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Abstract
Cardiovascular disease (CVD), notably atherosclerosis, is the leading cause of morbidity and mortality worldwide, 

commonly caused by thrombotic occlusion of a vulnerable plaque. Early assessment of atherosclerotic lesions is an 
important diagnostic goal in order to decrease the coronary artery siases burden. The purpose of this article is to 
review current MRI techniques on atherosclerosis and explore their clinical applications. First, this article will review 
the pathogenesis of atherosclerosis and describe various vulnerable plaque features i.e. intraplaque hemorrhage, 
lipid rich necrotic core, thin fibrous caps, neovascularization, and plaque inflammation. A comparison of different non-
invasive in vivo imaging of atherosclerosis, specifically ultrasound, computer tomography, and magnetic resonance 
imaging will be discussed. This article will argue that MRI is best suited for detecting early plaque lesions. Next, 
the current MR imaging techniques in atherosclerosis will be introduced. Then this article will examine the clinical 
impact of MRI on atherosclerotic burden based on their vascular location. Lastly, new strategies in MRI imaging of 
atherosclerosis will be revealed.
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Introduction 
Cardiovascular disease (CVD) is the leading cause of morbidity 

and mortality worldwide, commonly caused by thrombotic occlusion 
of a vulnerable plaque. An estimated 83 .6 million American adults (>1 
in 3) have 1 or more types of CVD. Of these, 42 .2 million are estimated 
to be ≥60 years of age. By 2030, 40.8% of the US population is projected 
to have some form of CVD [1]. CVD, notably atherosclerosis, is a 
major contributing factor to the total disease burden worldwide. 
Atherosclerosis is systemic vascular disease that primarily affects 
the medium and large vessels and usually manifests by ischemic 
complications. The diverse clinical presentation of atherosclerosis 
depends on the vascular beds affected. The severity of the clinical 
manifestations varies widely. Some patients do not experience any 
clinical manifestations for years but exhibit evidence of chronic 
atherosclerotic disease only discovered post mortem [2]. Many others 
experience sudden clinical events such as ischemic stroke, myocardial 
infarction, and sudden cardiac death [3-5]. These atherosclerotic 
lesions that are prone to clinical events have been termed “vulnerable” 
or “high risk” plaques. These vulnerable plaques are cause by rupture of 
atherosclerotic plaques ensuing thromboembolic events. 

Pathogenesis of Atherosclerosis
Atherosclerosis is characterized by the thickening of the arterial 

wall resulting in the formations of an atherosclerotic plaque. The 
etiology of atherosclerosis is influenced by the complex interactions of 
an individual’s biochemical predisposition and acquired risks factors. 
The arterial wall thickens to form an atherosclerotic plaque, a chronic 
process involving cholesterol deposition, inflammation, extracellular-
matrix formation and possible thrombosis [6]. The disease remains 
asymptomatic until the plaques either cause obstruction of blood 
flow or the plaque matrix give way to plaque rupture triggering vessel 
occlusions and clinical signs of ischemia. Upon injury to the arterial 
intima oxidized low-density lipoproteins (LDL)-considered the 
precursor of atherosclerosis- induce inflammatory response which is 

believed to play an important role in plaque progression and formation 
of plaque lipid rich necrotic core and fibrous cap [7,8]. 

The American Heart Association (AHA) classification grades 
atherosclerotic lesions based on the lesions type’s composition. 
Atherosclerosis begins when said oxidized LDL activate expression of 
adhesion molecules, such as vascular cell adhesion moledule-1 (VCAM-
1) and E-selectins, from the endothelial cells. Monocytes migrate from
the bloodstream into the wall of the artery and become macrophages.
These macrophages deposit fatty materials and accumulate in the inner 
lining of the arteries over time. Atherosclerotic lesion progress from
initial infiltrates of these macrophages and the appearance of foam
cells (Type I) to the lipid-laden smooth muscle cells lesions (Type II)
that show gross visualization of fatty streaks characterized by layers
of macrophage foam cells and lipid deposition within intimal smooth
muscles and heterogeneous droplets of extracellular lipids. Type III
lesions are intermediate lesion demonstrating morphological and
chemical transitions to advanced lesions [9].

Type IV lesions are the first of the advanced lesions characterized 
by extracellular lipid accumulation known as the lipid core. The lesion 
progresses to develop a fibrous cap on top of the lipid core (Type Va), 
followed by vessel wall calcifications (Type Vb), then fibrosis (Type 
Vc), and finally Type VI lesions with fissures, hematoma, or thrombosis 
[10]. Progressively an atherosclerotic lesion can develop new vascular 
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connections in the vasa vasorum. Hypoxic stresses provoke apoptotic 
process and proliferations of new blood vessels into the atherosclerotic 
wall [11]. This process, known as neovascularization, is governed by 
endothelial cells response to hypoxic conditions in the tunica intima 
[12]. It has been documented that plaque neovascularization is 
increased in ruptured atherosclerotic lesions. Studies have indicated 
that vulnerability of those plaques may be related to plaque composition 
rather than the degree of luminal narrowing and that cellular and 
extracellular composition of atherosclerotic plaques are the major 
determinants of plaque stability [13]. 

Characterization of the Atherosclerotic Plaque
Current clinical management of atherosclerosis relies on two 

things: degree of luminal narrowing and patient symptomatology. 
These two determining factors of the progression of atherosclerosis 
can be most evidently depicted in the case of carotid artery plaques 
and corresponding cerebrovascular events. Symptomatic patients 
with high-grade carotid stenosis are at risk for cerebral infarction and 
are aggressively treated with carotid endarterectomy [14]. Degree of 
arterial occlusion, however, is not enough to detect patients at risk 
for cerebrovascular events. It has been shown that patients with less 
than 70% carotid stenosis experience and are at risk of stroke [5]. This 
finding can be attributable to occult atherosclerotic plaque burden 
and acute arterial occlusion from plaque rupture. Common diagnostic 
methods, such as angiography, that depend on luminal narrowing 
cannot accurately measure plaque burden. Arterial walls remodel as a 
compensatory mechanism to accommodate progressing atherosclerotic 
plaque and this allows atheromas to increase in size and be displaced 
outwards before causing any significant stenosis [4]. Arterial occlusion 
leading to ischemic events can also be caused by plaque rupture 
with superimposed thrombosis. Plaque morphology affects the risk 
of plaque disruption, even more than plaque size [3]. Accurate and 
reliable measurement and characterization of atherosclerotic plaques 
are, therefore, essential in assessing patients at risk for clinical events. 

