
Cellular Senescence by the Epigenetic Regulators Inhibitor of Growth
Thanakorn Pungsrinont and Aria Baniahmad*

Professor, Institute of Human Genetics, Jena University Hospital, Germany
*Corresponding author: Aria Baniahmad, Institute of Human Genetics, Jena University Hospital Kollegiengasse 10, 07743 Jena, Germany, Tel: +49-3641-935524; Fax:
+49-3641-934706; E-mail: aria.baniahmad@med.uni-jena.de

Received date: December 18, 2015; Accepted date: January 18, 2016; Published date: January 25, 2016

Copyright: © 2015 Pungsrinont and Baniahmad. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The epigenetic regulatory tumor suppressor, INhibitor of Growth 1 (ING1), obtained more focus since it has been
suggested as one of the aging-related candidate genes among healthy elderly individuals. ING1 belongs to the ING
family proteins characterized by a plant homeodomain (PHD), which is important for recognizing and binding to
histone marks, thus allowing ING to regulate genes expression through histone modification and chromatin changes.
Interestingly, the PHD of ING proteins is highly conserved among species between mammals, insects and plants.
The ING factors regulate the program of cellular senescence and DNA repair, which are suggested to have a
protective role in inhibiting cancer cells proliferation. Here, we provide an insight into the functional role of ING
factors in development and tumor cells.

Keywords: ING; Senescence; Cancer; Epigenetics; Aging; PHD;
Evolution

Abbreviations:
H3K4me3, histone 3 trimethylation at lysine 4; HAT, histone

acetyltransferase; HDAC, histone deacetylase; HMT, histone
methyltransferase; ING, Inhibitor of growth; KD, knockdown; KO,
knockout; PHD, plant homeodomain.

Introduction
Epigenetic and genetic factors are suggested to be involved in the

aging process [1-3]. Indeed, aging research on various model
organisms like Caenorhabditis elegans or Drosophila melanogaster
improved our understanding of genomic, epigenetic and proteomic
aspects regarding the lifespan of these organisms [2-5]. Specific set of
genes or genetic loci that are related to longevity and aging are being
analyzed in these model systems. Genetic and epigenetic factors appear
to have significant influence also on human longevity, since the
heritability of human lifespan was estimated in a range of 20-30% in
many studies [6-10]. Unlike genetics, epigenetics refers to “functional
changes of the genome without changing the DNA sequence”. This
includes chromatin changes and remodeling, which in general is
triggered by factors that promote or remove histone modifications and
regulate exchange of histone variants [11,12]. However, the underlying
mechanisms linking epigenetics to aging are poorly understood. One
reason is the fact that aging is associated with a variety of human
disorders, which includes cancer [13].

Interestingly, the gene encoding the epigenetic regulator tumor
suppressor, inhibitor of growth 1 (ING1) has been suggested to be one
of the aging-related candidate genes among 47 healthy individuals at
the age of 85 years or older [14]. Within this cohort, no aging-related
diseases such as cancer, cardiovascular disease, pulmonary disease,
diabetes, or Alzheimer disease have been diagnosed.

The ING tumor suppressors are localized in the nucleus and directly
associated with chromatin regulation and control of gene expression

[15,16]. ING factors control various cellular pathways which include
cell cycle control, DNA repair and two tumor protective pathways:
apoptosis and cellular senescence that both seems to be important
pathways for tumor suppression.

In general, the Hayflick limit suggests a limited cell division
potential of primary cells that is also termed replicative lifespan [17].
Cells having approached the replicative lifespan are metabolically
active, exhibit a changed morphology, and are also termed to be
cellular senescent. Cellular senescence occurs naturally in vivo during
normal development and is involved in embryonic patterning [18].
Also during tumorigenesis, the pre-malignant tumors exhibit high
levels of senescent cells in vivo [19]. During further steps of tumor
progression, the level of senescent cells declines, suggesting that
malignant tumor cells evade from the cellular senescence pathway and
from the other anti-tumor pathway, apoptosis. It is therefore suggested
that during tumorigenesis, tumor cells escape from the cellular
senescence pathway and undergo selection to evolve and develop into
malignant cancer.

