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Review
Centrosome structure and function

 Although originally discovered and described by 
Flemming, Van Beneden and Boveri in the late 1800s as a tiny 
cellular organelle, the centrosome is a remarkably complex 
structure with diverse functions [1-4]. It is composed of a pair 
centrioles surrounded by an amorphous cloud of proteins called the 
pericentriolar matrix (PCM) (Figure 1). Each centriole is made up 
of nine triplet of stabilized microtubules arranged in a cylindrical 
manner. The two centrioles are termed the mother and daughter 
centrioles, and can be distinguished by the presence of sub-distal 
and distal appendages at the mother centriole. While sub-distal 
appendages anchor cytoplasmic microtubules, distal appendages are 
believed to be important for the formation of cilia, cellular antennae 
possessing motility and/or sensory function [5,6]. Centrioles are 
responsible for organizing the PCM, the major site of microtubule 
nucleation from which cytoplasmic microtubules emanate and 
elongate. In addition, there are centriolar satellites, small and 
granular structures that cluster around the centrosome and 
participate in microtubule-dependent protein trafficking towards 
the organelle [7,8]. The centrosome coordinates all microtubule-
related functions, including cell division, cell shape, polarity, 
motility and adhesion.

The number of centrosomes within a cell is tightly regulated 
during the cell cycle (Figure 1). A single centrosome duplicates once 
in the S phase, and the two centrosomes, once separated, migrate 
to opposite poles of a cell and establish the bipolar spindle in 
mitosis. A functional bipolar spindle ensures faithful chromosome 
segregation, wherein each incipient daughter cell receives one 
centrosome and a diploid set of chromosomes. Perturbations 
known to disrupt centrosome structure and function often have 
deleterious consequences. For instance, abnormal cell division in 
mitosis can result in genomic instability and aneuploidy which are 
characteristics of many types of cancer. In other cases, abnormal 
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Abstract
Centrosomes are the tiny organelles found in most eukaryotic systems. By virtue of their ability to anchor, 

organize and nucleate microtubules, they play a crucial role in establishing spindle bipolarity and in ensuring the 
fidelity of cell division. Defects in centrosome structure and function often result in mitotic catastrophe, cell cycle 
arrest, cell death, genomic instability and/or aneuploidy, leading to human disorders such as primary microcephaly, 
cancer and ciliopathies. Interestingly, genomic instability and aneuploidy are also hallmarks of aging and cellular 
senescence, but our understanding of the connection between centrosome dysfunction and senescence remains 
rudimentary. In this review, we focus on existing evidence suggesting that these two phenomena are indeed related, 
along with the emerging view that centrosome aberrations represent a form of cellular stress that is necessary and 
sufficient to trigger a permanent cell cycle arrest and senescence. The molecular mechanisms underlying cellular 
senescence as a consequence of centrosome aberrations and the involvement of p53 will be discussed.

mitosis can trigger programmed cell death and impair spindle 
alignment of neural progenitor cells, leading to their depletion 
and limiting the total number of neurons that can be generated. 
These are believed to be the underlying mechanisms responsible for 
reduced brain size in patients with primary microcephaly and Seckel 
syndrome. Furthermore, defects in cilia formation and function can 
cause in a wide variety of human diseases collectively known as 
ciliopathies. For a general review of the role of centrosomes and cilia 
in human disorders, we direct the reader to several excellent review 
articles [9-11].

Centrosomes and senescence: are they related?