Determining plaque morphology provides a way of assessing and 
predicting plaque rupture. Plaque characteristics that contribute to 
its instability are rupture of the fibrous cap, larger lipid-rich necrotic 
core, presence of intra-plaque hemorrhage, inflammation of the cap, 
neovascularization, and irregular superficial calcification of the plaque 
[3,15-17]. To improve the clinical application of these findings, Gury-
Paquet et al. studied the main components contributing to plaque 
instability and created a new imaging score for symptomatic plaque 
assessment. The HULC (hemorrhage, ulceration and lipid core) scoring 
strikes a balance between sensitivity and specificity of the various factors 
and is a promising method for a standardized symptomatic plaque 
assessment [18]. Adventitial vasa vasorum microvessels contribute to 
inflammation, intra-plaque hemorrhage, and lipid deposition which 
lead to plaque instability, rupture and subsequent ischemic events [19]. 
Among the different plaque components, intra-plaque hemorrhage 
emerged as the most specific factor in predicting plaque instability. 
Ulceration or rupture of the fibrous cap and lipid-rich necrotic core, 
on the other hand, showed higher sensitivity [18].

In clinical practice, early identification and characterization of 
vulnerable atherosclerotic lesions that are likely to lead to clinical 
events remains a challenge. Consequently, there is a clinical need for 
the detection of these vulnerable plaques prior to the development 
of complications. Although the reference standard for radiological 
detection of severe atherosclerotic vessel wall changes is still confined 
to arterial luminal diameter, there is growing evidence that offer new 
imaging techniques that provide information on plaque composition 

and biological processes associated with plaque progression and 
destabilization. In due course, these new imaging techniques which 
aim to detect atherosclerotic lesions in the asymptomatic phase of 
the disease may potentially reduce atherosclerotic burden- in tandem 
decrease the morbidity and mortality of cardiovascular disease. 

Non-invasive In vivo Imaging Modalities 
Analysis of the composition of atherosclerotic plaque and accurate 

measurement of plaque burden will improve patients’ embolic risk 
stratification, prevention, and monitoring of treatment. Patients need 
a screening tool to help detect early lesions, characterize and locate 
plaques, monitor atherosclerosis progression or regression, and assess 
their risk for future cardiovascular outcomes. This is especially true 
for asymptomatic patients with low-grade stenosis where current 
clinical standards do not address the possibility of plaque disruption, 
but rely on the degree of stenosis alone in management decisions. 
An ideal screening procedure must be accurate, reliable, and have a 
high sensitivity index in detecting vulnerable atherosclerotic plaques. 
Furthermore, it must have an excellent cost-benefit ratio, guarantees 
patient safety, and is readily available. Non-invasive in vivo imaging 
modalities meet these criteria [20]. Non-invasive procedures have the 
advantage over the more commonly used angiography procedure in 
that they do not involve percutaneous access to the vascular system. 
Currently, the most commonly studied non-invasive in vivo imaging 
modalities to assess atherosclerotic plaque are ultrasound, computed 
tomography scan, and magnetic resonance imaging. 

Ultrasound uses sound waves to visualize atherosclerotic plaques 
and to evaluate blood flow. The strengths of transcutaneous ultrasound 
are it is relatively inexpensive and widely available. It has the capability 
to demonstrate flow obstruction secondary to stenosis in carotid 
arteries. B-mode ultrasound imaging is commonly used to directly 
visualize atherosclerotic plaques, but due to the signal attenuation 
vessel wall imaging has been limited to shallow vascular beds. B-mode 
ultrasound can provide a measure of carotid intima-media thickness 
(IMT) which is a common biomarker used for cardiovascular health. 
Increase in carotid intima-media thickness is a strong predictor for 
future vascular events [21]. However, its disadvantages are it is user-
dependent, limited by heavily calcified plaque, and restricted to the 
assessment of superficial vessels. 

Although this section discusses non-invasive imaging, it is also 
important to mention that intra-vascular ultrasound (IVUS) is an 
invasive sonographic modality that has been used in the assessment of 
coronary plaque. IVUS permits visualization of coronary arteries via 
B-mode ultrasound using a small transducer attached to a catheter assess 
the plaque burden. IVUS demonstrated high predictive accuracies of 
87.1% for fibrous, 87.1% for fibro-fatty, 88.3% lipid-rich necrotic core, 
and 96.5% for dense calcium when compared to plaque specimens from 
atherectomy. A major challenge with ultrasound techniques is low 
reproducibility and high measurement variability [6]. Furthermore, 
IMT does not provide direct information about focal disease or plaque 
formation and there is a decreased classification accuracy of ultrasound 
in the presence of calcifications and thrombus. Other modalities, such 
as MRI demonstrate extensive validations, higher reproducibility, and 
the ability to monitor the subjects over a period of time which is better 
suited for plaque quantification and serial analysis. 

Another imaging modality, computer tomography (CT), uses 
ionizing radiation to produce images. Plaque imaging via electron 
beam CT and multi-detector CT has been used to stratify the risk of 
future cardiac events by use of the coronary calcium score (CAC). CAC 
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helps to predict obstructive coronary disease. In a study of 1851 patients 
who undergone CT angiography and CAC, it showed to have a high 
negative power (98%) between a negative CAC score (no calcifications) 
and no obstruction on angiography [6]. Another appealing factor is 
readily available and less expensive than magnetic resonance imaging 
[22]. 

It is a less frequently used imaging technique in detecting 
atherosclerotic plaque because of its many disadvantages. CT generates 
poor soft tissue images, produces artifacts in calcified plaques, has 
subpar delineation of plaque components, and exposes patients to 
ionizing radiation that increases their risk for cancer. This modality 
is not effective for detecting other components of vulnerable plaques: 
thin-cap fibroatheromas and presence of inflammatory cells [23]. Non-
calcified coronary plaques have been detected and classified by CTA 
but supported by histological validation is lacking [24-27]. Compared 
to ultrasound and MRI, radiation exposure from CT is a concern for 
screening and serial imaging. Motion artifacts are also a limitation for 
CT imaging, particularly in studies on coronary vessels. Conditions 
like arrhythmias and high cardiac rates are a challenge even with faster 
64 slice CT scanners. Blooming artifacts from extensive calcification 
can lead to over-estimation of lesion severity [28]. 

MRI has emerged as a novel modality for detecting and 
characterizing atherosclerotic plaques. Research and clinical 
applications of MRI characterization of atherosclerosis has established 
the diagnostic value of MRI in assessment of plaque burden. A patient 
is placed on a strong magnetic field and an MRI image is produced 
from the emitted radiofrequency signals of protons. It has outstanding 
soft tissue contrast and delineation of plaque components. Plaque 
characterization is reproducible and has been validated in numerous 
studies. MRI imaging has also been employed in assessing large vessels 
such as the aorta [29] as well as smaller ones such as peripheral arteries 
[30]. It does not expose patients to radiation, has satisfactory spatial 
resolution, and can be used for serial imaging. Since it takes a longer 
time to produce an image, respiratory and cardiac movements interfere 
with the quality of images. Thus, it has limited application in coronary 
arteries [31]. There is also need for a standardized protocol to be 
established for the analysis of plaque characteristics. In addition, not 
all patients are eligible for an MRI scan, particularly those who have 
pacemakers and those who are claustrophobic. Table 1 compare s the 
imaging capacities of ultrasound, CT, and MRI and their respective 
imaging capacities. MRI appears to be the leading non-invasive in vivo 
imaging modalities to characterize atherosclerotic plaques. 