Interestingly, cellular senescence is a cellular pathway that is
characterized by an irreversible cell cycle arrest that is mostly induced
by replicative lifespan or cellular stress and therefore is suggested to act
against cancer malignancy [19,20]. However, cellular senescence can
be either detrimental or beneficial, depending on the physiological
context and situation. Cellular senescence can disrupt normal tissue
structures and functions, but on the other hand, cellular senescence is
an effective mechanism to suppress cancer cells proliferation [19-21].
Notably, in primary human cells the ectopic expression of either ING1
or ING2 alone is sufficient to inhibit cell proliferation by inducing
cellular senescence as an underlying mechanism [22,23].

Among the ING family members, the human ING1 and ING2 are
two closely related proteins that share high identity and homology in
amino acid sequence [24], indicating that they exhibit similar tumor
suppressive functions. The most widely expressed isoform of ING1 and
ING2 are ING1b and ING2a, respectively. Most studies support their
role as tumor suppressors as their expression is often found to be
decreased or lost in many human tumors [25-29]. The loss or
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reduction of ING1 and/or ING2 expression could be the result of
misregulation of transcription factors or gene inactivation
mechanisms, and since their loss often occurs at an early stage of
tumor development [30-32], it suggests that decreasing ING1 or ING2
expression in pre-malignant tumors contributes at an early stage to
malignant tumorigenesis.

To analyze their functional role in tumor cells, many overexpression
studies revealed that either ING1 or ING2 expression result in tumor
growth inhibition [22,23,33,34] and accordingly knockdown (KD) or
knockout (KO) result in an enhanced tumor proliferation [33,35-37].
These studies provide an insight to understand the functions of ING1
and ING2 to regulate cell growth. The molecular pathways are
discussed below.

ING proteins as epigenetic regulatory tumor suppressors
induce cellular senescence through their PHD

A tumor suppressor gene encodes for a protein that suppresses
tumor growth. The ING family of genes and the corresponding
encoded proteins were originally identified in 1996 [33], and later
characterized as candidates for tumor suppressors because they are
involved in many processes such as cell growth, apoptosis, cellular
senescence, migration, and DNA repair [32,38]. The ING proteins are
characterized by a well-conserved carboxyl-terminal region that
contains a plant homeodomain (PHD) [24]. The histone binding and
modification is an interesting ability of ING proteins. The PHD
selectively binds preferentially to trimethylated lysine 4 of the histone 3
(H3K4me3), which is present in nucleosomes of transcriptional active
genes at promoters and downstream of transcription start sites [39,40],
thus linking the ING proteins to epigenetic regulation [16].

Although the PHD domain of both ING1 and ING2 binds to the
activating mark of the histone modification (H3K4me3), it was a
surprise that ING1 and ING2 interact with a histone deacetylase
(HDAC) complex. The amino-terminus of ING1 and ING2 directly
interacts with the mSin3a/HDAC1-2/SAP30 complex that leads to
gene silencing [16,39,41]. This suggests that ING tumor suppressors, if
recruited, may counteract and inhibit some active gene loci. For
example, it has been described that H3K4me3 is required for ING2
binding at the cyclin D1 promoter and that cyclin D1 expression is
transcriptionally inactivated by the mSin3a/HDAC1 complex [42].
Cyclin D1 expression is controlled by E2F factors that are regulated by
the retinoblastoma protein (pRb). Thus, these findings link the ING
protein to the induction of cellular senescence through inactivation of
pRb by reducing the activity of cyclin D1-cyclin-dependent kinase 4
(CDK4) complex (Figure 1).

Interestingly, ING1 and ING2 are also complexed with histone
methyltransferase (HMT) [39,43]. The HMT activity can methylate
both histones H1 and H3 at the amino-terminal residues. The ING2-
associated HMT activity seems to methylate mono- and di-
methylation of histone H3 at lysine 4 [43]. This finding suggests that
ING factors recognize and modify histone marks with the PHD region
that is required for chromatin association to active chromatin sites.

