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Abstract
Degradation of the stromal connective tissue and basement membrane components are key elements in tumor 

invasion and metastasis. Some components, particularly the interstitial collagens, are very resistant to proteolytic 
attacks and can be degraded by specific proteinases like Matrix Metalloproteinases (MMPs). MMPs can also impact 
on tumor cell behavior in vivo as a consequence of their ability to cleave growth factors, cell surface receptors, cell 
adhesion molecules, or chemokines/cytokines, and for stimulating angiogenesis. Different molecular expression 
profiles of MMPs and their inhibitors (TIMPs) have been associated with the main steps in breast cancer progression, 
such as creating a potential invasive phenotype in Ductal Carcinoma in situ (DCIS), favoring the hematogenous 
dissemination, and enabling the metastatic progression across the axillary lymphatic system. These associations 
have clinical interests, as they can contribute to a better characterization of early breast carcinomas (which differ in 
their both biological and clinical behavior), evaluate microinvasion in resection specimens of breast tumors, provide 
a more precise prognostic, and predict the tumoral status of non-sentinel lymph nodes in breast cancer. It is also 
especially remarkable the evidences indicating that MMPs and TIMPs expression in individual cell populations from 
tumor stroma, such as mononuclear inflammatory cells (MICs) and fibroblast, clearly impacts on the clinical outcome 
of breast cancer patients. There are several factors linking inflammation, MMP activity and breast cancer. This 
knowledge will be useful to develop novel therapies and prevention strategies targeting critical components.

Keywords: Tumor invasion; Metastasis; Inflammation; Mononuclear 
inflammatory cell; Fibroblast

Introduction
Breast cancer is by far the most frequent neoplasm affecting 

women (23% of all cancers worldwide) [1]. Moreover, in spite of its 
increasing incidence, mortality has been rather stable for several years, 
being nowadays the first leading cause of cancer death [1]. This is 
due to the fact that although less than 10% of women with primary 
breast cancer have clinicopathological signs of disseminated disease 
at the time of the initial diagnosis, relapse in the form of metastases 
occurs in about half of the cases with originally apparently localized 
tumors within 5 years of surgery. However, it is difficult to predict 
the occurrence of distant metastases because breast cancer is a 
heterogeneous disease encompassing a variety of pathological entities 
and a wide range of clinical behaviors, even in patient groups that 
seem to be clinically similar. Therefore, and despite of having several 
classical prognostic variables available such as nodal status, tumor size, 
grade of malignancy, age and hormone receptor status, it is necessary 
to identify new prognostic factors in order to improve the current risk 
classification and thereby to develop a more rational management of 
breast cancer patients.

Tumor invasion and metastasis development are the primary 
determinants of patient outcome and, accordingly, molecules involved 
in these processes are obvious candidates to be identified as new 
prognostic markers in breast cancer. Different types of proteolytic 
enzymes (metallo-, aspartic-, cysteine-, serine-, and threonine-
proteinases) perform the degradation of stromal connective tissue and 
basement membrane components, key elements in tumor invasion and 
metastasis [2]. However, some components, particularly the interstitial 
collagens, are very resistant to proteolytic attacks and can be degraded 
by specific collagenolytic enzymes like cathepsin K, neutrophil 
elastase and Matrix Metalloproteinases (MMPs) [3]. The human 
MMP family currently consists of 26 members of homologous zinc-
dependent endopeptidases that can be divided into 6 structural classes 

or, based on their substrate specificity and primary structure, [4-6] 
(Table 1). The expression of MMPs is induced by a variety of external 
stimuli such as cytokines and growth factors, including interferons, 
interleukins, fibroblast growth factor (FGF), vascular endothelial 
growth factor (VEGF), tumor necrosis factor-alpha (TNF-α) or beta 
(TNF-β), epidermal growth factor (EGF), and the extracellular matrix 
metalloproteinase inducer (EMMPRIN) [7]. MMPs are synthesized as 
inactive zymogens, which are then activated mainly pericellularly by 
either other MMPs or by serine-proteases. MMPs activity is specifically 
inhibited by the so-called tissue inhibitors of metalloproteases (TIMPs). 
Currently, 4 different TIMPs are known to exist: TIMP-1, 2, 3 and 4. 
These proteins perform the final regulation stage on the proteolytic 
activity of MMPs following the activation of the latent enzyme, and 
they are also endogenous inhibitors of members of a disintegrin and 
MMP (ADAM) family. 

Collectively, MMPs are responsible for cleaving all of the major 
Extracellular Matrix (ECM) proteins and their balanced interaction 
with TIMPs regulates ECM homeostasis [8,9]. Balance of MMPs/
TIMPs activity has a direct impact on mammary gland development 
and physiology, controlling mammary gland ECM remodeling during 
mammary morphogenesis, cyclical changes during the estrous cycle, and 
differentiation during lactation and mammary involution [10]. Hence, 
reduction of TIMP-1 expression through antisense RNA production 
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leads to more extensive branching, increased ductal elongation, and 
increased proliferative index; whereas TIMP-1 upregulation leads to 
inhibition of ductal elongation [11]. Likewise, TIMP-3 deficient mice 
show accelerated ductal elongation but normal branching patterns 
[12]. On the other hand, the reversion of a lactating gland to a virgin-
like state during involution requires a protease-dependent stage [13]. It 
has been reported that overexpression of MMP-3 [14] or upregulation 
of TIMP-1 [15] or TIMP-3 [16], influence mammary regression. These 
factors have an effect on several substrates during involution, including 
components of the ECM, proteins involved in cell-cell, and cell-ECM 
adhesion. In addition, MMPs and TIMPs are implicated in regulating 
adipogenesis during the late phase of mammary gland involution 
[17]. Thus, it has been reported that in mouse, MMP-3 contribute to 
elongate ducts during the mammary gland morphogenesis [18], and 
its overexpression results in supernumerary ductal branching [19]. 
Likewise, MMP-2 and MMP-14 deficient mice display diminished 
ductal elongation, whereas MMP-9 deficiency has no effect [20]. 

Furthermore, it has been reported that alteration of TIMP levels in 
mice models also leads to alterations in mammary morphogenesis 
[12,13, 16]. Also, there is a lot of evidence pointing a key role of the 
members of the MMP axis in mammary tumorigenesis and in breast 
cancer progression.