Different MRI Imaging Modalities of Atherosclerosis
MRI imaging of atherosclerotic plaques is based on the signal 

intensity and morphology of the plaque on multiple contrast 
weightings. The signal intensity of these plaques varies according to 
the proton density (PD) and relaxation time (T1 and T2). The multi-
contrast images, both bright blood (i.e. time-of-flight) and black blood 
(i.e. T1W, T2W, PDW with blood-flow suppression) can be used 
complimentary for visualization of various plaque components such 
as fibrous tissue, hemorrhage, and dense calcifications. Bright-blood 
imaging techniques suppress the signal from the surrounding tissues 
and enhance luminal signals. Therefore, it is primarily applied for 
evaluation of luminal stenosis. Whereas black-blood imaging attenuates 
luminal signals for better visualization of vessel wall and provides 
better outline of the luminal surface and identification characteristics 
such as intraplaque hemorrhage or fibrous cap rupture. MRI offers 
versatility to examine different components of atherosclerotic plaques 

through diffusion, contrast uptake, dynamic contrast permeability, and 
magnetization transfer. This section aims to provide an overview of the 
various MRI modalities currently used to in the study of atherosclerotic 
plaques. 

Magnetic Resonance Angiography with Time-of-Flight 
Sequence

Magnetic resonance angiography (MRA) with time-of-flight 
sequences (TOF) provides the capability to measure luminal 
narrowing. The lumen appears bright and blood flow obstructions can 
be readily apparent. TOF can aid in assessment of fibrous cap thickness 
and integrity because it can delineate the lumen shape and internal 
borders of the plaque. However, this technique cannot separate plaque 
components or measure the amount of plaque. Black-blood inversion 
technique has been developed to address this and aid in arterial wall 
thickness and plaque analysis. Gupta et al. demonstrated that assessment 
of embolic risk could be made more available to most centers using 
3D TOF MRA and standard neck coils. 3D TOF MRA was used to 
assess intra-plaque hemorrhage (IPH) in this study. Figure 1 shows 
MRI of intraplaque hemorrhage in T1W, PDW, and T2W imaging and 
portrays the various vulnerable plaque components. Intraplaque high-
intensity signal (IHIS), defined as higher than 50% signal intensity than 
skeletal muscle, was employed as a surrogate marker for IPH. Patients 
were scanned using standard quadrature neck array coils, instead of 
specialized surface carotid coils. Their findings showed that patients 
with 70 to 99% carotid stenosis and IHIS are 14% more likely to have 
had prior ischemic event than those who have high-grade stenosis and 
no IHIS. Having shown that patients with IHIS and carotid stenosis 
are associated with cerebrovascular events, the more widely accessible 
3D TOF MRA using standard neck coils has the potential to be used to 
evaluate for future cerebrovascular risk [32]. 

For other plaque characteristics that indicate instability, it appears 
that TOF offers poor visualization of these plaque components. In 
a study by Etesami et al., TOF MRA missed a third of plaque ulcers 
that were detected using contrast-enhanced magnetic resonance 
angiography (CE-MRA). TOF ulcer detection are easily affected by 
ulcer position, distance to stenosis, and neck-to-depth ratio [33]. 
Plaque ulcers in TOF images can also be mistaken as IPH. Blood 
turbulence within the plaque craters has signal intensity similar to IPH 
and may result to false-positives [34]. 

Another disadvantage of unenhanced TOF is overestimation 
of carotid stenosis in areas of turbulent blood flow [35]. TOF is also 
limited by motion and flow-associated artifacts. Patient movement 
results to blurring between tissue interfaces. An example of flow-
related artifact is decreased clarity in areas of luminal narrowing [36].

US CT MRI
Spatial Resolution (μm) 150-200 400.0 500-1000
Penetration Depth (nm) 5 to 8 NA NA

Lipid Pool Fair Good Good 
Fibrous Cap Fair Poor Fair 

������� Excellent Excellent Fair 
Thrombus Fair Poor Good 

Activity
������渀 No No Yes 

 Intraplaque Hemorrhate No No Yes 
 Neovasculature No No Yes 

US, ultrasound; CT, computed tomography; MRI, magnetic resonance imaging; 
NA, not applicable [63,70].

Table 1: Comparison of plaque imaging modalities.
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Contrast-Enhanced MRI (CE-MRI)
One limitation of unenhanced MRI is the contrast-to-noise ratio 

(CNR) of the vessel wall that leads to lower resolution of vessel wall 
and plaque images. Contrast agents are used to improve CNR and 
provide better visualization of the vessel wall and plaque. A contrast 
agent, like gadolinium, accumulates in atherosclerotic plaques leading 
to increase in signal intensity. Zhang et al. demonstrated that contrast-
enhanced images correlate more closely to the histological specimen 
measurements of the wall compared to non-contrast images [37]. 
Barkhausen et al. also showed that CE-MRI could be used to visualize 
plaques not seen unenhanced images. It can also detect early-staged 
atherosclerosis in vessels where luminal narrowing is not yet seen. CE-
MRI, thus, leads to more accurate wall measurements and enhances 
imaging of atherosclerotic plaques [38]. 

These contrast agents are indirectly detected by their effect on 
the surrounding water protons. Application of the receptor-induced 
magnetization enhancement (RIME) phenomenon, where the contrast 
agent binds to the macromolecule of the tissue of interest significantly 
slowing down the molecular rotation of the contrast agent, such 
as gadolinium, permits for increased relaxivity and thus increased 
tissue contrast enhancement [39]. T1-shortening MR contrasts are 
predominately based on gadolinium. The molecular properties of 
gadolinium provide a spin relaxation time that is slow enough to allow 
for significant interaction with adjacent water protons. It has been 
shown that gadolinium-based contrast agents have a stronger effect 
on the shortening of T1 than T2 relaxation time [40]. This increase 
in signal intensity on T1-weighted images is termed positive contrast 
effect. While T2 relaxation time can also demonstrate considerable 
shortening, it has only observed in high concentrations. 

Contrast-enhanced MRI allows for differentiation of plaque 
components which helps identify patients at risk for ischemic 
events. CE-MRI can enhance fibrous caps, allow their quantitative 
measurements, and distinguish intact from ruptured caps [38,41,42]. 
Quantitative measurement of fibrous caps is important because thin 
fibrous caps are more prone to rupture and this disruption of caps leads 
to embolism. The underlying collagen and lipid core of the ruptured 
plaque may also become exposed to blood components triggering 
the process towards thrombosis. Lipid-rich necrotic core (LRNC), 

can be assessed accurately by CE-MRI where it appears darker with 
contrast. The absence of vessels and matrix in this area of plaque results 
in minimal or no enhancement upon contrast administration. This 
difference in enhancement can be used to delineate LRNC and measure 
its size. Using CE-MRI T1-weighted imaging, the short-term regression 
or progression of LRNC in subclinical carotid atherosclerosis has been 
studied. Results showed that the presence of IPH appeared to be major 
factors in LRNC progression or regression and not statin therapy [43]. 

