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DNA sequencing is one of the leading precursors of the personalized 
medicine, i.e. for reading hereditary traits for predisposition to diseases 
which are coded in DNA, and thus to prevent, diagnose, and treat 
diseases. After the success of the Human Genome Project in 2003, which 
achieved reading a human genome for $3B spent over thirteen years, 
the National Human Genome Research Institute has been supporting 
novel ideas to develop technologies under “$1000 Genome” initiative 
and make human genome sequencing as affordable as a routine medical 
checkup. Due to these research initiatives over a course of ten years, the 
DNA sequencing cost has been reduced by about 100,000 times, but 
still requires development of fast, label-free and cheaper technologies, 
that can be massively produced and used.

The development of the DNA sequencing technology is a collective 
effort in nanoscience which integrates biology, chemistry, physics, 
and engineering, through interlaced experimental and theoretical/
computational efforts. Particularly, the prospective of the so called 
physics-based third-generation methods is interesting, since they are 
intrinsically fast and can operate on a single DNA molecule [1]. A DNA 
is one-dimensional biopolymer, a sequence of four chemical moieties 
(nucleotide bases) - adenine, thymine, cytosine and guanine. A ssDNA 
polymer is negatively charged along its phosphorous backbone, with 
one elementary charge per monomer. The basic idea of these methods 
is electrical detection of the DNA sequences, either by reading the 
electron tunneling current measured across the pore transversally to 
the translocating DNA varies with a base passing through the pore 
between the electrodes [2-8] or by reading the ionic current through a 
pore while a single DNA polymer is translocated through a nanopore 
of molecular diameter or a nanogap by electrophoretic field, one base at 
a time [9-10]. The measurement and computation of the conductance 
of a single molecule is an attractive concept for molecular detection 
because single-molecule conductance may be governed at this length-
scale by the molecule intrinsic electronic properties [1,11]. Detecting 
single chemical and biological molecules without using receptors or 
chemical interfaces is a paradigm shift in chemical sensing. Because 
the method requires fewer preparation steps and eliminates expensive 
ingredients like polymerases and ligases in the sequencing reaction. 
Successful nanopore sequencing would reduce the cost of genome 
sequencing tremendously. Nanopores can be an effective tool for 
confinement of  DNA [12-21]. One of the main challenges of this 
concept is a need for the full control of the nucleobases localization and 
orientation as well as of DNA translocation rate while it is threading 
in its natural water and electrolyte environment through a nanopore 
[22]. Besides, the thermal fluctuations, Brownian motion, and both 
transversal and electrophoretic fields cause strong fluctuations of 
instantaneous mutual position of the DNA bases and electrodes, i.e. 
a large noise and poor signal-to-noise ratio in the transversal non-
resonant tunneling conductance. For example, it is found that the 
variation in the conductance due to the geometry of the base relative 
the electrode can easily override the difference between different types 
of nucleotide [6,8]. Therefore, a full control of the DNA translocation 
and localization as it threads the nanopore becomes a primary concern 
for the DNA sequencing techniques using synthetic nanopores [23-
25]. Theoretical calculations predicted many times increased signal-

to-noise ratio in the tunneling reads of the DNA if the electrodes are 
functionalized so as to promote the common non-resonant tunneling 
through the DNA nucleotides to a resonant one [26,27]. One of the 
most successful approaches to reduction of the noise, with significantly 
increased abilities for distinction of the tunneling electric signals 
belonging to various DNA bases is so called recognition tunneling 
of Stuart Lindsay from Arizona State University, based on the 
functionalization of the electrodes with organic molecular “readers” 
through which the electrodes are coupled to the DNA nucleotides with 
hydrogen bonding, strong enough to reduce the tunneling current 
width to the level of the bases resolution but weak enough to enable 
DNA translocation through the pore [28-30].  

Nanopore technology is potentially capable of sequencing much 
longer continuous strands of DNA than other techniques. This 
capability is becoming increasingly important for studies of long-range 
genomic complexity to associate DNA rearrangements with cancer and 
other diseases. The first nanopore devices were based on pore-proteins 
but recently, synthetic pores in the solid state materials have been 
fabricated. 