MMPs and TIMPs in Disease and Cancer
Abnormal expression of MMPs contributes to non-neoplastic 

pathological conditions, involving acute as well as chronic inflammation 
and/or tissue degradation, and also contributes to cancer [21-25]. There 
is evidence supporting the hypothesis that inflammation participates 
in providing conditions that lead to cancer [26,27], and there are well 
known associations between inflammatory processes and cancer, such 
as inflammatory bowel disease and colorectal cancer [28,29], viral 
hepatitis B and C or alcoholic liver cirrhosis and hepatocarcinoma 
[30], chronic reflux esophagitis resulting in Barrett’s esophagus and 
esophageal carcinoma [29], cervical infection by human papillomavirus 

MMP class MMP Enzyme name Molecular 
Weight (kDa) Substrates

Collagenases

MMP-1 Collagenase - I 57*
47 A Collagens (I, II, III, VII, and X), proteoglycans, entactin, ovostatin, MMP-2, MMP-9.

MMP-8 Collagenase-2/ neutrophil 
collagenase

85*
64 A Collagens (I, II, III, VII, VIII and X), fibronectin, proteoglycans.

MMP-13 Collagenase-3 60*
48 A

Collagens (I, II, III, VII, VIII and X), tenascin, plasminogen, aggrecan, fibronectin, 
osteonectin, MMP-9

MMP-18 Collagenase-4 53*
51 A Type I collagen

Gelatinases
MMP-2 Gelatinase-A 72*

66 A Gelatin, collagen (IV, V, VII VI, IX and X), elastin, fibronectin.

MMP-9 Gelatinase-A 92*
86 A

Collagens (IV, V, VII, X, and XIV), gelatin, entactin, elastin, fibronectin, osteonectin, 
plasminogen, proteoglycans.

Stromelysins

MMP-3 Stromelysin-I 60*
52 A

Collagens (IV, V, and IX), gelatin, aggrecan, laminin, elastin, casein, osteonectin, 
fibronectin, ovostatin, entactin, plasminogen.

MMP-10 Stromelysin2 53*
47 A Collagens (I, II, IV and V), gelatin, casein, elastin, fibronectin.

MMP-11 Stromelysin2 60*
47 A Collagens (IV, V, IX and X), laminin, elastin, fibronectin, casein, proteoglycans.

MMP-17 Homology tostromelysin-2 65*
63 A Pro-MMP2, fibrin/fibrinogen, gelatin.

Matrisylins MMP-7 Matrisylin 28*
19 A

Collagens IV, gelatin, fibronectin, laminin, elastin,
casein, transferrin.

MMP-26 Matrisylin-2 29 Collagen IV, fibronectin, fibrinogen, gelatin, pro-MMP9.

MT-MMP 
(membrane type-

MMP)

MMP-14 MT1-MMP 66*
54 A Collagens (I, II, III), gelatin, fibronectin, laminin, vitronectin, entactin, pro-MMP2.

MMP-15 MT2-MMP 76 Fibronectin, gelatine, vitronectin, entactin, laminin, pro-MMP-2

MMP-16 MT3-MMP 65*
63 A Collagen III, gelatin, casein, fibronectin, pro- MMP-2.

MMP-17 MT4-MMP 65*
63 A Pro-MMP2, fibrinogen, gelatin.

MMP-24 MT5-MMP 73 Fibronectin, pro-MMP2, proteoglycans, gelatin.
MMP-25 MT6-MMP 62 Pro-MMP2, pro-MMP9, collagen IV, gelatine, fibronectin, Proteinase A.

Other enzymes

MMP-12 Macrophage metalloelastase 54*
45 A

Collagen IV, gelatin, elastin, casein, fibronectin, vitronectin, laminin, entactin, fibrin/
fibrinogen.

MMP-19 RASI I 59 Collagen (I, IV) gelatin, fibronectin, laminin.
MMP-20 Enamelysin 56 Amelogenin, aggrecan.
MMP-21 65

MMP-22 58*
53 A

MMP-23 44 gelatin
MMP-27 59
MMP-28 Epilysin 59

*-  Zymogen molecular weight, A active form molecular weight.

Table 1: Human Matrix Metalloproteinases.
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and cervical cancer, prostatitis and prostate cancer, pancreatitis and 
pancreatic cancer, or gastric infection from Helicobacter pylori and 
gastric cancer [31,32]. 

MMPs play an essential role in the degradation of the stromal 
connective tissue and basement membrane components, which are key 
elements in tumor invasion and metastasis. Thus, it is well established 
the implication of MMPs in cancer development [33], such as breast 
cancer [34], colorectal cancer [35,36], prostate cancer [37] and 
hepatocellular carcinoma [38] among others. 

MMP overexpression enhances significantly the invasive and 
metastatic potential of tumor cell lines both in in vitro and in vivo 
studies [39,40]. Genetic mouse models have shown MMPs/TIMPs as 
tumor modifiers at different levels ([10] for review). During tumor 
invasion, MMPs appear to have diverse functions, probably due to 
their substrate preference. It can be assumed that gelatinases are 
primarily responsible for the destruction of collagen IV in the Basement 
Membrane (BM), while the stromelysins degrade non-collagenous 
proteins, such as laminins or entractin/nidogen. After the tumor cells 
have destroyed the BM and gained contact with the interstitial matrix, 
the collagenases are required to disrupt the native interstitial collagen 
network, which is mainly made up by collagen types I, III and V and 
the microfibrillar collagen IV. In addition, there are data which clearly 
challenge the classic dogma stating that MMPs promote metastasis 
solely by modulating the remodeling of ECM, and regarding this, it 
has been described the MMPs influence tumor cell behavior in vivo 
as a consequence of their ability to cleave growth factors, cell surface 
receptors, cell adhesion molecules, or chemokines/cytokines [41-44]. 
Furthermore, by cleaving pro-apoptotic factors, MMPs may induce a 
more aggressive phenotype via generation of apoptotic resistant cells 
[45]. MMPs may also regulate tumor angiogenesis, both positively 
through their ability to mobilize or activate pro-angiogenic factors 
[46], or negatively via generation of angiogenesis inhibitors, such as 
angiostatin, endostatin and tumstatin, cleaved from large protein 
precursors [47]. 