Gadolinium contrast can also be an indicator for inflammation 
and neovascularization. Papini et al. has been able to compare in vivo 
MRI images with cellular infiltrate on histology. Increase in contrast 
enhancement showed an increase in inflammation in histological 
specimens [44]. Both fibrous tissue and neovasculature have been 
reported to have higher signal enhancement than other plaque 
components, whereas the lipid-rich necrotic core tends to have a 
slower uptake and lower enhancement. Contrast-enhanced standard 
MRA technique has been shown to be highly sensitive for identifying 
IPH. A highly T1-weighted sequence with no increase in scan time 
yields results similar to specialized IPH techniques in regards to IPH 
detection [34]. 

T2-shortening MR contrast agents are predominantly based 
on iron oxide particles induce stronger T2 shortening compared to 
T1 relaxation times which results in a negative contrast effect which 
is detected as signal voids. Ultra-small super-paramagnetic iron 
oxide nanoparticles (USPIO) act as contrast media that demonstrate 
inflammation via macrophage imaging. USPIO are nanoparticles with 
an iron oxide core stabilized by a polymer coating that were initially 
used for imaging of the reticuloendothelial system, tumors, and 
inflammatory diseases of the central nervous system. Their application 
has expanded to include the imaging of atherosclerotic plaque [45]. 
Endothelial dysfunction during the atherosclerotic process triggers 
inflammation and lipid accumulation in the vessel wall. USPIO, due to 
their small size and water-solubility, extravasate through this inflamed 
and permeable endothelium. They accumulate in atherosclerotic 
plaques and, like lipid particles, are also taken up by macrophages. 
When macrophages internalize the iron particles, these particles 
generate their own magnetic fields that offset signals on T2-weighted 
images. The result is a signal loss that correlates with the amount of 
macrophage uptake and inflammation in the tissue [46].

A limitation of this technique is that signal diminution may also 
be caused by other factors such as calcified tissue and respiratory 
motion [46]. Ruptured atherosclerotic arteries also showed an increase 
accumulation of USPIO in rabbits compared to non-disrupted arteries 
[47]. In addition to ruptured arteries, Kooi et al. demonstrated that 
USPIOs are also predominant in vulnerable plaques in humans [48]. 

Macrophages consume USPIO via a non-specific receptor-
mediated endocytosis. A high amount of contrast agent was 
administered to animal models to be able to have enough particles 
internalized by macrophages. To decrease the needed dose, studies 
have been done to increase the affinity of these cells to USPIO. Since 
macrophages in atherosclerotic plaque express mannose receptors, 
this has been studied as a way of increasing uptake and decreasing the 
dose. A study comparing four types of superparamagnetic iron oxides 
showed that mannan-coated SPIO and USPIO were more superior to 
unbound SPIO and USPIO in atherosclerosis imaging [49]. Tsuchiya 
et al. demonstrated that mannan-dextran coated USPIO is also more 
easily taken up by macrophages than dextran-USPIO [50]. 

MR molecular imaging with target specific molecular probes 

Figure 1: MRI of Intraplaque hemorrhage. A) T1W-hyperintense necrotic 
core with hemorrhage and isointense fibrous tissue B) PDW, C) T2W-iso/
hypointense necrotic core with hemorrhage and iso/hyperintense fibrous 
tissue, D) RGB image E) Cluster image.
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demonstrates the potential for non-invasive in vivo visualization 
of biological processes on the molecular and cellular level. There 
are several different classes of target-specific MR contrast agents 
available for molecular imaging. Molecular MR contrast agents, which 
enhance specific molecules (eg, elastin, fibrin, VCAM-1) or cells 
(eg, macrophages), allow visualization of pathologic processes on a 
molecular level with high spatial resolution; molecular MR imaging of 
atherosclerosis has the potential to improve early detection, guidance 
of treatment, and monitoring of treatment response. A fibrin-specific 
peptide conjugated to four gadolinium tetraazacyclododecane 
tetraacetic acid (FTCA, EPIX pharmaceuticals, Lexington, MA) 
successfully demonstrated intraplaque and endothelial fibrin imaging 
in vivo with molecular MRI after FTCA administration demonstrated a 
significant increase (P<0.05) in contrast agent uptake [51].

Dynamic Contrast-Enhanced MRI
Dynamic-contrast-enhanced (DCE) MRI is traditionally used 

in studying tumor microvasculature and angiogenesis but it was 
also served as a useful tool for quantification of the extent of plaque 
neovascularization [44]. DCE MRI can directly measure the effect 
of increased blood flow in the adventitia of newly formed vessels. 
In atherosclerotic plaque imaging, DCE-MRI is used to quantify 
adventitial vasa vasorum neovascularization and its permeability. 
This is done through determining kinetic parameters of contrast 
uptake such as measuring the transfer constant (vessel surface area 
and permeability) and blood flow [19]. The change in signal intensity 
is measured over time using T1W dynamic MR with high temporal 
resolution. 

In DCE-MRI bright blood imaging utilizes the hyperintense signal 
emitted by flowing blood making it an ideal technique for assessing 
plaque microvessel density. In black blood imaging, blood flow and 
lumen signals are suppressed allowing for a more accurate vessel wall 
measurement and differentiation. Chen et al. was also able to use DCE-
MRI to study neovasculature and inflammation changes of early plaque 
lesions over time [52]. 

Calcagno et al. developed a new method to increase the sensitivity of 
DCE MRI in measuring neovascularization in atherosclerotic plaques. 
Parameters important in evaluating neovessels, vessel wall uptake and 
arterial input function, were evaluated using a simultaneous high and 
low spatial temporal resolution (SHILO) imaging technique. SHILO 
was validated against its standard counterpart, 2D spoiled gradient 
recalled echo (SPGR) acquisition, and results in both techniques were 
found to be similar. Having more consistent results compared to other 
widely used strategies, SHILO proved to be a leading technique in 
measuring DCE-MRI kinetic parameters to evaluate plaque vascularity 
and vessel wall permeability [53].

Positron Emission Tomography-MRI
At the forefront of non-invasive in vivo imaging of atherosclerosis 

is the use of positron emission tomography (PET) imaging in 
combination with MRI. PET assesses the metabolic activity of 
tissues and has been indispensable in the field of oncology. Its use 
has expanded to include investigation of atherosclerotic plaques. 
PET commonly uses 18-Fluorodeoxyglucose (FDG) as a tracer. 
FDG is a glucose analogue with a radioactive isotope, fluorine-18, at 
carbon 2. When inflammation increases the metabolism of glucose 
in tissues, FDG is taken up in cells the same way as glucose. Unlike 
its counterpart, FDG cannot be degraded and transported out of the 
cell. PET detects FDG accumulation in cells and measures it as SUV, 

standardized uptake value. SUV is increased in atherosclerotic plaques 
with unstable morphology and in sites of inflammation. These two are 
established factors that contribute to plaque rupture and subsequent 
acute thrombosis. Thus, PET imaging can quantify inflammation, 
tissue metabolism of glucose, and help in risk stratification of patients.