Senescence or aging is a biological process found 
in all living organisms and is characterized by changes that 
disrupt cellular metabolism and function with time, resulting in 
progressive deterioration, cell cycle arrest and cell death. Although 
observed at the level of the whole organism (in vivo) [12,13] 
and individual cells (cellular senescence) [14], the molecular 
and cellular basis of senescence are not fully understood. At a 
cellular level, it is well-established that senescence is associated 
with chromosomal instability and aneuploidy in different cell 
types from various species [15-19]. Several physiological stresses 
are thought to contribute to the aging process, including the 
shortening of telomeres [20-22], oxidative stress [23,24], DNA 
damage [25,26], over-expression of tumor suppressor genes [27] 
and strong oncogenic signaling [28-30]. Interestingly, increasing 
evidence also supports a link between centrosome dysfunction 
and senescence, suggesting that this organelle could directly or 
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indirectly play a role in aging. Aged porcine oocytes exhibit a loss 
of γ-tubulin and NuMA, critical components of the PCM at the 
meiotic spindle, giving rise to abnormal and disorganized spindles 
[31]. Similarly, microtubules are gradually lost from the spindle of 
aged mouse oocytes, a feature highly suggestive of compromised 
centrosome structure and function [32,33]. A loss of centrosome 
and microtubule integrity has also been described in aged human 
oocyte, both in vitro and in vivo [34], and in aged Drosophila cells 
[35]. Furthermore, human primary fibroblasts are known to stop 
dividing permanently after a finite number of cell divisions as a 
result of telomere shortening and oxidative stress and enter a state 
of replicative senescence [14]. As these cells age, the frequency 
of abnormal mitotic figures increase, and this is accompanied by 
an increase in supernumerary centrosomes [16]. Primary mouse 
embryonic fibroblasts also undergo replicative senescence with 
age due to oxidative stress [23,24]; however, unlike the situation 
in human fibroblasts, centrosomes do not increase in number but 
instead fragment into smaller pieces with increasing passage [36]. 
Most importantly, the authors showed that disruption of core PCM 
components in early-passage mouse embryonic fibroblasts can also 
induce centrosome fragmentation and trigger premature entry to 
senescence [36], suggesting that centrosome dysfunction alone is 
sufficient to provoke the induction of a cellular senescence program. 
Taken together, these studies raise the intriguing possibility that 
centrosome aberrations, similar to oxidative stress and telomere 
shortening, is a type of cellular stress that can predispose cells to 
permanent cell cycle exit, and future studies using high-resolution 
and electron microscopy will be necessary to define the precise 
nature of these structural aberrations and the extent to which they 
contribute to senescence.

Centrosome aberrations, senescence and p53

 Several recent studies have begun to address whether 
centrosome dysfunction can indeed trigger cellular senescence and 

whether the underlying molecular pathways overlap with those 
induced by other physiological stresses. Depletion of a number 
of centriolar (C-Nap1, δ-tubulin, ε-tubulin), PCM (pericentrin, 
γ-tubulin, GCP-2, GCP-3, GCP-5, AKAP450) and centriolar satellite 
(PCM-1) proteins leads to a loss of centrosome integrity and cell 
cycle arrest in the G1 phase [37]. The G1 arrest phenotype can be 
induced in post-mitotic cells, indicating that it is not a consequence 
of mitotic defects. Prior to the G1 arrest, p38, a protein implicated 
in cellular stress response and senescence, becomes activated and 
phosphorylates p53 at Ser33 (and not at Ser15; see below), causing 
p53 to accumulate at centrosomes before its translocation to the 
nucleus. Another study also highlighted a role of pericentrin and 
PCM-1 in cell cycle regulation [38]. Inhibition of pericentrin or 
PCM-1, which recruits pericentrin to the PCM, induces a permanent 
cell cycle exit with a concomitant increase in cellular β-galactosidase 
expression, a hallmark of cellular senescence. Similar to the previous 
study, this arrest is also dependent on p38 and p53, and probably 
occurs as a result of up-regulation of p53 and p21 protein levels and 
down-regulation of phosphorylated retinoblastoma (Rb). Likewise, 
depletion of other PCM components, including Cep192 (which 
recruits NEDD1 to the PCM) and NEDD1 (which recruits γ-tubulin 
to the PCM), causes centrosome fragmentation and premature 
entry to senescence [36]. Furthermore, inhibition of Aurora A or its 
downstream target TACC3, both of which are localized to the PCM 
during mitosis, leads to premature senescence in p53-proficient 
tumor cells, characterized by an increase in p53, p21 and hypo-
phosphorylated Rb [39,40]. The elevation in p53 levels could be 
explained in part by the fact that Aurora A normally phosphorylates 
p53 at Ser315 to sensitize it for degradation and, in the absence 
of Aurora A, p53 becomes stabilized [41]. In primary human 
fibroblasts, cells that have undergone either replicative senescence 
or premature senescence induced by oxidative stress also accumulate 
p53 at the centrosome, accompanied by phosphorylation at Ser15 
[42]. Ser15 phosphorylation on p53 is essential for its localization to 
the centrosome, and has been shown to be a default pathway carried 
out by ataxia telangiectasia mutated, or ATM, at the centrosome 
in early mitosis to insure correct cell division [43-45]. When the 
mitotic spindle is correctly in place, Ser15 phosphorylation is 
rapidly removed and p53 becomes sequestered at the centrosome in 
an inactive form. On the other hand, when the spindle is impaired, 
p53 remains phosphorylated at Ser15, and this phosphoprotein is 
eventually translocated to the nucleus to induce cell cycle arrest and 
cellular senescence. Therefore, it seems plausible that in response to 
centrosome damage and possibly other stresses, one key event that 
takes place early in the senescence process is the phosphorylation 
and accumulation of p53 at the centrosome. It has been known for 
a long time that p53 localizes to centrosomes, but surprisingly little 
is known about its function at this organelle [42,43,46-48]. It would 
be interesting in the future to delineate the functional significance 
of centrosomal p53 and its differential phosphorylation by various 
kinases, as elucidating these molecular events would undoubtedly 
provide a better understanding of how p53 integrates signals from 
different types of stresses, including centrosome dysfunction, to 
promote cellular senescence.

