.001094

10-19 Years 0.000122 0 0.002263 0.001541
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assigned death probability by the model that is already higher than 
the 70-79 males with no underlying comorbidity or disease, which 
indicates that 50-59 males with underlying comorbidity or disease 
can be considered as a group with comparable risk to that of 70-79 
males with no underlying comorbidity or disease.

If we consider the 1% death probability mark, we find that while 
this threshold, for individuals with no underlying comorbidity 
or disease, is surpassed at the age group of 50-59 years for males 
and at 60-69 years for females, when we consider individuals 
with underlying comorbidity or disease, the 1% death probability 
threshold is surpassed at age group 30-39 for males and at 40-49 for 
females. The 1% death probability threshold is thus surpassed with 
an around 20 year’s reduction in the age group, for people with 
underlying comorbidity or disease in comparison with those that 
do not have an underlying comorbidity or disease.

For the age group 60-69, the model assigns a death probability for 
males with underlying comorbidity or disease that is near 20%, 
at 70-79 this probability rises to near 35.6% and at 80+ years it is 
near 60%. 

For the females we find a slower build up with a growing distance 
from the males, but, even so, we have a high risk for females with 
underlying comorbidity or disease from the 50-59 age group 
onwards, with a more than 11% assigned death probability for 
the 60-69 age group, which is higher than the females with no 
underlying comorbidity or disease of the 70-79 age group, for this 
last group the females with underlying comorbidity or disease have 
an assigned death probability slightly higher than 26% and the 80+ 
group shows a rise to around 49%.

Having analyzed the main profile, we now discuss these results in 
connection with recent studies on COVID-19.

DISCUSSION 

Our results show that machine learning models can be applied 
to successfully capture the COVID-19 death probability profiles, 
conditional on three main identified risk factor variables: sex, age 
and underlying comorbidity or disease.

The tree-based ensemble machine learning models that we 
compared, when applied to the qualitative variables that comprise 
the CDC’s database for these factors, were capable of capturing 
more than 99% explained variance of the reliability plots, in both 
training and test data, showing an improved performance over 
the logistic regression model which captured 98.10440% of the 
training data reliability plot’s explained variance and 98.44724% 
of the test data reliability plot’s explained variance. 

While the AdaBoost-based models (AdaBoost, boosted RF, 
boosted ERTs and boosted BERTs) all showed poor calibration, 
after isotonic calibration, all exhibited a good calibration and 
the isotonic calibrated AdaBoost was the best performing model 
in the test data reliability plot-based metrics, both in regards to 
the reliability plot’s RMSE (0.0039613) and explained variance 
(0.9993227), in the training data these metrics were of 0.0022690 
and 0.9997612, respectively.

The calibrated AdaBoost also showed the lowest Brier loss in the 
training data, though in the test data the lowest Brier loss was 
obtained by the ERTs model, however, the difference between the 
two models’ test data Brier loss is of around 4.434E-07. Given the 
reliability plot performance of the calibrated AdaBoost we analyzed 
that model’s results, even though the overall profiles produced by 

20-29 Years 0.00052 0.000194 0.00757 0.002962

30-39 Years 0.001541 0.000662 0.02231 0.00757

40-49 Years 0.004846 0.001543 0.044693 0.018027

50-59 Years 0.010987 0.004398 0.090999 0.044294

60-69 Years 0.026159 0.012529 0.193004 0.114547

70-79 Years 0.081416 0.050531 0.355986 0.262284

The first point that one can notice is that age and the medical 
condition variables seem to critically affect the death probability, 
with the male sex being a factor in increasing the death risk. 
Furthermore, the risk difference between male and female sex 
seems to increase with the age group, so that while both males and 
females have an exponentially increasing death probability, the 
males show a more rapid exponential rise in the death probability 
than females. These differences between males and females become 
more significant for people with underlying comorbidity or disease.

Considering people with no underlying comorbidity or disease, 
according to the isotonic calibrated AdaBoost model, the 1% 
death probability is surpassed at the age group 50-59 in males and 
at 60-69 in females, for this last age group, the calibrated AdaBoost 
model assigns to males a death probability higher than 2%. At 
70-79 the males have an assigned death probability slightly higher
than 8%, while the females have an assigned death probability
slightly higher than 5%, however, at 80+ both males and females,
with no underlying comorbidity or disease, have a higher than
20% assigned death probability, with the males having a death
probability, assigned by the model, slightly higher than 28% and
the females near 23%. This is the highest difference between the
two sexes for people with no underlying comorbidity or disease,
which is an around 5% difference.

If we compare this difference with that obtained for the same age 
group, 80+, but with underlying comorbidity or disease, we find 
a difference near 11% between the two sexes, which shows that, 
while being of the male sex is a differentiating risk factor, it is a 
much higher risk factor for people with underlying comorbidity 
or disease.

Overall, the general profile for people with no underlying 
comorbidity or disease is close for both sexes, with the more critical 
age groups being situated in the ages of 70-79 and 80+ years.

In the case of people with underlying comorbidity or disease, the 
critical threshold for high risk group is much lower, indeed, at 50-
59 years, the males with underlying comorbidity or disease have an 

Figure 8: Probability profile plot for the age group, sex and underlying 
comorbidity or disease, extracted from the calibrated AdaBoost model.
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these two models are close to each other, so that the main findings 
do not change.

