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Abstract

A data set of 517 natural, synthetic and environmental chemicals belonging to a broad range of structural classes
have been tested for estrogenic activities (expressed as logREC10) to the estrogen receptor (ER) using a yeast two-
hybrid assay. In this study, quantitative structure- activity relationships (QSARs) were determined using two
methods, partial least square (PLS) and support vector machine (SVM). The Q2

cum of the PLS model is 0.678,
indicating high robustness and good predictive ability. The correlation coefficient (R) between the observed and the
predicted values is 0.870, indicating the predicted values by the final QSAR models were in good agreement with
the corresponding experimental values. Eight DRAGON descriptors were included in the PLS model, including
Mor03p, L3e, R8p, RTv

+, R8e, R1p
+, R7p

+ and HATSv, which implies that chemical estrogenic activities are related to
atomic properties (atomic Sanderson electronegativities, polarizabilities and van der Waals volumes). Comparison of
the results obtained from two models showed that the SVM method exhibited the best overall performances, with a
RMS error of 0.145 logREC10 units for the whole set. Moreover, three linear QSAR models were constructed for
some specific families based on their chemical structures. These predictive models should be useful to rapidly
identify potential estrogenic endocrine disrupting chemicals.
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Introduction
Scientific and public concern heightens over the potential health effects of exposure to environmental pollutants with endocrine disruption

potential [1]. Diminished or excessive production of estrogens is a major problem related to prostate cancer, spinal bular musular atrophy, and
female pattern baldness. Consequently, there is a need to develop screening and testing procedures for endocrine disrupting chemicals (EDCs).

Considering the high number of potential EDCs, this remains a labor intensive and time-costing operation. It is crucial to develop efficient
and economical alternative modeling approaches for the purpose of predicting the estrogenic activities of potential EDCs. Quantitative structure
activity relationship (QSAR) methods are the most promising and successful tools to provide rapid and useful meanings for predicting the
biological activity and chemical toxicity. They are considered as an important part of the priority setting process by the endocrine disruptor
screening and testing advisory committee (EDSTAC) [2]. QSAR are widely applied for the understanding of the mechanism of chemicals’
binding for the estrogen receptors (ER) [3-6], for androgen receptor (AR) and for several other members of the nuclear receptor family [7].
These include electrostatic models, comparative molecular field analysis (CoMFA) which considers the overall steric and electrostatic properties
of the compound of interest, computer graphic and energy (electrostatic and van der Waals) based models for fit into DNA and common
reactivity patterns (COREPA) which reflect the stereoelectronic features.

In this paper, a data set consisted of experimental values which were determined by Nishihara et al. [8], including 517 natural, synthetic, and
environmental chemicals from a broad range of structural classes. The data set was used to construct global QSAR models for the whole data set
and local models for specific well-known families. Some information descriptors were selected using Forward stepwise (FS) regression from the
original 709 DRAGON calculated descriptors and were applied to construct an optimal model based on SVM. Another classical method, partial
least square (PLS) [9] was utilized to establish QSAR model to compare the results with those obtained by SVM. In addition, some careful models
for specific well-known families were examined in conjunction with knowledge of the recently reported ligand-ER crystal structures.

Data and Methods

Experiment and data set
Because it is expected that the major key target of EDCs is the nuclear hormone receptor, which binds specifically to the steroid hormone and

regulates its gene expression, the yeast two-hybrid assay has been developed. Unlike yeast-based assay (YES) [10], another reporter gene assay
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using a yeast two-hybrid cells, the method contains the coactivator, so that the system more closely resembles the mammalian hormonal
system.A detailed description of the experimental methods is provided in Nishihara et al. [8].