Nevertheless, in addition to their potential role for inhibiting 
angiogenesis, there are several studies showing that MMPs can limit 
tumor progression. For example, in breast cancer, MMP-3 expression 
in mammary gland decreases mammary tumor development in 
transgenic mice [48]; also, an increased expression of MMP-8 decreases 
metastasis of MDA-MB-435 carcinoma cell line both in vitro and in 
vivo [49].

MMPs functions seem to depend on their cellular localization. 
MMPs bound to cell membranes may regulate their activity, leading 
to the promotion of cell migration and invasion and may activate 
intracellular signalling cascades [50]. In addition, MMPs on cell surface 
can be internalized and either directed to the lysosomes for destruction 
or be a source of intracellular activity. Several MMPs (including MMP-
2, -3, -13 and MT1-MMP/MMP-14) have been found in nuclei of 
various cell types [51-54]. Nuclear localization of MMPs suggested that 
they may participate in many physiological and pathological cellular 
processes, in which they can act as both constitutive, regulatory and 
inducible proteinases [55]. In breast cancer tissue, MMP-1 showed a 
predominant nuclear immunostaining and a slight cytoplasm staining 
of tumor cells, whereas normal breast tissue shown no staining for 
MMP-1 [56]. Also, a nuclear MMP-2 staining was showed in tumor 
cells; whereas MMP-2 staining was shown in cytoplasm of normal 
breast endothelial cells [57]. The role of intracellular located MMPs 
is still poorly understood, and no mechanisms or functions were 
suggested about the role of nuclear MMPs in the breast cancer processes 
(for review: [55,58]).

MMPs and TIMPs Expression in Primary Breast 
Tumors 

Several MMPs, specially gelatinases MMP-2 [59-64] and MMP-9 
[34,63,65], have been studied as prognostic factors in breast cancer, 
being associated with poor outcome in various subsets of patients 
(Table 2). These findings may be due to both MMPs are related to 
tumor invasion and metastasis by their special capacity to degrade the 
type IV collagen found in BM [66], and to induce angiogenesis [42]. 
Likewise, other MMPs or TIMPs may be overexpressed and/or related 
to clinical outcome in breast cancer, such as MMP-7 [34], MMP-11 
[34,60], MT1-MMP (MMP-14) [34,59,67], MMP-13 [68], TIMP-1 
[34,69-73] or TIMP-2 [34,73-75], and also the genetic polymorphisms 
of these proteins may have an association with breast cancer risk, 
progression and survival [76]. Discordant data about the prognostic 
value of the above-mentioned MMPs have also been published, and in 
this way have been related to only a few prognostic factors [77,78] or 
shown to have no association with clinicopathological parameters in 
breast cancer [59,79,80].

Histological subtypes of breast carcinoma

It is remarkable that, except for MMP-2, there are significant 
differences in MMPs and TIMPs expression between the histological 
subtypes of breast carcinomas [81]. These histological types can 
be divided into three groups according to the prognostic value: 
excellent, poor and very poor prognosis. Patients with an excellent 
prognosis, such as invasive tubular and mucinous carcinoma patients, 
showed a higher survival rate (over 80%) at 10 years [82], patients 
with invasive papillary or medullary cancers have a worse prognosis 
(60-80% survival), and patients with invasive ductal carcinoma and 
lobular carcinoma were associated with a 10-year survival below 
50% [83]. However, only a few studies have evaluated differences in 
clinical, pathological and biological characteristics according to the 
histological type. With the increasing incidence of breast carcinoma, 
the number of patients with an uncommon tumor may increase, so 
that a more profound knowledge of the molecular biology of these 
tumors could help to improve the treatment approach. As reported by 
del Casar et al. [81], ductal breast carcinomas showed higher global 
expression of MMPs and TIMPs than the other histological types; in 
contrast, mucinous carcinomas had lower expression scores than other 
carcinomas. With regard to the expression of MMPs and TIMPs in 
fibroblasts, it was found that these stromal cells were more frequently 
positive for MMP-1, 7 and 13, and TIMP-1 and 3, in ductal carcinomas 
than in other histological types of breast carcinomas. With regard to the 
expression of MMPs and TIMPs in Mononuclear Inflammatory Cells 
(MICs), these stromal cells were more frequently positive for MMP-
1 and TIMP-3, but more often negative for MMP-7, 9 and 11, when 
located in ductal carcinomas than in other histological types of breast 
carcinomas. Therefore, variations in MMP/TIMP expression among 
the histological subtypes of breast carcinomas seems to contribute to 
the differences in the morphological appearance of breast carcinomas, 
and might also be related with variations in the tumor pathophysiology 
of these breast cancer subtypes.

Roles of MMPs and TIMPs in Transition from Ductal 
Carcinoma in situ (DCIS) to Invasive Ductal Carcinoma 
(IDC) of the Breast

With the adoption of screening mammography, the incidence of 
Ductal In Situ Carcinoma (DCIS) has risen dramatically, and now DCIS 
accounts for about 25% of new breast carcinomas cases annually [84]. 
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DCIS of the breast represents a neoplastic proliferation of epithelial 
cells that is confined to the ductal system and has not extended through 
the basement membrane. Therefore, in principle, it has no metastatic 
potential but nevertheless, about 16-22% of DCIS cases develop 
recurrence after breast-conserving surgery, and about half of them 
recur as invasive carcinoma, which is more difficult to cure [85]. Even 
with radiotherapy, there is a 7-9% recurrence rate [86,87], and about 
half of them are invasive carcinomas [87,88]. Still, little is known about 
the tumor biology of these pre-invasive cancers. 