Interestingly, ING1 and ING2 also interact with the transcriptional
coactivator p300, which has an intrinsic histone acetyltransferase
(HAT) activity [23,44]. This interaction leads to epigenetic changes by
hyperacetylation of histones, which seems to link ING function rather
towards DNA repair pathway. In line with this, it has been shown that
ING1 can interact with Gadd45a [45,46], and both ING1b and ING2a
with PCNA [47,48] to mediate nucleotide excision repair.

Furthermore, ING1 and ING2 have been reported to directly bind to
the promoter of CDK inhibitors, p16 and p21, respectively [49,50]. In
line with this, ING1 up-regulates p16 transcription via p300 HAT
activity and induces cellular senescence (Figure 1), while the
underlying mechanism that ING2 positively regulates p21
transcription remains unclear.

Figure 1: Model of cellular senescence induction by the ING
proteins as epigenetic regulators.

ING1 and p300/CBP interact with p16 promoter and positively
regulate its transcription. As cyclin-dependent kinase (CDK) inhibitor,
p16 inhibits the activity of cyclin-CDK complexes, thus, preventing the
phosphorylation of retinoblastoma protein (pRb) keeping it active.
Active pRb remains bound with E2F, a pro-proliferative transcription
activator, and suppresses its activity. This leads therefore to the
inhibition of cell proliferation and triggers the cellular senescence
pathway. ING2 interacts with the promoter of p21, another CDK
inhibitor, and activate p21 transcription via an unknown mechanism.
On the other hand, ING2 can bind to cyclin D1 promoter via its PHD
to the histone mark of H3K4me3. The recruitment of mSin3a/HDAC1
complex suppresses the transcription of the cyclin D1 gene. Both up-
regulation of p21 and down-regulation of cyclin D1 reduce the cyclin-
CDK complexes activity, leading to cellular senescence.

These suggest that ING tumor suppressors can either activate or
inhibit the target genes transcription, and that ING proteins change
their signaling dependent on the environment that induce a specific
interaction with different factors. This may subsequently induce ING-
distinct pathways, e.g. cellular senescence or DNA repair. Indeed, both
functions are important for tumor suppression.

Evidence suggests that ING1 is involved in regulating the replicative
lifespan, as the knockdown of ING1b expression results in increased
number of replications [35]. In addition the expression of ING1b was
found to be 8 to 10 times higher in senescent cells compared to young
proliferating human fibroblasts [35]. Although the induction of
cellular senescence may be a multifactorial process, data suggest that
the overexpression of only one of the tumor suppressors ING1 or ING2
leads to the induction of cellular senescence [22,23]. This indicates an
overlapping functional role of ING1 and ING2. The overexpression of
ING1b in non-tumorigenic primary human fibroblasts resulted in
growth arrest with the induction of cellular senescence [22]. Similarly,
the expression of ING2a in early passage of primary human fibroblasts
also showed cellular senescence inducing capability [23]. The
functional consequences of ING1 or ING2 to induce cellular
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senescence in transformed cancer cells, such as by re-expression, are
not yet clear.

The molecular pathway to induce cellular senescence is also under
investigations. A functional link of both ING isoforms has also been
reported to increase p53 protein stability by posttranslational
modification that enhances the transcriptional activity of p53 and
thereby triggering the cellular senescence phenotype [34,51,52].
However, it seems that both ING1 and ING2 can trigger the cellular
senescence via more than one pathway by revealing also a p53-
independent pathway of ING-mediated cellular senescence [36,53] as
well as via the p16-pRb pathway [49] (Figure 1).

Notably, the PHD region plays an essential role to induce cellular
senescence. Human fibroblasts transfected with PHD mutants of ING1
with a deficient histone binding ability were not capable to undergo
cellular senescence [54], thus supports the important role of PHD and
histone binding of ING proteins for the induction of cellular
senescence. This finding strongly links the epigenetic regulation of
ING tumor suppressors with cellular senescence induction also in non-
tumor cells.