The overall data set consisted of more than 500 organic chemicals, including natural substances, medicine, pesticides, and industrial
chemicals. Table 1 shows a summary of the test compounds with the names of 55 positive compounds. Tested chemicals consisted of natural
substances (metabolites, oxidation products, etc.), medicines, food additives, pesticides, and industrial chemicals (PCBs, PCDFs, PAHs, phenols,
benzenes, phthalates and adipates, and others). The estrogenic activities to the ER, expressed as log unit of 10% relative effective concentration
(logREC10), are listed in Table 1.

pre. logREC10
b

No Compounds obs.logREC10a PLS SVM

A. natural products and related

1 17α-Estradiol 3.125 3.461 2.905

2 Apigenin 6.523 5.999 6.303

3 Coumestrol 6.523 5.884 6.312

4 Daidzein 5.000 5.335 4.840

5 Dihydrogenistein 5.000 4.077 4.754

6 Equol 6.523 4.896 5.154

7 Estrone 2.000 3.802 3.367

8 Genistein 4.523 5.076 4.741

B. medicines, food additives, and related

9 17α-Ethynylestradiol 1.824 2.711 3.504

10 β-Estradiol-17-acetate 5.222 3.063 4.098

11 Diethylstilbesterol (DES) 1.824 2.496 2.042

12 Ethyl 4-hydroxybenzoate 7.523 6.844 7.303

13 Methyl 4-hydroxybenzoate 8.125 7.041 7.907

14 n-Butyl 4-hydroxybenzoate 6.000 5.662 6.313

15 n-Propyl 4-hydroxybenzoate 6.523 6.091 6.433

C. PCBs, PCDFs, PAHs, and related

16 2-Hydroxy benzo[a]pyrene 7.222 6.342 6.478

17 2-Hydroxy fluorene 7.523 7.476 7.589

18 3,8-Dihydroxy-2-chlorodibenzofuran 5.426 6.224 5.876

19 3-Hydroxy benzo[a]pyrene 6.523 7.216 6.431

20 4-Hydroxy-2',4',6'-trichlorobiphenyl 5.125 6.190 6.082

21 4-Hydroxy-2',4',6'-trichlorobiphenyl 6.301 6.190 6.082

22 8-Hydroxy-2,3,4-trichlorodibenzofuran 6.523 7.037 6.742

23 8-Hydroxy-2-monochlorodibenzofuran 6.523 7.220 6.673

24 8-Hydroxy-3,4,6-trichlorodibenzofuran 6.523 7.125 6.300

25 8-Hydroxy-3,4-dichlorodibenzofuran 6.222 7.165 6.401

26 8-Hydroxy-3-monochlorodibenzofuran 6.368 7.240 6.537

D. Phenols
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27 2,2-Bis(4-hydroxy-3-methylphenyl)propane 6.000 5.549 5.896

28 2,2-Bis(4-hydroxy-phenyl)butane 6.000 5.682 5.782

29 2,4-Dichlorophenol 7.125 7.180 6.918

30 3,4-Dichlorophenol 6.824 7.429 7.298

31 4,4'-Dihydroxybenzophenone 8.000 7.209 7.294

32 4,4'-Dihydroxybiphenyl 6.222 6.406 6.374

33 4,4'-Thiobiphenyl 6.000 5.984 5.780

34 4-Bromophenol 7.426 7.446 7.209

35 4-Chloro-3,5-xylenol 7.523 7.656 7.743

36 4-Chloro-3-methylphenol 7.222 7.358 7.251

37 4-Chlorophenol 7.824 7.537 7.605

38 4-Ethylphenol 7.000 7.331 7.324

39 4-Hydroxyacetophenone 7.824 7.595 7.915

40 4-Hydroxybiphenyl 7.000 7.462 7.482

41 4-Methylphenol (p-cresol) 8.000 7.523 7.604

42 4-n-Butylphenol 6.523 7.160 6.742

43 4-n-Hexylphenol 6.523 6.851 6.314

44 4-n-Pentylphenol 6.000 6.928 6.637

45 4-n-Propylphenol 7.368 7.114 6.881

46 4-sec-Butylphenol 6.523 7.159 6.981

47 4-tert-Butylphenol 7.000 6.201 6.184

48 4-tert-Octylphenol 4.824 5.805 5.615

49 4-tert-Pentylphenol 5.523 5.900 5.740

50 Bis(4-hydroxyphenyl)methane 6.824 6.981 7.101

51 Bisphenol A 6.000 5.707 6.023

E. Benzenes and heterocyclics

52 cis-1,2-Diphenylcyclobutane 8.000 7.569 7.783

F. Phthalates and adipates

53 Benzylbutyl phthalate (BBP) 8.222 7.128 7.833

54 Di-iso-propyl phthalate 8.824 7.837 8.605

55 Di-n-propyl phthalate 8.523 7.655 8.314

Table 1: Observed and predicted logREC10 for the global QSAR model. aObserved logREC10 obtained from reference [1]. bPredicted logREC10
obtained from PLS and SVM models, respectively.