The transition from DCIS to Invasive Ductal Carcinoma (IDC) of 
the breast is a poorly understood key event in breast cancer progression 
[89,90]. Currently, conventional histopathological parameters as those 
in the Van Nuys classification system are used to identify group of 
patients with DCIS at high risk to develop recurrence. It has been 
reported that several markers such as Estrogen Receptors (ER), 
Progesterone Receptors (PgR), Human Epidermal Growth Factor 
Receptor 2 (HER2/neu), Ki67, p53, and Bcl-2 correlate with tumor 
grade and between them, but it is not clear if they are independent 

MMP / TIMP Expression 
level Cancer subtype Cell type Correlation with prognosis Reference

MMP2

High - - Poor outcome [60] 
Positive T1-2 tumor - Shorter survival [61] 
High Lymph node-negative breast cancer - Shorter relapse-free survival [63] 
High - - Shorter survival [64] 

MMP9

High Lymph node-negative breast cancer - Shorter relapse-free survival [63] 
High - Cancer cells Longer relapse-free survival

[65] 
Positive Estrogen receptor positive Stroma Shorter relapse-free survival and 

breast cancer-related survival 
Low Invasive ductal carcinoma - Shorter relapse-free survival

[34] Positive Invasive ductal carcinoma Cancer cells Shorter relapse-free survival
Positive Invasive ductal carcinoma Stroma (Fibroblast and MIC) Shorter relapse-free survival
High Basal like - Shorter relapse-free survival

[34] Positive Basal like Stroma (Fibroblast and MIC Shorter relapse-free survival
Positive Luminal A Stroma (Fibroblast and MIC Shorter relapse-free survival

MMP7 Positive Invasive ductal carcinoma Stroma (Fibroblast and MIC) Shorter relapse-free survival [34] 

MMP11

High - - Poor outcome [60] 
High Invasive ductal carcinoma - Shorter relapse-free survival

[34] 
Positive Invasive ductal carcinoma Stroma (Fibroblast and MIC) Shorter relapse-free survival
High Basal like - Shorter relapse-free survival

[37] Positive Basal like Stroma (Fibroblast and MIC) Shorter relapse-free survival
Positive Luminal A MIC Shorter relapse-free survival
High Invasive breast carcinomas Cancer cells Worse disease outcome

[71] 
Positive Invasive breast carcinomas Fibroblasts Adverse overall survival

MMP13
Positive Basal like MIC Shorter relapse-free survival

[99] 
Positive Luminal A Stroma (Fibroblast and MIC) Shorter relapse-free survival

MMP14

Positive Invasive ductal carcinoma MIC Shorter relapse-free survival [34] 
Positive Luminal A MIC Shorter relapse-free survival 100

High - - Lymph node metastasis and/or 
lymph vessel invasion [67]

TIMP1
High Invasive ductal carcinoma - Shorter relapse-free survival

[34]
Positive Invasive ductal carcinoma MIC Shorter relapse-free survival

TIMP2

High Invasive ductal or lobular carcinomas 
or both - Shorter relapse-free survival and 

shorter survival [73]

High - - Shorter relapse-free survival [72]
High Shorter relapse-free survival [71]

High - - Shorter relapse-free survival and 
shorter overall survival [70]

High - - Shorter relapse-free survival and 
shorter overall survival [69]

High Invasive ductal carcinoma - Shorter relapse-free survival
[34]Positive Invasive ductal carcinoma Cancer cells Shorter relapse-free survival

Positive Invasive ductal carcinoma Stroma (Fibroblast and MIC) Shorter relapse-free survival
Positive Basal like Stroma (Fibroblast and MIC) Shorter relapse-free survival

[100]
Positive Luminal A Stroma (Fibroblast and MIC) Shorter relapse-free survival

High Invasive ductal or lobular carcinomas 
or both - Shorter relapse-free survival [73]

High Stroma Shorter relapse-free survival [75]

High - - Shorter relapse-free survival and 
shorter overall survival [74]

Table 2: Expression of MMPs and TIMPs and its relationship with clinical outcome of patients with breast cancer.
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prognostic factors [91]. Performing molecular profiling studies 
comparing DCIS and IDC could be a great approach to assess cancer 
progress, although several studies failed to identify tumor-stage-
specific signatures [92-95].Therefore, the analysis of the MMPs/TIMPs 
expression profile might be an independent factor involved in one or 
more stages necessary for progression from pre-invasive to invasive 
tumors and, consequently, it may have a role in predicting recurrence 
in DCIS.

Previous reports showed the expression of MMP-1, 2 [96,97], 3, 
9 [96], and TIMP-1 [97] in the stroma around non-invasive breast 
tumors, although other reports showed no significant differences in 
the expression levels of some MMPs between DCIS and IDC [98]. 
It is of mention the possible relationship between the MMP/TIMP 
expressions in both DCIS and IDC components of mixed cases. Only a 
significant but poor correlation for MMP-2 score values between both 
lesions has been found. However, significant differences between both 
paired set of lesions for MMP-1, 2, 7, 9 13, 14, and TIMP-1 expression 
by tumor cells were found [99-100]. It suggests that the step from DCIS 
to an invasive phenotype implicates some significant changes in the 
MMP/TIMP expression profile, either by the intraductal tumor cells in 
the neoplastic ducts, or by the stromal cells between them. 

Recently, we found variability in MMP/TIMP expression in pure 
DCIS, with a group of these lesions showing higher expression of 
MMP-1, 9, 11, 13, 14, TIMP-1, 2, and 3 [100], which may be of potential 
biological and clinical interest to predict DCIS evolutionary behavior 
towards IDC. Further and prospective studies are necessary to confirm 
the clinical value of this molecular profile to predict the evolutionary 
behavior towards IDC. Nevertheless, it seems interesting to compare 
MMP/TIMP expressions between different lesions, such as pure DCIS, 
IDC, DCIS mixed with IDC, both in DCIS and invasive components in 
mixed cases of breast cancer, or with focus in the microinvasive events 
in DCIS (Figure 3).

When we compare MMPs/TIMPs expressions, it was remarkable 
that MMP-7 and TIMP-1 expressions were significantly higher 
in IDC than in pure DCIS [100]. It has been reported that MMP-
7 overexpression enhances cellular invasiveness and activation of 
proMMP-2 and MMP-9 [101], which supports the role of MMP-7 in 
tumor invasion in breast cancer. With regard to TIMP-1, it may have 
tumor-stimulatory functions, such as promote cell proliferation [102]. 

Analysis of pure DCIS showed higher levels of MMP-9 [100,103] 
MMP-11 and TIMP-3 [100] than the DCIS component of mixed 
cases. This suggests that, MMP-9 may play a role in the very early 
stages of DCIS development, but once the BM has been broken, cancer 
cells become less dependent on its activity [103]. TIMP-3 may be 
relevant considering the putative role in tumor growth inhibition, as 
it antagonizes primary tumor growth, angiogenesis, apoptosis, tumor 
invasion, and the development of metastasis [104-108]. Recent studies 
about the methylation-associated silencing of TIMP-3 also suggest a 
tumor suppressor role in several tumor types [109-113], which might 
not be directly related to its effect as an MMP inhibitor. Therefore, the 
lack of TIMP-3 expression in pure DCIS may be a potential marker 
of invasive growth. It also was of note the existence of a positive 
and significant association between the peri-ductal inflammatory 
infiltrate and MMP-2, 14, or TIMP-1 scores in pure DCIS [100]. 
These associations are interesting considering that these factors may 
stimulate peri-ductal angiogenesis, and therefore B and T-cells may be 
recruited via high endothelial venules induced by DCIS. These dates 
indicates that the inflammatory infiltrate could also affect angiogenesis 
by releasing angiogenic factors [114]. 