PET has a low spatial resolution that makes it susceptible to 
partial volume errors. To address this, it is usually co-registered with 
CT or MRI. PET will provide the information on metabolic activity 
and inflammation, while CT or MRI will allow for better visualization 
of anatomic structures and localization. Although promising, this 
system has several disadvantages. When patients are scanned in 
separate machines, lining up the anatomy in fusion programs can be 
burdensome. Putting the patient in the same position when scanning 
can also be challenging. In addition, PET makes use of isotopes that 
exposes patients to radiation. If coupled with CT, this will subject 
patients to additional exposure to radiation putting them at risk for 
cancer. 

A combined PET-MRI machine for the imaging of atherosclerosis 
may prove to be a better alternative. MRI does not expose patients to 
radiation and has a more superior soft tissue contrast than CT. A study 
by Ripa et al. compared the performance of PET-CT vs PET-MRI in 
carotid arteries. Both were done to six HIV patients in less than an 
hour. SUV results between the two systems were found to be similar. 
PET-MR, however, was found to be better in differentiating the vessel 
wall. In addition, it is interesting to note that the study was done on 
patients without significant atherosclerotic plaques. Although certainly 
a limitation, this shows that the use of PET-MRI could be feasible in 
this type of patients who are in the early stages of atherosclerosis [54].

Taking a step further, Calcagno et al. studied the potential of PET 
and diffused contrast enhanced imaging (DCE-MRI) in assessing 
atherosclerotic plaque inflammation by detecting the presence of 
neovessels. Inflammation of atherosclerotic plaques has been linked 
to their subsequent neovascularization. Black blood sequence for 
DCE–MRI was utilized in the study to increase delineation of plaque 
characteristics. The results of the two imaging modalities were 
compared to a marker of inflammation, neovessel count, obtained 
from immunohistochemistry. Both PET and DCE-MRI were found 
to positively correlate with the neovessel count. Thus, these two 
imaging modalities could be useful for future studies in quantifying 
inflammation and detecting unstable atherosclerotic plaques [55].

Clinical Applications of MR imaging based on Vascular 
Territories 

The risk of complications of atherosclerosis affects certain 
circulatory regions and yields distinct clinical manifestations depending 
on the particular circulatory bed affected. Atherosclerosis of the blood 
supply to the central nervous system (CNS), chiefly the carotid arteries, 
frequently incite ischemic stroke or transient cerebral ischemia. In the 
coronary arteries, myocardial infarction is commonly attributed to 
atherosclerosis. Mesenteric ischemia can be caused by atherosclerosis 
of the splanchnic circulation. Atherosclerosis in the peripheral arteries 
can cause claudications and jeopardize limb viability. This section will 
describe the current developments in MR imaging of atherosclerotic 
plaques and its clinical application to the most susceptible circulatory 
regions for thrombo-embolic events; carotids, aorta, coronary arteries, 
and peripheral arteries. 

Carotid Arteries
Some of the most significant developments in MRI of atherosclerosis 
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in recent years pertain to the baseline MRI characteristics of carotid 
atherosclerosis with clinically relevant outcomes. Features of carotid 
arteries such as superficial location and relative immobility make these 
vessels better suited for atherosclerotic plaque MR imaging than do 
other vessels such as the aorta or coronary arteries. Figure 2 show MR 
imaging techniques to assess plaque burden in carotid arteries. The 
measurements of carotid IMT-a strong predictor of future vascular 
events- by unenhanced T1-, T2- and PD carotid MR has been found 
comparable to that of carotid B-mode ultrasound [56]. 

Using MRI, studies show that type VI lesions with evidence of 
vulnerable plaque features, like IPH or cap rupture, have commonly 
been identified in carotid arteries with minimal to moderate stenosis 
[57]. An association between carotid IPH and cerebral ischemia was 
originally established by comparing in vivo preoperative imaging of 
atherosclerotic lesions with corresponding histological findings of 
carotid endarterectomy (CEA) specimens [58]. A strong association is 
reported between fibrous cap thinning/rupture, as determined by MRI 
TOF vessel wall imaging, and recent history of cerebrovascular events. 
T2W imaging of human carotid atherosclerotic plaque specimens has 
accurately detected advanced lesions type Vb fibrocalcific plaques [59]. 
Multi-contrast high resolution MRI can reliably identify intermediate 
to advanced atherosclerotic lesions and distinguish advanced lesions 
from early and intermediate in accordance with AHA classification 
[41]. 

There is abundant evidence that supports that MR imaging can 
display plaque vulnerability features i.e. IPH and fibrous cap disruption, 
in vivo in both asymptomatic and symptomatic cohorts of carotid 
stenosis. In a prospective study on patients initially asymptomatic 
with 50% to 79% carotid stenosis, arteries with thinned or ruptured 
fibrous caps, intraplaque hemorrhage, larger maximum percentage 
lipid-rich necrotic cores, and larger maximum wall thickness by MRI 
were associated with the occurrence of subsequent cerebrovascular 
events [60]. Multivariate cox regression analysis demonstrated a 
significant association between baseline MRI identification of the 
following plaque characteristics and subsequent symptoms during 
follow-up: presence of a thin or ruptured fibrous cap (hazard ratio, 
17.0; P< or =0.001), intraplaque hemorrhage (hazard ratio, 5.2; 
P=0.005), larger mean intraplaque hemorrhage area (hazard ratio for 
10 mm2 increase, 2.6; P=0.006), larger maximum percentage lipid-
rich necrotic core (hazard ratio for 10% increase, 1.6; P=0.004), and 
larger maximum wall thickness (hazard ratio for a 1-mm increase, 
1.6; P=0.008) [61]. Singh et al. conducted a cohort on asymptomatic 
moderate carotid stenosis showed that IPH - detected by rapid three-
dimensional T1-weighted fat suppressed gradient-echo sequence - was 
associated with an increase risk for ipsilateral cerebrovascular events. 
Of the 91 initially asymptomatic males with 50-70% stenosis, all six 
of the cerebrovascular events occurred in arteries with a baseline IPH 
(hazard ratio, 3.59; 95% confidence interval: 2.48, 4.71; P < .001) and 
MR-depicted IPH negatively predicted outcomes (negative predictive 
valued = 100%) [60]. Among the 64 symptomatic patients with 30-60% 
stenosis followed for a mean period of 28 months, thirty nine (61%) 
showed baseline IPH on MRI. Of those with baseline MRI-depicted 
IPH, 13 developed ipsilateral ischemic events, with only one reported 
TIA among those with no baseline IPH (hazard ratio, 9.8; p=0.03) 
[62]. The presence of hyperintense signals on TOF, representing IPH, 
in a study of 112 patients for carotid artery stenting (CAS) showed a 
significantly higher likelihood of periprocedural symptoms (18.4% 
vs 1.4%, p=0.0003) [63]. Ota et al. used 3T MRI to show intraplaque 
hemorrhage and larger percentage of lipid-rich necrotic core are 
independently associated with thin or ruptured fibrous caps in 

patients with more than 50% carotid stenosis. This multivariate ordinal 
regression analysis demonstrated larger percentage of LRNC (odds 
ratio for 10% increase, 1.49; P=0.02) and presence of hemorrhage 
(odds ratio, 5.91; P<0.001) were independently associated with a worse 
(intact thin or ruptured) stage of fibrous cap status. For artery-based 
multivariate analysis, a larger maximum percentage of LRNC and 
presence of hemorrhage independently associated with worse fibrous 
cap status (P<0.001, for both) [64]. Hence, different MRI weightings 
can be used to determine the location, morphology, and composition 
of advanced plaque lesions. 