Descriptor generation and selection
Structures of chemicals were drawn with the Chem Draw computer program. These were then geometry-optimized with the PM3

Hamiltonian using the software package Chemoffice 6.0 program, and exported into a file format suitable for MOPAC analysis. The resulting
geometry was transferred into the DRAGON software that was used to calculate molecular structural descriptors. Molecular descriptor meanings
and their calculation procedure are summarized in the DRAGON software, and explained in detail, with related literature references, in the
Handbook of Molecular Descriptors by Todeschini and Consonni [11].
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Generally, more descriptors should be considered in QSAR study so as to better characterize molecular structures. However, if no significant
relevant or irrelevant descriptors are included, the quality of prediction and robustness of the developed QSAR model may decrease, and its
interpretation becomes more difficult. Hence, descriptors selection is necessary for QSAR study.

In this work, the FS regression was employed to select the optimal subset from an original set of 709 calculated descriptors, as also did and
described in other studies [12]. As a result, 13 descriptors were obtained, which are listed in Table 2 with their physical-chemical meanings.

Descriptor Chemical Meanings Type*

Mor10e 3D-MoRSE - signal 10/ weighted by atomic Sanderson electronegativities 3D-MoRSE

Mor03p 3D-MoRSE - signal 03/weighted by atomic polarizabilities 3D-MoRSE

Mor23p 3D-MoRSE - signal 23/weighted by atomic polarizabilities 3D-MoRSE

L3e 3rd component size directional WHIM index/weighted by atomic Sanderson electronegativities WHIM

G1e 1st component symmetry directional WHIM index/weighted by atomic Sanderson electronegativities WHIM

Vs V total size index/weighted by atomic electrotopological states WHIM

R8p R autocorrelation of lag 8/weighted by atomic polarizabilities GETAWAY

RTv
+ R maximal index/weighted by atomic van der Waals volumes GETAWAY

H4p H autocorrelation of lag 4/weighted by atomic polarizabilities GETAWAY

R8e R autocorrelation of lag 8/weighted by atomic Sanderson electronegativities GETAWAY

R1p
+ R maximal autocorrelation of lag 1/weighted by atomic polarizabilities GETAWAY

R7p
+ R maximal autocorrelation of lag 7/weighted by atomic polarizabilities GETAWAY

HATSv leverage-weighted total index/weighted by atomic van der Waals volumes GETAWAY

Table 2: List of the molecular structural descriptors used in the model development and their physical-chemical meaning. *Type of descriptors:
Geometry, Topology and Atom-Weights AssemblY (GETAWAY) descriptors, Wessex Head Injury Matrix (WHIM), and 3D-Molecule
Representation of Structures based on Electron diffraction (3D-MoRSE).

PLS method
PLS regression was adopted here to develop QSAR model, for this method can analyze data with strongly collinear, noisy and numerous

predictor variables [9,13]. PLS regression was carried out using the Simca-S package (Umetrics AB, Sweden). The conditions for computation
were as follows: cross validation rounds=7, maximum iteration=200, missing data tolerance=50% and significance level (p) limit=0.05. Within
Simca, the number of significant PLS components (model dimensionality) is determined by cross-validation. Cross-validation simulates how
well a model predicts new data, and gives a statistic Q2cum (cumulative Q2, Q2 means the fraction of the total variation of the dependent
variables that can be predicted by a component) for the final PLS model [14]. Q2cum is a good measure of the predictive power and robustness
of the model. When Q2cum of a model is larger than 0.5, the model is believed to have a good predictive ability [15]. Besides Q2cum, model
adequacy mainly was measured as the number of PLS components (A), the correlation coefficient between observed and predicted values (R),
and the significance level (p). In addition, a general standard error (SE) was adopted to compare the prediction precision of different models. SE
was defined like that in multiple regression analysis, i.e,

SE =

∑
i=1

n
logREC10 obser v ed i− logREC10 predic ted i

2

n−A−1  (1)

where n stands for the number of observations in the training set.