In contrast, MMP-1 expression was significantly higher in DCIS 
than in the corresponding IDC in mixed cases [99]. MMP-1 is required 
for local invasion due to its ability to degrade the type I collagen (the 
principal component of connective tissue) [4]. High expression of 
MMP-1 by fibroblast cells correlated with the occurrence of distant 
metastasis, which is in accordance with previous studies showing its 
association with an elevated metastasis capacity [115]. In addition, 
MMP-1 expression by mononuclear cells is associated with sequential 
metastasis across lymph nodes in breast cancer [116]. Thus, the 
lower expression of MMP-1 in the IDC component may suggest a 
less aggressive evolutionary development of invasiveness in these 
carcinomas with mixed components. Accordingly with this concept, 
it has been shown that pure IDC showed significant higher expression 
of MMP-1, 9, 11 14, TIMP-1 and 3, than the IDC component of mixed 
cases, suggesting a more aggressive behavior of pure IDC. In this 
line, several clinical studies have shown that the presence of a prior, 
simultaneous, or subsequent breast carcinoma in situ is associated with 
a better survival for patients with IDC [117]. This improved survival 
may have an immunological basis. Nevertheless, if we assume that 
DCIS preceded the elements showing stromal infiltration, we can also 
consider that pure IDC may be characterized by a fast growth which 
quickly obliterate and/or destroy the neoplastic ducts of the precursor 
lesions, a hypothesis supported by the higher MMP/TIMP molecular 
profile in pure IDC. 

Our Group found no significant differences in MMPs/TIMPs 
expression between intraductal tumor cells and tumor cells from 
microinvasive foci, both belonging to DCIS with microinvasion 
[118]. However, there was a significantly higher MMP-13 expression 
in fibroblasts and MMP-14 expression in MICs from invasive foci, 
compared with the respective paired expression in peri-ductal fibroblasts 
or in peri-ductal MICs from the neoplastic ducts. These data are in 
accordance with a previous study by Nielsen et al. [68], who reported 
that MMP-13 expression by myofibroblasts was often associated 
with microinvasive events and, thus this collagenase could play an 
essential role during the transition from DCIS to IDC of the breast. 
As mentioned above, MMP-13 and MMP-14 have an exceptionally 
and wide role in molecular carcinogenesis, tumor cell growth, invasion 
and angiogenesis. Over the past few years, accumulated evidences 
indicate that both changes in stromal behavior and tumor/stroma cell 
interactions are intimately linked to the processes of tumorigenesis, 
tumor invasion, and metastasis [119]. Thus, all these data suggest a 
relevant role of peri-ductal stromal cells in the early phases of tumor 
invasion in breast cancer.

On the basis of all of these data, variations in the MMP/TIMP 
expression, either by tumor cells or by stromal cells, seem to have 
an essential role in the potential invasive phenotype in DCIS. Thus, 
analysis of the MMP/TIMP molecular profile can contribute to a 
better characterization of early breast carcinomas which differ in 
their biological and clinical behavior. Therefore, the staining patterns 
of MMP/TIMP might display potential applications as biological 
markers, such as in the evaluation of microinvasion in resection 
specimens of breast tumors. Nevertheless, it is necessary to study a 
large number of DCIS cases with long follow-up focused on invasive 
recurrence, to evaluate the predictive and prognostic value of MMPs/
TIMPs expression. Since the identification of a molecular profile 
associated with tumor recurrence after breast conservative surgery, 
is highly desirable to recognize the majority of DCIS patients with a 
very low risk of developing invasive recurrence, which will not need 
radiotherapy after breast conservative surgery, to avoid overtreatment 
and side effects in these patients 
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MMPs and TIMPs in Stroma
Breast cancer, as a solid tumor, consists of a variable mixture of 

neoplastic cells and non-neoplastic tumor stroma cells, comprising 
endothelial cells, pericytes, fibroblast and a variable representation 
of inflammatory cells. Over the past few years, several evidences have 
shown that both changes in the stromal behavior and the interaction 
between tumor cells and stromal cells, are intimately linked to 
tumorigenesis, tumor invasion and metastasis [119,120]. In fact, it 
is currently known that in addition to their production by epithelial 
tumor cells, MMPs and/or TIMPs expression may be induced in 
infiltrating stromal fibroblasts and/or in vascular and inflammatory 
cells [68,71,75,121]. Therefore, the main source of MMPs in breast 
carcinoma are the stromal cells [122-125], and also experimental 
studies have demonstrated that the mechanism by which breast cancer 
cells can rapidly use MMPs produced by adjacent normal fibroblasts to 
facilitate their invasion into the peritumoral tissue [126].

Nowadays, it is widely accepted that the cellular type (tumor 
cell/stromal cell) expressing these individuals factors might have a 
biological interest in breast cancer. Thus, we found that the expression 
of MMP-9 or TIMP-2 by tumor cells, MMP-1, 7, 9, 11, 13, or TIMP-3 
by fibroblasts, and MMP-7, 9, 11, 13, 14, or TIMP-1 and 2 by MICs, was 
significantly associated with a higher rate of distant metastases [34].

MMPs and TIMPs expression in MICs

Inflammatory cells can account for as much as 50% of the total 
tumor mass in invasive breast carcinomas. MICs infiltrate in breast 
carcinomas include a variable representation of macrophages, plasma 
cells, mast cells and B and T-lymphocytes [127,128]. Historically, tumor-
infiltrating leukocytes have been considered to be manifestations of an 
intrinsic defense mechanism against developing tumors [128,129]. 
However, our data are in accordance with the increasing evidences 
indicating that leukocyte infiltration can promote tumor phenotypes, 
such as angiogenesis, growth and invasion [127,130]. This may be 
due to inflammatory cells, which secrete cytokines, growth factors, 
chemokines and proteases, stimulating cancer cell proliferation and 
invasiveness [131]. Nevertheless, the prognostic significance of the 
lymphoid infiltrate at the tumor site remains controversial, perhaps 
because the evaluation criteria for tumor infiltrates are not sufficiently 
standardized to yield reliable and reproducible results in different 
institutions. 