High intensity signals observed in carotids plaque using inversion 
recovery-based 3D T1W imaging are associated with recent ischemic 
cerebrovascular events [65-67]. Carotid MR imaging has documented 
IPH using methemoglobin as an endogenous contrast agent resulting 
in a shortening of the T1 relaxation time and a hyperintense signal 
on T1W images. This technique, also termed as magnetization-
prepared rapid acquisition with gradient echo (MPRAGE) or magnetic 
resonance direct thrombus imaging (MRDTI), can examine the 
components of complex AHA type VI plaques such as luminal surface 
defects, hemorrhage, thrombus, or calcified nodules [10,68,69]. 
MRDTI has been used to visualize intraplaque hemorrhage in patients 
with cerebral ischemia. The prevalence of AHA type VI carotid lesions 
using MRDTI in patients with varying degrees of carotid stenosis has 
been reported. The prevalence of high signal was significantly greater 
in the asymptomatic patients’ ipsilateral vessels compared with the 
contralateral side (60% versus 36%, chi2 P<0.001), particularly for 
vessels of only moderate stenosis. The sensitivity and specificity of 
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Figure 2: A) PDW images of carotid in 59 year old patients with atherosclerosis. 
B) Longitudinal section of carotid plaques. * indicates plaque. C) Carotid plaque 
with vulnerable features of fibrous cap and lipid core.
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MRDTI for detecting complicated plaques was 84%, with a positive 
predictive value (PPV) of 93%, and a negative predictive value (NPV) 
of 70%. There is also a significant negative correlation between the 
minimum luminal area and complicated AHA type VI. High degree 
stenosis (80-90% luminal narrowing) had lesions with a LRNC was 
detected in 92% of all patients. The LRNC increased considerably with 
the higher degree of stenosis [69].

Carotid MRI studies demonstrate high level of reproducibility 
in assessment of plaque burden. Reproducibility of measurements 
on multiple scanner platforms has been established [70]. Plaque 
component identification has been widely validated and plaque 
composition has been accurately identified [38,41,71]. Fibrous cap, 
LRNC, hemorrhage, and thrombus have been identified on multi-
contrast MRI [43,61,69,72-74]. The accuracy and reproducibility 
of LRNC measurements via MRI show high sensitivity (85%) and 
specificity (92%), which has been utilize in the monitoring the plaque 
progression and regression [75-79]. 

Prospective MRI studies have also examined the role of 
components the atherosclerotic lesions in plaque progression. 
Takaya et al. showed that IPH, detected by HR MRI, is associated 
with greater plaque progression in both necrotic core and plaque 
volume [80]. IPH is shown to be an indication of accelerated plaque 
growth and luminal obstruction [81]. Sluimer et al., proposed that the 
destruction of the integrity of microvessel endothelium likely leads to 
intraplaque haemorrhage and plaques at increased risk for rupture 
[82]. Neoangiogenesis in atherosclerotic plaques has been implicated 
in the etiology of IPH, which when combined with LRNC, thin 
fibrous cap, and inflammation, can possibly serve as a good marker 
of vulnerable plaques. In recent years, plaque neoangiogenesis has 
become a target for asymptomatic vulnerable lesions and MRI is a non-
invasive tool to further examine the underlying mechanisms. In terms 
of plaque regression in monitoring response to anti-atherosclerotic 
therapies, Corti et al. found a 15% reduction in the carotid wall area 
after 12 months of simvastatin treatment with no change is normal wall 
measurements [77]. Zhao et al. conducted a prospective assessment of 
MR carotid plaque composition during lipid lowering therapy and 
noted that after 3 years of lipid therapy, the 33 subjects with measurable 
LRNC at baseline had a significant reduction in plaque lipid content. 
Intensive lipid therapy significantly depletes carotid plaque lipid. 
Statistically significant plaque lipid depletion is observed after 1 year 
of treatment and continues in the second year, and precedes plaque 
regression [83]. 

Aorta and Coronary Vessels
There are numerous studies that assess and atherosclerotic burden 

in the thoracic and abdominal aorta. Thoracic aortic MR vessel wall 
imaging was found to be in good agreement with trans-esophageal 
echocardiography (TEE) in respect to plaque composition and 
thickness [29]. Figure 3 shows MR T1 and T2 images of atherosclerotic 
descending aorta. Although plaque extent in the aorta -both thoracic 
and abdominal- correlated with the severity of CAD, only thoracic 
plaques were independently associated with CAD [84]. 

In previous years, several reproducibility of studies of aortic wall 
measurements using multi-contrast MRI showed good inter-reader, 
intra-reader, and interscan reproducibility [85]. Since then, Calcagno 
et al showed good interscan and excellent intra- and interobserver 
reproducibility in an animal model of atherosclerosis using black-
blood DCE MRI [86]. The application of DCE MRI monitoring high 
risk patients and in longitudinal clinical drug trials is currently being 

evaluated. Similar to carotid MR imaging, aortic vessel wall MR imaging 
studies directly visualize and quantify regression and progression of 
aortic atherosclerosis in response to different anti-atherosclerotic 
therapies. 

A major challenge in MRI imaging of thoracic aorta is achieving 
sufficient sensitivity for submillimetre imaging and elimination of 
artifacts due to respiratory motion and pulsatile changes produced 
by blood flow. Such challenges have been addressed by technical 

A. Comparison of MRI of Normal Aorta to Atherosclerotic Aorta  

B. Atherosclerotic Aorta with corresponding cross-sectional slices.  

C. CMR of Aortic Plaque in T1 and T2 MRI

Figure 3: MR imaging of Atherosclerosis of the Aortic Arch. A) Atherosclerotic 
Aorta depicting plaque in the arch is ulcerated resulting irregularity of the 
lumen. B) Aorta Candy cane view with corresponding cross sectional slices. C) 
CMR of Aortic Plaque in T1 and T2.
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improvements in magnetic field strength, dedicated sequences (such as 
double-inversion preparation pulses to suppress the signal of flowing 
blood), and navigation techniques to correct for respiratory motion 
[31].

As mentioned previously, MR imaging of coronary vessels is 
technically more challenging than other vascular beds. Coronary vessel 
wall imaging requires high resolution and high SNR due to the size 
of the vessel wall. Coronary imaging is further complicated by the 
need for cardiac and navigator gating. Respiratory compensation can 
be breath hold or free breathing with navigator echo monitoring the 
diaphragmatic motion. Recent improvements on navigator technology 
include ultrafast motion tracking, motion-adapted gating strategies, 
and the use of multiple navigators. The intrinsic motion of the 
coronary arteries during the cardiac cycle requires electrocardiographic 
synchronization of data acquisition [87]. 