In PLS-regression modeling, a predictor variable may be important for the modeling of Y. Such variables are identified by large PLS-
regression coefficients. However, a variable also may be important for modeling of X, which is identified by large loadings. A summary of the
importance of an X-variable for both Y and X is given by a parameter, variable importance for the projection (VIP), which is a weighted sum of
squares of the PLS-weights, with the weights calculated from the amount of Y-variance of each PLS component [9]. Therefore, terms with large
values of VIP are the most relevant for explaining the dependent variable.

All the predictor variables are not necessarily to be included in a PLS model. Inclusion of redundant variables may lead to PLS models with
low statistical significance [5]. Accordingly, the following PLS analysis process was followed to obtain an optimal model. First, a PLS model with
all the predictor variables was calculated. Then each variable was eliminated and new PLS analysis was performed, leading to a series of new PLS
models. The one with the largest Q2cum was selected. If there were several models with the same Q2cum, the model was selected that eliminated

Citation: Fei Li, Lulu Cao, Huifeng Wu, Jianmin Zhao (2014) Combined SVM-PLS Method for Predicting Estrogenic Activities of Organic
Chemicals in the Coastal Water. J Coast Dev 17: 388. doi:10.4172/ 1410-5217.1000388

Page 4 of 11

J Coast Dev
ISSN:1410-5217 JCD, an open access journal

Volume 17 • Issue 1 • 1000388



the variable for which the VIP was the lowest in the previous model. This procedure was repeated until two predictor variables were left. Finally,
the model with the largest Q2cum was selected as the optimal PLS model.

SVM method
SVM is a new and very promising classification and regression method developed by Vapnik et al. [16]. A detailed description of the theory of

SVM can be referred in several excellent books and tutorials [17,18]. SVMs are originally developed for classification problems; they can also be
extended to solve nonlinear regression problems by the introduction of Vapnik’s ε-insensitive loss function. The SVM method has a number of
interesting properties, including an effective avoidance of overfitting, which improves its ability to build models using large numbers of
molecular proterty descriptors with relatively few experimental results in the training set. The application of SVM in regression can be expressed
in the following way [14,19,20]:

Suppose the training data,

T = x1,y 1 , x 2,y 2 ,⋯, x k,y k ,x ∈Rn ,y ∈R  (2)

where xm is the independent variables assembly of No. m sample (n-dimensional); ym is the independent variables assembly of No. m sample
which is a measured value; k is the total number of training set. The kernel idea of SVM algorithms is to make a regression hyper plane, which
can do the best to fit samples in space. The linear function is formulated in the high dimensional feature space, with the form of function:

y = f x = w Φ x + b  (3)

where Φ(x) is the high dimensional feature space, which is nonlinearly mapped from the input space x, w is the weight vector to be identified
in the function, and b is the threshold.

The optimal regression function is given by the minimum of the functional,

Φ w ,ξ = 1
2 w 2 + C∑

i
ξi
−+ξi

+
 where  C  is  a  pre-specified  value,  and ξi

−,ξi
+ 

outputs of the system. Lε y =
0

f x −y − ε
f or f x −y < ε

other w ise  

(5)In this work, an ε -insensitive loss function was used which can be presented in Figure 1.

Figure 1 ε-insensitive 

+ε -ε 

Figure 1: ε-insensitive.

Based on the ε-insensitive loss function and Lagrange function, the original fitting problems can be transformed as the corresponding dual
Lagrangian form, which can be given by,

max
α,α*

W α,α* = max
α,α*

− 1
2 ∑

i=1

k
∑

j=1

k
α i−α i

* α j−α j
* x i,x j + ∑

i=1

k
α i y i− ε −α i

* y i + ε  (6)

Or alternatively,

α,α* = argmin
α,α*

1
2 ∑

i=1

k
∑

j=1

k
α i−α i

* α j−α j
* x i,x j − ∑

i=1

k
α i−α i

* y i + ∑
i=1

k
α i +α i

* ε  (7)

With constrains,
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are slack variables representing upper and lower  (4)

 (5)



0≤α i,α i
*≤C,i = 1,..., k

∑
i=1

k
α i−α i

* = 0

 Solving Eq. (6)  with  constraints  Eq.  (8)  determines  the  Lagrange  multipliers: α i,α i
* , and the regression function is given by Eq.(3), where

w = ∑
i=1

k
α i−α i

* x i

b = − 1
2 w , x r +x s

 (9)