An unsupervised hierarchical cluster analysis identified two cluster 
groups, one consisting of tumors showing a low, and another showing 
a high MMP/TIMP expression profile by intratumoral MICs [34], and 
this latter strongly associated with distant metastasis development 
(Figure 1). Thereby, multivariate analysis indicates that to belong to 
this cluster group is the most significant and independent prognostic 
factor to predict distant metastasis development in patients with 
IDC [132]. In addition, these two differential MICs phenotypes with 
distinct prognosis were also found in breast carcinomas with luminal 
A or in basal-like phenotype [133], which suggests the importance 
of the expression of MMPs/TIMPs by the stromal cells as prognostic 
factors independently of the signature of cancer cells. These two tumor 
groups were present at the invasive front of tumors, but it was also 
possible to identify a third group of tumors who’s MICs showed an 
intermediate MMP/TIMP expression profile [134]. These findings 
suggest that tumor-infiltrating leukocytes from peripheral blood 
undergo a phenotypic modification to infiltrate from the invasive front 
into the tumor center. This seems to be a dynamic process in which 
inflammatory cells and immunomodulatory mediators present in the 

tumor microenvironment polarize the host immune response towards 
specific phenotypes impacting on tumor progression. Patients with 
high MMP/TIMP expression patterns in the corresponding MICs 
populations at the tumor center, as well as at the invasive front, had 
the highest probability to develop distant metastases, indicating the 
importance of evaluating the expression of these factors involved in 
tumor growth by MICs located in different tumor areas, which provide 
complementary information about tumor behavior and prognosis in 
breast cancer. 

It is interesting to describe some biological characteristics of the 
MMPs expressed by this prometastatic-related MICs, specifically 
MMP-7, 9, 11, 13 and 14, and TIMP-1 and 2 [132]. MMP-7 (matrilysin 
1) is a stromelysin which degrades type IV collagen, fibronectin and 
laminin, that is aberrantly expressed in human breast tumors, and 
whose elimination is associated with lower invasiveness and reduced 
tumor growth [135]. MMP-9 (gelatinase B) is related to tumor 
invasion and metastasis by their special capacity to degrade the type 
IV collagen found in BM [66], and is also able to induce angiogenesis 
[42]. Indeed, a high MMP-9 expression correlates significantly 
with tumor aggressiveness and poor prognosis [63, 65]. MMP-11 
(Stromalysin-3) was preferentially expressed by peritumoral stromal 
cells [136,137], and high levels of MMP-11 were associated with tumor 
progression and poor prognosis [34,71]. MMP-13 (collagenase-3) has 
an exceptionally wide substrate specificity when compared with other 
MMPs [138,139], play a central role in the MMP activation cascade, 
both activating and being activated by other MMPs (MMP-14, 2 or 3), 
and may play an essential role during the transition from DCIS lesions 
to IDC of the breast [68]. MMP-14 (membrane type 1 MMP or MT1-
MMP) is a key MMP involved in the degradation of ECM, activation of 
pro-MMP-13 [140] and pro-MMP-2 [141] in the cell surface, and plays 
crucial roles in molecular carcinogenesis, tumor cell growth, invasion 
and angiogenesis.

The positive relationship between TIMP expression by MICs and 
cancer progression may appear paradoxical, because both TIMP-1 
and 2 are well-known inhibitors of MMP activity. As TIMPs inhibit 
MMPs in vivo, it should be expected that high levels of inhibitors would 
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Figure 1: Graphical representation of hierarchical clustering analysis of 
MMPs and TIMPs expressions in mononuclear inflammatory cells. Rows: 
tumor samples groups. Protein expressions are depicted according to a color 
scale: red, positive staining; green, negative staining (simplified from Gonzalez 
et al. 2007).
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prevent tumor progression and thus should be related to good outcome 
in cancer patients. However, they may also promote cell proliferation 
and have antiapoptotic effects that may favor tumor expansion during 
the onset and early growth of primary tumors [102,107,142,143].

MMPs and TIMPs expression in fibroblasts

Fibroblast is one of the main stromal cellular components of breast 
carcinomas. Clustering analysis showed two distinct groups, with low 
or high MMP/TIMP molecular profiles in both fibroblast populations, 
either in the tumor center or in the invasive front, but each of them 
with different MMP/TIMP patterns. Intratumoral fibroblasts showed a 
positive expression of MMP-2, 7 and 14, and TIMP-3 more frequently 
than fibroblasts at the invasive front, which showed a more frequently 
expression of MMP-9 (Figure 2). This varied expression pattern of 
MMPs and TIMPs may correspond to differences in cellular density, 
which is higher in the tumor center, and/or to biological mechanisms 
of interaction between tumor cells and the fibroblast population of 
those two different tumor areas [144]. Accordingly, it has been shown 
that cell-cell contact between cancer cells and fibroblasts enhanced 
the production and activation of MMPs by cancer cells, promoting 
pericellular proteolysis, angiogenesis and tumor cell invasion [145,146]. 
The expression of MMPs and TIMPs by fibroblasts is an independent 
factor predicting the occurrence of distant metastases, depending on 
the tumor location of those cells. Thus, whereas in fibroblasts at the 
tumor center the expression of MMP-9, 13 and TIMP-3 was associated 
with distant metastases, in the fibroblasts at the invasive front was 
the expression of MMP-14 and TIMP-1. However, patients with high 
MMP/TIMP patterns in the fibroblast population at the tumor center 
as well as at the invasive front had the highest probability of distant 
metastases, whereas patients with low MMP/TIMP patterns in both 
fibroblast populations had the lowest risk of distant metastases [144]. 

All of these findings led us to consider the importance of the 
expression of MMPs and TIMPs by stromal cells in the different areas 
of breast carcinomas, in order to assess the clinical relevance of this 
tumor heterogeneity, as well as to achieve a better knowledge about 
the role of stromal cells in breast cancer progression. All of these show 
the importance of the largely unknown contribution of the tumor 
environment to the malignant phenotype. Historically, the importance 
of tumor microenvironment during cancer progression was recognized 
more 100 years ago in the “seed and soil” hypothesis proposed by Paget 
in 1989 [147]. Therefore we can conclude, such as Noël et al. [148], that 
MMPs seem to be molecular determinants of Paget’s “seed and soil” 
concept.