Several studies support the coronary vessel MR imaging as a 
useful tool in detection of early atherosclerotic lesions in the coronary 
arteries. In a large asymptomatic multiethnic population, vessel wall 
MRI detected significant number of individuals with positive coronary 
remodeling with no history of CAD [88,89]. T2-weight black-blood 
coronary vessel wall MR imaging has been successful in detection and 
quantification of increased coronary vessel wall thickness and positive 
remodeling in patient with CAD confirmed by X-ray angiography. 
Coronary arterial plaques were first demonstrated in a porcine model 
using 2D T2W and PDW imaging sequences and validated with 
histopathology correlation [90]. 

Fayad et al. first demonstrated the feasibility of in vivo coronary 
plaque imaging using a spin echo black blood technique in humans 
[29]. Improvements in this technique allowed for free breathing 
through combining real-time navigator for respiratory gating and real-
time slice-position correction [91]. High inter-study reproducibility has 
been established for serial evaluations of coronary vessel walls imaging 
and CAD [92]. Increased coronary wall thickness has been detected in 
patients with early CAD using MRI with isotrophic resolution  [93].

Currently, coronary MR angiography (CMRA) is a promising non-
invasive alternative for visualizing of coronary arteries. 3D steady-state 
free precession (SSFP) whole-heart CMRA is an unenhanced technique 
that permits visualization of all major coronary arteries with a single, 
axial 3D acquisition. Yoon et al demonstrated that CMRA is useful 
in predicting the risk of cardiac events in patients suspected to have 
CAD. Of the 207 patients with suspected coronary artery disease who 
underwent non-contrast-enhanced free-breathing whole-heart CMRA, 
there were 10 cardiac events- five of which were severe, observed in 84 
patients with significant stenosis. In the 123 patients without significant 
stenosis, only 1 cardiac event with no severe event was observed. A 
significant difference in event-free survival between the 2 groups for 
severe events (annual event rate, 3.9% and 0%, respectively; log-rank 
test, p = 0.003) was seen as well as for all cardiac events (6.3% and 0.3%; 
p < 0.001). Cox regression analysis significant stenosis on CMRA was 
associated with a >20-fold hazard increase for all cardiac events (hazard 
ratio: 20.78; 95% confidence interval: 2.65 to 162.70; p = 0.001) [94]. 

Delayed-enhancement imaging of the coronary artery wall is 
another technique used which allows for direct assessment of contrast 
agents uptake in the vessel wall. In vivo, delayed enhancement showed 
nonspecific uptake in plaques in both patients with chronic angina and 
in those with acute coronary syndrome (ACS). Ibrahim et al. studied 
atherosclerotic plaque enhancement after acute myocardial infarction 
displayed coronary vessel wall contrast agent uptake is significantly 

increased early after myocardial infarction compared to those observed 
after 3 month follow up images [95]. This decrease in contrast uptake 
on follow up suggests uptake in patients ACS was more transient and 
more likely to be attributed to inflammation. 

Due to the limited data on coronary vessel MR imaging, there is a 
need for more prospective data on these modalities to investigate the 
clinical role of these techniques for better diagnosis and characterization 
of CAD. 

Peripheral Arteries
There have been some developments in MR imaging on disease of 

peripheral arteries. Angiography has been widely used for assessment 
of peripheral artery disease (PAD) caused by atherosclerosis [96]. 
Vessel areas and calcifications measured on high resolution TOA MRA 
were found to be in good agreement with IVUS measurement [97]. 
Measurement of plaque volume of the femoral artery has demonstrated 
interobserver, intraobserver, and test-retest reproducibility on black 
blood imaging [98]. Vessel wall measurement of femoral arteries is 
comparable in both 3D T2-weighted and 2D T1-weighted fast spin 
echo [99]. Due to poor spatial coverage, 2D imaging techniques 
for evaluation of PAD in vivo alternative MRI modalities have been 
studied to improve plaque detection and characterization lesions in the 
peripheral arteries. Hayashi et al showed that diffusion prepared dark 
blood 3D steady state free precession (3D-DP-SSFP) sequence indicated 
a higher signal to noise ratio (SNR) and higher contrast to noise ratio 
(CNR) compared to 2D-TSE technique. Figure 4 displays dark blood 
MRI protocol for femoral plaque imaging. This study showed excellent 
inter-observer reproducibility for 3D plaque burden [100]. In addition, 
Lui et al. showed improved arterial wall delineation in susceptibility 
weighted phase imaging of peripheral arterial walls [101]. 

Cross-sectional MRI analysis have shown to be a useful prognostic 
tool in monitoring plaque remodeling and restenosis. MR imaging has 
been applied in the development of restenosis of lower extremity bypass 
grafts by means of providing serial imaging of subjects to document 
progression of disease [102]. Efficacy of percutaneous transluminal 
angioplasty and its combination with endovascular brachytherapy, 
multicontrast double inversion recovery fast spin echo (DIR-FSE) was 
used to detect changes in vascular remodeling [103]. 

CE-MRA of the renal and aorto-iliac-femoral arteries has shown to 
detection significant steno-occlusive disease using different gadolinium-
based contrast agents. CE-MRA with gadobenate dimeglumine was 
more specific (92.4% vs. 80.5%, p<0.0001) and accurate (83.6% vs. 
77.1%, p=0.022) than CE-MRA with gadofosveset in the detection of 
significant renal artery stenosis. The average sensitivity was higher 
for gadofosveset (74.4% vs. 67.3%, p=0.011) in peripheral vessels 
although gadobenate dimeglumine was more specific (93.0% vs. 88.2%, 
p<0.0001) with no difference in accuracy (86.6% vs. 86.3%, p=0.66). 
PPVs were higher (p<0.0001) for gadobenate dimeglumine in both 
vascular territories. Pre- to post-test shifts in the probability of detecting 
significant disease were greater after gadobenate dimeglumine. Adverse 
events in the renal and peripheral studies were reported by 9.2% and 
7.7% of patients after gadobenate dimeglumine compared with 30.3% 
and 22.1% of patients after gadofosveset [104]. 

In the largest comparative study to date, Hansmann et al. tested 
the diagnostic accuracy of time-resolved MRA of the calves compared 
to continuous-table movement MRA in symptomatic patients with 
lower extremity peripheral artery disease using digital subtraction 
angiography (DSA) as a reference standard. This study established 
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that time-resolved MRA increases diagnostic accuracy of calf station. 
Median image quality of time-resolved MRA was rated excellent 
compared to continuous-table-movement MRA. Inter-reader 

agreement was excellent (κ=0.80-0.84). The diagnostic accuracies 
(continuous-table-movement MRA/time-resolved MRA) combined 
for the readers were obtained for the tibioperoneal trunk (84%/93%), 

A.  

  

B.

C.  

D.