Finally, considering kernel function K(x, xi), the space transformation of inner product operation can be realized. By introducing Lagrange
multipliers and exploiting the optimality constraints, decision function can take the following form:

f x = ∑
i=1

m
α i

*−α i K x ⋅x i +b *

 Where α i
* and α i are the introduced Lagrange multipliers.According to Karush–Kuhn–Tucker (KKT)

conditions, only a number of coefficients among α i
* and α iwill be nonzero, and the data points corresponding to them could be defined as

support vectors, which can determine the hyper plane [20]. In this equation, K(x, xi) refers to kernel function, including linear, polynomial,
radial basis function (RBF), and sigmoid function.

The regression performance of SVM depends on the combination of several parameters [19]. They are penalty factor C, ε of the ε-insensitive
loss function, the kernel type, and its corresponding parameters. The penalty factor C is a regularization parameter that controls the tradeoff
between maximizing the margin and minimizing the training error. If C is too small, hen insufficient stress will be placed on fitting the training
data. If C is too large, then the algorithm will over fit the training data. The optimal value for ε depends on the type of noise present in the data,
which is usually unknown. Even if enough knowledge of the noise is available to select an optimal value for ε, there is the practical consideration
of the number of resulting support vectors. “ε-insensitivity” prevents the total training set meeting boundary conditions and so allows for the
possibility of sparsely in the dual formulation’s solution. So, choosing the appropriate value of ε is critical from theory. The kernel type is another
important one. In our study, the Gaussian radial basis function is selected, because it has only one kernel parameter and has been commonly
used in regression, shown as below:

K x,x i = exp −
x −x i 2

2σ2  (11)

The kernel parameter σ controls the amplitude of the Gaussian function and controls the generalization ability of SVM. We have to optimize σ
and find the optimal one. So we should take effective and reliable measures to set the three parameters in RBF-SVM. In this study, Random
Search Technique is proposed.

The overall performance of SVM is evaluated in terms of R and a root-mean-squared error (RMSE) according to the equation below

RMSE =

∑
i=1

n
y k−y k 2

n−1
 (12)Where y k is the desired output, y k is   the   actual   output  of  the  SVM  model,  and  n  is  the number  of  compounds in analyzed set.
The SVM model in our present study was implemented using the software LibSVM that is efficient software for classification and regression

developed by Chih-Chang and Chih-Jen Lin [21]. All the algorithms used in this study were written in Matlab 7.0 and run on a personal
computer (Intel Celeron-420 processor /1.66GHz 512MB RAM).

Results

PLS model
After the FS regression, thirteen molecular structural descriptors are obtained and are listed in Table 2 with their physical-chemical meanings.

The PLS regression was used to perform regression analysis, with logREC10 as a dependent variable and thirteen selected 3D descriptors as
independent variables. According to the variable selection procedure mentioned above, 8 descriptors (Mor03p, L3e, R8p, RTv+, R8e, R1p+, R7p+
and HATSv) were obtained. The predicted logREC10 values by the PLS method are given in Table 1, and the statistical values of Q2cum, SE and
correlation coefficient R are shown in Table 3. The linear function [3] was built as follows, with parameters defined in Table 2:

logREC10=8.253 + 0.282Mor03p - 1.820L3e - 0.988R8p + 3.284RTv+ - 2.774R8e

+ 0.567R1p+ - 11.915R7p+ - 0.149HATSv (3)

n=55, A=2, R2X(adj)(cum)=0.587, R2Y(adj)(cum)=0.757
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Where A is the number of PLS components, R2X(adj)(cum) and R2Y(adj)(cum) stand for cumulative variance of all the predictor variables
and dependent variable, respectively, explained by all extracted components. So it can be concluded that two PLS components were selected in
the QSAR model (Eq. 3), and the two PLS components explained 58.7% of the variance of the independent variables, and 75.7% of the variance of
the dependent variable. R2 Y (adj)(cum) should act as a criterion for optimal variable selection since they describe the performance of models.

Model development Model validation

Q2
cum r2 SE Q2

cum r2 SE

PLS 0.678 0.757 0.765 0.664 0.733 0.870

SVM - 0.888 0.527 - 0.875 0.743

Table 3: The statistical values of Q2
cum, SE and correlation coefficient R.