MMPs and TIMPs Expression in Metastasis
Role in distant metastasis development

As described more above, patients with high MMP/TIMP expression 
pattern in the corresponding MICs populations at the tumor center, 
as well as at the invasive front, had the highest probability to develop 
distant metastases [134]. Also, we demonstrated that MMP-11 was 
the most frequently expressed protein in these prometastatic-related 
MICs (85.7% vs. 4.6% in the low MMPs/TIMPs profile group), and 
therefore its expression was considered as a useful biological marker 
in these MICs population [132]. Previously, high levels of MMP-
11 had been associated with tumor progression and poor prognosis 
[71]. On the basis of this finding, and after the analysis carried out by 
real-time PCR of 65 factors associated with tumor progression and 
inflammation, Eiró et al. [149,150] recently reported that 22 factors 
were related with MMP-11 expression by MICs. Of them, factors more 

differentially expressed between both groups of tumors were IL-1, 5, 
6, 17, IFNβ and NFκB. Altogether, these results indicate that tumors 
developing worse prognosis and identified by MMP-11 expression by 
intratumoral MICs, showed an up-regulation of inflammatory-related 
genes. These associations are relevant because these highly expressed 
genes have been associated with several biological mechanisms related 
to tumor progression [151-157]. It is also relevant the novel finding 
of the association between the expression of MMP-11 or TIMP-2 by 
the MICs at the tumor center and a high CD68/(CD3+CD20) ratio 
(macrophages (CD68+), T-cells (CD3+) and B-cells (CD20+)) [158], 
since both proteins are the two principal factors defining the pro-
metastatic phenotype of MICs in our previous studies [34,132,134,144]. 
In addition, if there is a high CD68/(CD3+CD20) ratio at the invasive 
front, most of MICs with a positive MMP-11 or TIMP-2 phenotype at 
the tumor center are macrophages, suggesting all these findings that 
a high CD68/(CD3+CD20) ratio at the invasive front contributes to 
polarize macrophages to achieve a high metastatic phenotype at the 
tumor center.

Role in lymphatic metastasis

Classically, biological and/or prognostic factors in breast cancer 
have been investigated in the primary tumor. However, draining lymph 
nodes, and specially Sentinel Lymph Nodes (SLNs), are of great interest 
because they are exposed to all soluble factors coming from the tumor 
and may also be colonized by aggressive clones deriving from primary 
tumor cells. It has been reported that when comparing MMPs/TIMPs 
immunostaining values between different tumor localizations (tumor 
center, invasive front or Metastatic Axillary Lymph Nodes (MALNs)), 
the higher positive correlations were found between MALNs [159], 
suggesting that clones of primary tumor cells which colonize regional 
lymph nodes show a tendency to have a similar phenotype of MMPs/
TIMPs. 

It was recently shown that specific MMP/TIMP expression by 
MALNs (such as MMP-1, 7, 13 or TIMP-1 by MICs) was associated 
with the number of invaded nodes. Likewise, it is especially relevant 
that MMP-1 (interstitial collagenase, also named collagenase-1) 
expression by MICs from SLNs was significantly associated with 
metastatic spread to non-SLNs. This seems to indicate that metastatic 
cancer cells have the ability to induce the production of these proteins 
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Figure 2: Graphical representation of hierarchical clustering analysis of 
MMPs and TIMPs expressions in fibroblasts in the center of the tumor, 
and fibroblasts at the invasive front. Rows: tumor samples groups. Protein 
expressions are depicted according to a color scale: red, positive staining; 
green, negative staining (simplified from Del Casar et al. 2009).
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in the inflammatory host cells within the lymph nodes, which 
emphasizes the importance of the stromal-epithelial interactions in the 
tumor progression among MALNs. In addition, it was reported that 
in all cases with negative MMP-1 expression by MICs from SLNs, the 
remaining non-SLNs were not affected, pointing to a 100% sensitivity, 
a 100% negative-predictive value and a 61.5% specificity to predict 
non-SLNs status [116]. Therefore, if confirmed in larger studies, MMP-
1 expression by MICs from SLNs may be a useful biological marker 
to predict metastatic progression across the axillary lymphatic system 
in breast cancer, which could help to avoid unnecessary axillary node 
dissection in a significant percentage of cases (50-68%) [160,161] when 
metastatic spread to other axillary nodes, apart from SLN, is suspected. 

MMP-1 is the most ubiquitously expressed of the interstitial 
collagenases. MMP-1 cleaves several components of the extracellular 
matrix, including collagen type I (the principal component of the 
connective tissue), II, III, VII, VIII, and IX, aggrecan, as well as serin-
protease inhibitors, and α2 macroglobulin [4] . The reported data by 
Eiró et al. [116] seem to indicate that the degradation capacity of MMP-
1 may be responsible for promoting tumor spread via the lymph nodes. 
This observation may appear in contradiction with those previously 
reported regarding the lack of association between high MMP-1 
expression by MICs from primary tumors and distant metastasis in 
breast carcinomas [132]. However, the metastatic progression across 
the axillary lymphatic system is a process completely different from 
hematogenous tumor spread, which is the one responsible for distant 
metastases [162,163]. 

MMPs as Therapeutic Targets
Based on the findings about MMPs overexpression in malignant 

tumors, diverse synthetic MMP inhibitors (MMPIs) have been 
developed as potential therapeutic agents against cancer [164,165]. 
Several generations of synthetic MMPIs have been tested in phase 
III clinical trials in humans, and include three classes of inhibitors: 
peptidomimetics, non-peptidomimetics inhibitors and tetracycline 
derivatives, which target MMPs in the extracellular space. The 
peptidomimetic MMPIs mimic the collagen structure at the MMP 
cleavage site, functioning as competitive inhibitors, and chelating the 
zinc ion present at the activation site [166]. Batimastat (BB-94) and 
marimastat are hydroxymate-based inhibitors belonging to this MMPIs 
group, and have been associated with musculoskeletal syndrome, 
probably as a result of their broad spectrum of inhibition [167-169]. In 
addition, in vitro studies with these MMPIs showed that they can act 
synergistically with TIMP-2 in the promotion of proMMP-2 activation 
by MMP-14, increasing the overall pericellular proteolysis [170]. On 
the other hand, the non-peptidomimetic MMPIs (tanomastat (BAY12-
9566), prinomastat (AG3340), BMS-275291 and CGS27023A) have 
improved specificity and oral bioavailability [171], but musculoskeletal 
side effects and limited efficacy were also reported in clinical trials 
[164,172]. The chemically modified tetracyclines derivatives (metastat 