Concerning improvements of the DNA translocation control, 
there is a number of approaches. A growing interest in nanopores in 
grapheme [31-32] is certainly caused by high potential for the DNA 
bases reading resolution caused by atomic-size thickness of this 
material.  Here, we mention in more details two very distinctive types of 
synthetic nanopores: A narrow carbon nanotube and a Paul nanotrap, 
both functioning in aqueous/electrolyte environment.

Single-walled carbon nanotubes (SWCNT) are excellent 
candidates for nanopore applications because they have attractive 
chemical, electronic, mechanical properties, and can be fabricated with 
various lengths and diameters. Significant advantages for nanofluidic 
applications are based on hydrophobic, almost frictionless internal 
surface of the SWCNT. As a consequence, ionic currents through an 
individual SWCNT is markedly different from those through the other 
type solid-state nanopores (SSN) or through a protein nanopore (e.g. 
α-hemolysin). The magnitude of signal is much larger (nA) than in a 
conventional SSN (pA) due to a significant increase of electro-osmotic 
current caused by the perfect slip on the atomistically smooth internal 
surfaces [33-36]. When DNA molecules are present in a narrow 
SWCNT, the ionic current may increase, opposite to the expected 
ionic blockade in SSN and in protein nanopores [33]. In addition, a 
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CNT may be much longer than the translocated DNA segments, and 
the whole DNA segment typically stays inside the CNT during the 
translocation, which can be related to the slow rise and random spikes 
in ionic current seen in experiments [33]. These distinctive features 
of the SWCNT nanopores, are documented and partially understood 
from both molecular dynamics and coupled Poisson-Nernst-Planck-
Stocks equations. Matching various time and spatial scales across the 
whole experimental systems by large computations, a mechanism 
was proposed based on electro-osmotic flow resulting from trapped 
excess charges in the tube in conjunction with ideally slip internal tube 
surfaces [33-35] which is well fitted with the experimental results.

The aqueous Paul trap technique provides an alternative to the 
physically thin nanopores for DNA sequencing by creating a virtual 
nanoscale confinement region using a relatively large device. Its 
functionality is based on the quadrupole radio-frequency electric field, 
as experimentally demonstrated. The novel idea of confinement of an 
ion in an aqueous environment within a Paul-type quadrupole trap 
[37] offers increased electrical detection efficiency for heteropolymers 
confined within a nanopore regardless of detection scheme [38]. The 
DNA segment is confined in an “aqueous virtual pore” [39-41] which 
is formed by the electrophoretic, dielectrophoretic and viscosity forces. 
The long-time motion of particle is subject only to random, Brownian 
fluctuations. We find that the rms fluctuations determine the size of 
the AVP and can be modulated by adjusting external voltages and 
frequencies, in full agreement with experiment and theory [42-46]. 
Individual charged particles are dynamically confined into nanometer 
scale in space by radio-frequency voltages which are used to generate 
an alternating focusing/defocusing potential well in two orthogonal 
directions. The feasibility of an aqueous Paul trap using proof of 
principle planar device was demonstrated experimentally by the group 
of Mark Reed of Yale University [40]. Further miniaturization of the 
trap device might bring the realization of a few-nm virtual pore, which 
greatly relaxes many difficulties in fabrication and application of a 
physical nanopore and can lead to lab-on-a-chip systems controlling 
localization and translocation of a DNA polymer and other charged 
biomolecules submerged in water. The theoretical predictions indicate 
reduction of the mean rms fluctuations and therefore reduction of the 
size of a virtual pore with decreasing the trap and the charged particle 
size [39]. Fabrication of smaller traps has been done so far, with 
trapping of 10 nm fluorescent quantum dots.

The trapping, localization, and motion control of biomolecules 
by utilization of their charges as well as their recognition based on 
their molecular structure are of critical importance to various biotech 
and medical applications, which go far beyond the DNA sequencing. 
Crucial characteristics of the systems presented here is their multiscale 
character in both time and space, requiring both validating experiments 
and supercomputing hardware with spectrum of computational 
methods, ranging from quantum mechanics, classical molecular 
dynamics to continuum theories of micro/nano fluidics, described by 
systems of coupled nonlinear differential equations, and determined 
usually by irregular boundary conditions. 
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