Figure 4: Dark blood MRI protocol for femoral plaque imaging. A) 2D black blood turbo spine echo (TSE) sequence using different contrast weightings to evaluate 
plaque composition in femoral artery. B) 3D Multi planar reformatting (MPR) of femoral artery with plaque indicated by orange arrow. C) MPR Diffusion SSFP. D) MRP 
SPACE.
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anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal 
(67%/81%) arteries. The advantages of time-resolved MRA include 
reduced venous contamination, improved arterial phase of contrast 
enhancement, and more precise delineation of vascular anatomy in 
comparison to continuous-table-movement MRA. This evidence 
supports the addition of time-resolved MRA to continuous-table MRA 
of the calf station as robust diagnostic approach for advanced PAD 
[105].

Future Perspectives of MRI imaging of Atherosclerosis 
For asymptomatic patients with low-grade carotid artery stenosis, 

screening with a non-invasive in vivo imaging method like MRI can 
be a useful tool in detecting vulnerable atherosclerotic plaques. Plaque 
compositions that indicate instability have been identified. However, 
large clinical trials are needed to assess the direct clinical correlation 
of these plaque characteristics to cardiovascular and neurologic events. 
Selection criteria that are reliable and reproducible for identifying 
plaques at risk of causing an ischemic event are crucial in bringing this 
method of imaging to the clinical setting. 

Temporal stability of atherosclerotic plaques is another aspect of 
atherosclerotic plaque analysis that requires further study. Clinical 
studies need longer follow-up times to determine the natural course of 
these plaques. There is a need for more definite clinical correlation and 
a better understand of the temporal evolution of vulnerable plaques 
which could improve risk stratification and management algorithms-
including clinical trials on lipid lowering drugs, for those identified 
with early lesions of atherosclerosis. In the largest prospective study 
to date of patients with moderate to severe symptomatic carotid 
disease, Akram et al. determined the predictive power of intraplaque 
hemorrhage (IPH) for recurrent stroke with a follow-up of 9 years. 
179 patients with previous cerebral ischemic events and more than 
50% carotid stenosis underwent brain and neck MRI imaging. 1.5 
T scanners and standard quadrature neck array coils were used 
in the study. Intraplaque hemorrhage was found to strongly and 
independently predict secondary ipsilateral ischemic events in this 
subset of patients. Hosseini et al. also performed a meta-analysis of 
studies involving MRI imaging of patients with carotid stenosis. IPH 
was determined to be significantly associated with new and recurrent 
cerebral ischemic events for symptomatic patients. This shows that 
IPH is a possible biomarker for thromboembolic risk for patients who 
had previous ischemic events. For patients with asymptomatic carotid 
stenosis, however, it was found that available studies are limited with a 
small sample size and their allotted time for follow-up are inadequate 
to make any conclusion regarding the predictive value of IPH [106]. 

MRI imaging of atherosclerosis has also been studied in coronary 
arteries and other vessels. In the Multi-Ethnic Study of Atherosclerosis 
(MESA), compensatory enlargement of the arterial wall seen in 
early atherosclerosis was detected in patients without any history of 
coronary artery disease [89]. Coronary artery MRI imaging can present 
a major challenge because of the tortuosity of coronary arteries, cardiac 
and respiratory movement, and low spatial resolution. MRI imaging 
protocols that combine speed and resolution are being developed to 
overcome these inherent limitations of coronary imaging. 

Since adequate non-invasive imaging of vulnerable atherosclerotic 
plaque in coronary arteries is still a work in progress, Wang et al. 
determined in a study that the carotid artery could be a window to the 
coronary arteries. Based on the premise that atherosclerosis is a systemic 
inflammatory disease of vessels in general, vulnerable carotid artery 

plaques may be used as a surrogate marker to identify patients at risk 
for acute coronary syndromes (ACS). In this study, ruptured carotid 
plaques are more common in patients with ACS compared to those 
with stable angina. Thus, ruptured carotid plaques may be used as an 
indication that patients are at risk for ACS [107]. More recently, carotid 
plaque vulnerability can also be useful in predicting future coronary 
events as well as cerebrovascular. Noguchi et al determined whether 
carotid high-intensity plaques (HIP) visualized by MPRAGE could be 
a predictor for coronary events. In 217 clinically stable CAD patients, 
the signal intensity of carotid plaques detected by MPRAGE and IMT 
measured by ultrasonography were examined and followed up for as 
long as 72 months. A carotid HIP was defined as a signal >200% that of 
the adjacent muscle. They found a significant association between the 
presence of HIP and cardiac events compared to non-HIP (log-rank 
P<0.0001). Multivariate Cox regression identified the presence of HIP 
as the strongest independent predictor of cardiac events (hazard ratio: 
3.15; 95% confidence interval: 1.93 to 5.58, p<0.0001) compared with 
IMT (hazard ratio: 1.62, 95% confidence interval: 0.97 to 2.44, p=0.055) 
and other coronary risk factors [108]. Coronary imaging is a field of 
potential great impact for MRI imaging of atherosclerosis.

Currently, MRI imaging of atherosclerosis is limited to the field 
of research. For it to be applicable widely in a clinical setting, a 
standardized MRI protocol that maximizes visualization of the plaque 
and its components also needs to be established. Cost-effectiveness 
of the imaging technique is a concern. Training staff to employ the 
new protocol and analyze the images, obtaining dedicated coils, and 
the cost of MRI itself can be prohibitive for this imaging method to 
be a screening tool. Nevertheless, it will still be a more acceptable step 
compared to the invasive angiography procedures for asymptomatic 
patients.

Conclusion 
Early assessment of atherosclerotic lesions is an important 

diagnostic goal in terms of decreasing the CAD burden. This review of 
MRI techniques of atherosclerosis provides an overview of the current 
MRI techniques and their clinical relevance. Magnetic resonance 
imaging is a well-established and reproducible technique that provides 
comprehensive information on the morphology, composition, and 
biochemical markers of atherosclerotic plaques and present high spatial 
resolution and good soft tissue contrast. Intraplaque hemorrhage 
and lipid rich necrotic core are considered the best indicators of 
vulnerable plaque lesions visualized by MRI. In addition, MRI imaging 
techniques offer other important information on the disease process 
like inflammation and neovascularization. 

In the past decades, a great deal of technical improvements 
in MR imaging developments has been seen in carotid and aortic 
studies. Due to the technical difficulties of inherent motion coronary 
arteries assessment through MRI remains a challenge. However, data 
on coronary artery wall MR imaging has grown and provides useful 
clinical information plaque burden and positive arterial remodeling 
on therapeutic strategies and risk stratification. Research efforts are 
continually working to address these challenges. Developments in 
new cardiovascular imaging modalities provide the ability to track 
and quantify molecular biomarkers. Currently, molecular MR contrast 
agents and PET-MR are new fields of interests that show promising 
results on predicting clinical events and monitoring response to 
therapy. In conclusion, the rapid advancements of magnetic resonance 
imaging technology provide vast clinical opportunities for diagnosis, 
prevention, and treatment of atherosclerosis. 
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