Conclusions and Perspectives
 The role of centrosomes in aging is an important area 

of research that has been largely overlooked. Despite little and 
fragmentary evidence, existing data strongly favor the view that 
centrosome dysfunction is connected to cellular senescence. 
We propose that in addition to existing known cellular stresses, 

Figure 1: Centrosome structure and biogenesis. A cell in the G1 phase 
possesses one centrosome consisting of the mother (green rectangle with a 
red line) and daughter (green rectangle) centrioles surrounded by the PCM 
(black circle). This single centrosome duplicates in the S phase, leading 
to the synthesis of two new centrioles, or procentrioles (purple rectangle) 
adjoining the existing mother and daughter centrioles. Procentrioles 
elongate and mature into daughter centrioles, while the existing daughter 
centriole matures into a new mother centriole during S and G2 phases. 
The PCM becomes enlarged at the onset of mitosis, signifying competence 
of the two centrosomes in anchoring and organizing microtubules for cell 
division. After mitosis, each daughter cell can enter the G1 phase and 
progress through another round of cell division, or it can exit the cell cycle, 
in which case a cilium (blue) is formed from the mother centriole.
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including telomere shortening, oxidative stress, DNA damage, 
over-expression of tumor suppressors and oncogenic activation, 
centrosome dysfunction is another form of stress that can 
predispose cells to cell cycle exit and senescence (Figure 2). In 
addition, we speculate that these diverse pathways converge on p53. 
Depending on the source(s) of stress, p53 is promptly accumulated 
at the centrosome and becomes phosphorylated on different 
residues by different kinases. Phosphorylation of centrosomal p53 
is subsequently needed to fine-tune downstream events, such as the 
activation of p21 and Rb, ultimately leading to permanent cell cycle 
arrest and cellular senescence. While much is known about the role 
of nuclear p53 as a transcriptional regulator, its biological function 
at the centrosome warrants further investigation. For instance, 
what are the molecular mechanisms by which p53 is shuttled into 
and out of the centrosome, and how does the spatial and temporal 
regulation of p53 phosphorylation modulate its localization and 
function? Above all, what is the precise role of centrosomally 
localized p53 in senescence? We believe that answers to these 
questions should catalyze an exciting wave of research studies 
into the interconnections between cellular senescence, cell death, 
and uncontrolled cell growth, critical biological process that are 
inextricably linked to proper centrosome function.
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