The resulting profile confirms and reinforces previous studies’ 
results [1-5,18,26,27] on COVID-19 risk factors. The profile is also 
consistent with the exponential increase in death risk with age, that 
we analyzed inferentially. The results also show that the definition 
of what is a risk group needs to factor age, sex and underlying 
comorbidity or disease with segmented risk group profiling, indeed, 
males are in general more at risk, but their risk gap with respect to 
female patients increases when underlying comorbidity or disease 
is present. 

In the COVID-19 death risk profile, while the presence of an 
underlying comorbidity or disease lowers the high risk age 
threshold and operates as an exponential accelerator of death 
probability, by increasing the exponential growth rate of death 
probability with age, it also rises significantly the death probability 
values for the high risk age groups, explaining the reason for the 
death proportion’s 95% confidence intervals that we calculated in 
the exploratory data analysis for the age groups.

In this sense, from the machine learning profile, it follows that the 
95% confidence interval for the 70-79 years age group that situates, 
on an inference level, the population’s death proportion between 
0.272681 and 0.279785, and the 95% confidence interval for the 
80+ years age group, that situates the population’s death proportion 
between 0.505483 and 0.513633, may be largely driven by the 
combined effect of age and underlying comorbidity or disease, 
which leads, in the case of the age group 70-79, for individuals with 
underlying comorbidity or disease to a predicted death probability 
of 0.355986 for males and 0.262284 for females, likewise, in the 
case of the 80+ age group, these probabilities rise to 0.596808 in 
the case of males and to 0.490248 in the case of females.

The fact that males with no underlying comorbidity or disease also 
tend to have higher death risk than females as age progresses also 
reinforces the findings of an asymmetric impact of COVID-19 in 
regards to sex and is consistent with previous studies’ results [1-5]. A 
possible explanation provided in [5], regarding male infectiousness, 
relates to smoking and higher circulating angiotensin converting 
enzyme 2 (ACE2) levels in men, SARS-CoV-2 utilizes ACE2 
receptors found at the surface of the host cells to get inside the cell, 
this is also an important factor in specific underlying comorbidities 
or diseases.

As researched in [27], patients with obesity, diabetes, chronic 
obstructive pulmonary disease, cardiovascular diseases, 
hypertension, malignancies, HIV and other underlying 
comorbidities or diseases develop life-threatening situations. 
Underlying comorbidities or diseases that are associated with a 
strong ACE2 receptor expression can, as argued in [27], enhance 
the viral entry of SARS-CoV-2 into host cells, this factor along 
with weakened immune systems may work as accelerators of life 
threatening conditions and may help explain the exponential 
increase in death probability with age, an exponential increase 
that shows, in the probability profile produced by the calibrated 
AdaBoost model, an accelerated exponential growth rate when an 
underlying comorbidity or disease is present, as we saw above, a 
point that holds for both the isotonic calibrated AdaBoost and the 
ERTs.

Common comorbidities that show high COVID-19 fatality rates, 
include obesity, liver diseases, renal diseases, chronic obstructive 
pulmonary disease, cardiovascular diseases, diabetes, hypertension 

and malignancy standing out, with fatality rates, as reviewed in 
[27], respectively of 68% (for obesity), 29% (for liver diseases), 
26% (for renal diseases), 20% (for chronic obstructive pulmonary 
disease), 15% (for cardiovascular diseases), 8% (for diabetes), 6% 
(for hypertension) and 2% (for malignancy).

Returning to the model’s results, if, in terms of health policy, one 
fixes age-based high risk groups at 70-79 onwards, or even at 60-
69 onwards, this can lead to a flawed representation of the true 
death risk, the machine learning model indicates that we need to 
set the high risk age groups differentially on sex and underlying 
comorbidity or disease, indeed, we found the need for lowering the 
high risk age groups based on sex and underlying comorbidity or 
disease, thus, for instance, in males with underlying comorbidity 
or disease, the high risk group can be argued to start at 50-59 
years onwards. Indeed, 50-59 and 60-69 males with underlying 
comorbidity or disease are found by the machine learning model to 
be of a higher death risk than the 70-79 males with no underlying 
comorbidity or disease. 

These results have an important consequence, since individuals 
at age 50-59 and 60-69 are professionally active individuals, these 
individuals are potentially less able to remain confined and may be 
more exposed, if careful measures are not taken in the workspace, 
so that while we may expect, with the spread of the disease, not 
only higher frequencies of hospitalizations of individuals with 
no underlying comorbidity or disease of the 70-79 and 80+ age 
groups, which are high risk groups, we may also expect to see rising 
hospitalizations and possibly intensive care unit pressure coming 
from individuals of lower age groups, with underlying comorbidity 
or disease, especially males of the 50-59 age group onwards. For 
females with underlying comorbidity or disease we can also expect 
these rising hospitalizations and possibly intensive care unit 
pressure from the 60-69 age group onwards.

It is also worth stressing that the model identified another relevant 
point, the 40-49 age group is already of considerable risk for males 
with underlying comorbidity or disease and with a comparable risk 
to that of females with underlying comorbidity or disease but of the 
50-59 age group.

CONCLUSION

These results stress the need for further research on the combined 
impact of age, sex and underlying comorbidity or disease, towards 
helping explain and predict how different underlying comorbidity 
or diseases may impact asymmetrically sex and how they can be 
expressed exponentially with age enhancing the COVID-19 death 
risk.
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