(COL-3), minocycline and doxycycline) are MMPIs that inhibit both 
the enzymatic activity and the synthesis of MMPs via blocking gene 
transcription. These inhibitors lacking antibiotic activities, may inhibit 
MMPs by binding to metal ions such as zinc and calcium, and cause 
limited systemic toxicity compared to regular tetracyclines. Among 
these MMPIs, doxycycline is currently the only approved by the 
Food and Drug Administration for periodontitis prevention, whereas 
metastat has entered in phase II trials for Kaposi’s sarcoma and brain 
tumors treatment [173].

The majority of synthetic MMPIs used in clinical trials of late-stage 
malignancies showed only a borderline beneficial effect [174,175], 
and in some cases their activity was associated with a negative patient 
outcome [176,177]. Administration of many of these broad spectrum 
MMPIs was also accompanied by dose limiting side effects including 
muscle and bone pain, maybe due to the complexity of the pro- and 
anti-tumorigenic roles described for MMPs and TIMPs, since the 
protective effects of MMPs, especially in processes such angiogenesis, 
were not available at the time of the first clinical trials [178]. To date, 
clinical trials with MMPIs have been performed in unselected patient 
populations, often with late-stage disease, which may be relevant 
because MMPIs are more effective in early but not late cancer stages 
[179]. It is also of note that MMPs may also play anti-tumor functions 
in many tumors, as well. For example, MMP8-/- mice developed more 
papillomas upon carcinogen treatment [180].

To avoid the negative results and toxicity issues raised by the use of 
synthetic MMPIs, various natural compounds have been identified as 
MMPs inhibitors. TIMPs have demonstrated efficacy in experimental 
models to block MMPs activity, but TIMPs may exert MMP-
independent promoting effects [181]. Another natural compounds 
such as neovastat (extracted from shark cartilage) [182] or genistein 
(a soy isoflavonoid structurally similar to estradiol) [161,183] have 
anticancer effects, in part interfering with the activity of several MMPs. 
There are other drugs that influence MMPs, like bisphosphonates, 
which inhibit the enzymatic activity of various MMPs [184]. In in vitro 
studies, addition of letrozole, a reversible nonsteroidal inhibitor of P450 
aromatase, considerably suppressed the activity of gelatinases (MMP-
2 and -9) released by breast cancer cells, as well as invasion, limiting 
the metastatic potential of these cells [185]. These latter data are in 
accordance with the results obtained in the British International Group 
1-98 study showing that letrozole decreases the occurrence of distant 
metastases [186]. Curcumin (diferuloylmethane) is a polyphenol derived 
from the plant turmeric (Curcuma longa), commonly used as a spice. 
It has been show that curcumin inhibits 12-O-Tetradecanoylphorbol-
13-Acetate (TPA)-induced MMP-9 expression and cell invasion 
through suppressing NF-κB and AP-1 activation in MCF-7 cells [187]. 
Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for 
nephropathic cystinosis, a rare lysosomal storage disease. Similar to 
the in vitro results, MMP activity was significantly decreased in animal 
cysteamine-treated tumors [188].

There are other strategies to inhibit MMPs activity. Strategies 
involving antisense and small interfering RNA (siRNA) technology 
directed selectively against mRNA of a specific MMP, resulting in 
decrease of RNA translation and down-regulation of MMP synthesis, 
are in development [135,189]. In addition, efforts have been made 
towards the development of very specific MMPIs. The fully human 
monoclonal antibody DX-2400 (Dyax Corp.) that targets MMP-14, has 
shown great promise in preclinical models in inhibiting invasiveness of 
cancer cell lines [190]. In addition, a novel class of MMPIs, the triple-
helical transition state analogues, specifically targets the gelatinase and 

A B C

Figure 3: Representative examples of immunostaining for MMPs and TIMPs, 
(A) ductal carcinoma in situ (DCIS), (B) microinvasive events in DCIS and (C) 
invasive ductal carcinoma (IDC). (x200).
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collagenase activities of metalloproteases (specifically MMP-2 and 9) 
[191].

Addressing clinically the role of MMPs in breast cancer metastasis 
will involve not only the design of trials to maximize the impact of the 
therapeutics, but also developing MMPIs with a highly selective and 
specific MMP inhibition, taken care to target only relevant MMPs in 
each specific disease setting. In addition, greater knowledge is needed 
concerning stromal versus epithelial expression of MMPs [192].

Conclusions
MMPs and TIMPs play a key role in several basic processes of 

tumor progression. Different expression profiles are associated with 
the main steps of breast cancer progression, such as creating a potential 
invasive phenotype in DCIS, favoring the hematogenous development, 
and making possible the metastatic progression across the axillary 
lymphatic system. These associations have clinical interests, as they 
can contribute to a better characterization of early breast carcinomas 
which differ in their biological and clinical behavior, to evaluate 
microinvasion in resection specimens of breast tumors, to provide a 
more precise prognostic, and for predicting the tumor status of non-
SLNs in breast cancer. It is also especially remarkable the evidences 
indicating that MMPs and TIMPs expression in individual cell 
populations in the tumor stroma, such as MICs and fibroblasts, clearly 
impact on clinical outcomes in breast cancer patients, suggesting that 
tumor stroma not only does not merely play a passive role in cancer 
progression, but also may actively participate in the cancer invasion 
process. Likewise, analysis of the expression profiles revealed clinically 
relevant correlations between individual MMP expression and immune 
cell involvement in breast cancer. Since there are several factors linking 
inflammation, MMP activity, and breast cancer, all this knowledge will 
serve to drive novel therapies and prevention strategies targeting critical 
components [10]. Thus, for example, the finding of a MICs phenotype 
infiltrating tumors, characterized by the expression of a specific panel 
of MMPs and TIMPs, strongly associated with the development of 
distant metastasis, suggests that these host inflammatory cells could be 
a possible target for the inhibition of tumor progression and metastasis.
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