Q2cum value of our universal QSAR model is as high as 0.678, indicating that the model has good predictive ability and robustness. Figure 1
shows these predicted values of logREC10 versus experimental values. Concerning the goodness of fit of the model, the correlation coefficient (R)
between the observed and the predicted logREC10 with multiple correlation coefficients is 0.870. All the absolute residuals are less than 3×SE and
it indicated that there were not outliers (Figure 2). Therefore it can be concluded that the fitting results are satisfactory.
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Figure 2: Plot of observed logREC10 values vs the values predicted by Eq. (3).

Figure 3: Plot of predicted logREC10 values vs the residuals by Eq. (3).

All the predictor variables are listed in Table 4. The VIP values indicate the significance of the variable in explaining the variance of the
dependent variable.
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Descriptors VIP w*c[1] w*c[2]

L3e 1.478 -0.548 -0.338

Mor03p 1.336 0.495 -0.029

R7p
+ 1.068 -0.380 0.249

R8e 0.989 -0.329 -0.590

HATSv 0.941 -0.314 0.380

RTv
+ 0.668 0.248 0.148

R8p 0.650 -0.206 -0.442

R1p
+ 0.397 0.023 0.444

Table 4: VIP values and PLS weights. a) The bold-faced numerical values are larger than 0.3, indicating the PLS components are mainly loaded
on the corresponding variables.

SVM model
c=64.0, g=0.0078125, p=0.0625

R2=0.888, MSE=0.021, SE=0.527

Figure 4: Plot of observed logREC10 values vs the values predicted by SVM.

Model validation
Model validation is one of the most important processes of QSAR development [22]. Any model needs to be validated before it is used for

“understanding” or for predicting new events such as the biological activities of new compounds or the yield and impurities at other process
conditions. Many researchers apply the leave-one-out (LOO) or leave-some-out (LSO) cross-validation procedures. Another widely used
approach to estimate model robustness is the so called y-randomization [23]. However, some researches suggested that the only way to estimate
the true predictive power of a QSAR model is to compare the predicted and observed activities of an external test set of compounds that were not
used in the model development [23-25].

To validate the developed QSAR model, approximately 60% of the compounds under study were selected randomly and used to develop a new
PLS model using the same descriptors, then the new model was used to predicate the log RP values of the remaining 40% compounds. The
procedure was repeated 10 times, and the final results are shown in Table 3. From the results, it indicates that the developed QSAR models have
good robustness and predictive ability.
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Discussion

Comparison of the results
Figure 4 gives the comparison between the results obtained by PLS and SVM based on the SE. As shown in Table 3, the SVM model gives the

highest correlation coefficient R. It indicates that the SVM performed better than the PLS method. It also showed the better generalization ability.
The reason may be that the SVM method embodies the structural risk minimization principle which minimizes an upper bound of the
generalization error rather than minimizes the training error. This eventually leads to better generalization than neural networks, which
implement the empirical risk minimization principle and may not converge to global solutions.

Mechanism interpretation
From a practical point of view, interpreting the descriptors used in the models could provide some insight into factors that are likely to govern

the ER binding of EDCs and help us to understand which interactions may play an important role in the binding process.

Model (3) extracts two PLS components that are relevant to 8 predictor variables. The factors governing logREC10 can be interpreted by PLS
weights of the variables included in model (3). The respective weights of the 8 calculated descriptors retained in the PLS model are shown in
Table 4. From the PLS weights, one could see how much one descriptor contributes to the interpretation of the variance of estrogenic activity and
how they relate to each other.

The first PLS component is loaded primarily on the five descriptors, L3e, Mor03p, R7p+, R8e and HATSv (Mor03p on the positive side, L3e,
R7p+, R8e and HATSv on the negative). 3D-MoRSE descriptors appearing in the model are important because they take into account the 3D
arrangement of the atoms without ambiguities (in contrast with those coming from chemical graphs), and also because they do not depend on
the molecules with great structural variance and being a characteristic common to all of them. This type of indices are based on the idea of
obtaining information from the 3D atomic coordinates by the transform used in electron diffraction studies for preparing theoretical scattering
curves [26]. In order to take into account the specific contributions of the atoms to the property being studied, different atomic properties can be
employed as weighting schemes. Mor03p corresponds to signal 03 and is weighted by atomic polarizabilities. On the other hand, for L3e, R7p+,
R8e and HATSv, W*[1] and the corresponding coefficient in model (3) are both negative. L3e is a WHIM descriptor weighted by atomic
Sanderson electronegativities, and it remarkably governs logREC10, as indicated by its VIP, the largest among the predictor variables. R7p+ and
R8e are R-GETAWAY descriptors, which are derived by combines the information provided by the molecular influence matrix with geometric
interatomic distances in the molecule [27]. The negative PLS weights W*[1] and coefficient of R7p+ and R8e in the model (3) indicate the
negative correlation relationship between them and logREC10. This type of elaborated 3D descriptors is able to determine the shape and size of
the inhibitor. The descriptor R7p+ is R maximal autocorrelation of lag 7 weighted by atomic polarizabilities and R8e is autocorrelation of lag 8
weighted by atomic Sanderson electronegativities. HATSv is an H-GETAWAY descriptor, which encodes both the geometrical information
given by the molecular influence matrix H and the topological information given by the molecular graph, weighted by selected atomic weights.
The selected descriptor HATSv is a leverage-weighted total index weighted by atomic van der Waals volumes.

The second PLS component that also extract five descriptors, L3e, R8e, HATSv, R8p and R1p+. The negative PLS weights W* [2] and
coefficient of L3e, R8e and R8p in the model (3) also indicate the negative correlation relationship between them and logREC10. R1p+ is also an
R-GETAWAY descriptor weighted by atomic polarizabilities.

In conclusion, the molecular descriptors most frequently selected by FS regression can be used to predict the logREC10 value of organic
chemicals. The estrogenic activity is related to distributed atomic Sanderson electronegativities, atomic polarizabilities and atomic van der Waals
volumes.

Local QSAR models
As shown in Table 1, the chemicals were divided into six “families” based on their structural characters. They were: (1) natural products and

related compounds; (2) medicines, food additives, and related compounds; (3) PCBs, PCDFs, PAHs, and related compounds; (4) Phenols; (5)
Benzenes and heterocyclics; (6) Phthalates and adipates. To increase our understanding of the structural requirements for a chemical’s binding to
ER, three linear QSAR models for three of the families were developed based on the PLS regression method, which are listed in the Table 5.

(1) natural products and related compounds

logREC10=29.602 + 24.545E1e - 29.320H1v - 30.144 R4e (5)

n=12, Q2
cum=0.877, R=0.957, SE=0.549, p < 0.0001

(2) medicines, food additives, and related compounds:

logREC10=7.913 + 1.910 RDF020m - 6.706L3p (6)

n=7, Q2
cum=0.934, R=0.989, SE=0.420, p < 0.0001

(3) phenols:

logREC10=16.474 + 0.040MWC01 - 1.846GATS4v - 1.710GATS1e -1.423Mor02m
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+ 0.807Mor21e + 0.695E2e - 8.037As+ 0.009Gm - 0.668Vm - 0.878HATS6p (7)

n=25, Q2
cum=0.915, R=0.983, SE=0.157, p < 0.0001

Inspecting the knowledge obtained above, it is possible to gain some information about what factors are likely to govern the ER binding ability
for a specific family. This is beneficial for developing a credible model for prediction.

Conclusion
The two methods, PLS and SVM, were used to develop linear and nonlinear QSARs to predict estrogenic activities of 55 structurally diverse

organic chemicals. Eight descriptors, which represent the features of the compounds responsible for the binding ability to estrogen receptor, were
selected to develop global QSAR models. Inspection of the PLS model indicates that atomic Sanderson electronegativities, polarizabilities and van
der Waals volumes may be most relevant factor controlling the binding behavior, affecting the space-matching between the ER protein and the
ligand. The two resultant QSAR models were further compared with respect to statistical measures from a leave-some-out process, with SVM
yielding the best model performance in terms of self-consistency and ability to predict the activity of the test chemicals. Additionally, 55
chemicals were divided into six well-known “families” according to their chemical structures. Three local QSAR models were developed, which
gave us insight into the factors that govern the binding behavior for these specific chemicals.
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