The ING - PHD: a highly conserved ING-domain between
plants, insects and mammals
The ING PHD domain is relevant for both epigenetic control and

induction of cellular senescence. Interestingly, the human ING1b and
ING2a proteins are not only sharing high homologies in their amino
acid sequences, but is also found to have high amino acid homology to
ING proteins of other species, especially in the PHD region (Figure 2).

Figure 2A: Conserved amino acid sequence of ING1 proteins.

(A) Human ING1b (NCBI ref: NP_937862.1) is aligned to mouse
ING1 (NP_036049.2), zebrafish Ing1 (NP_001035446.1), fruit fly ING
(NP_650656.1), C. elegans ING homolog (NP_496909.1), A. thaliana
ING1 (NP_566742.1), and O. sativa PHD finger protein ING
(NP_001048939.1).

Figure 2B: Conserved amino acid sequence of ING2 proteins.

(B) Human ING2a (NP_001555.1) is aligned to mouse ING2
(NP_075992.2), zebrafish Ing2 (NP_001002448.1), fruit fly ING
(NP_650656.1), C. elegans ING homolog (NP_496909.1), A. thaliana
ING2 (NP_974026.1), and O. sativa PHD finger protein ING
(NP_001048939.1).

The NCBI BLAST program (http://blast.ncbi.nlm.nih.gov) was used
to identify the most homologous proteins to human ING1b or human
ING2a in other species. In addition, the whole protein alignment
between human INGs and other species were performed with
EMBOSS needle program (http://www.ebi.ac.uk/Tools/) to calculate
the percentage identity and homology of amino acid sequences. The
amino acid positions of each protein are indicated. The plant
homeodomain (PHD) region of each species is separately aligned and
compared as the percentage identity to the human PHD. Among other
isoforms in D. melanogaster (fruit fly), C. elegans and O. sativa, the
identified ING homologs exhibit the highest similarity to both human
ING1 and ING2.

In other species including mouse (Mus musculus), zebrafish (Danio
reio), fruit fly (D. melanogaster), nematode (C. elegans), and plant
(Arabidopsis thaliana and Oryza sativa) ING homologues were
identified. Among these species, the mouse ING1 (NCBI ref:
NP_036049.2) and ING2 (NP_075992.2) proteins share the highest
identity (90% and 96%) and homology (95% and 99%) of amino acid
sequences to the human ING1b (NP_937862.1) and ING2a
(NP_001555.1) proteins, respectively (Figure 2). Notably, both PHD
amino acid sequences of ING1 and ING2 from mouse ING proteins
are 100% identical to PHD of human ING proteins indicating an
important function. This is further supported by the fact that more
than 50% of the amino acid sequences in the PHD region of plants (A.
thaliana and O. sativa) INGs are identical with the human PHD of
INGs. Of note, the plants and fruit fly PHD domains share higher
identity to human PHD as compared to the PHD region of C. elegans
(Figure 2). The protein alignments suggest that ING proteins and their
PHD seem to be under strong evolutional selection and therefore,
existing and being conserved in many species.

Phenotype of genetic ING models in vivo
The role of ING factors in vivo was analyzed using mice knock-out

models. Despite the high homology of ING factors between plants and
mammals, which implies an important functional role, a relatively
weak phenotype in the KO mice was surprising. KO mice of either
ING1 or ING2 were viable but promote tumor development [36,37,55].
ING1 KO mice revealed a high incidence of B cell lymphoma
development [36,55]. ING2 KO mice on the other hand, were observed
with the development of soft-tissue sarcomas [37]. Of note, the male
ING2 KO mice exhibited the particular phenotype of being infertile
and having small testes. These mice showed deficient spermatogenesis,
altered meiotic recombination, and failed to complete meiosis II [37].
Interestingly, ING2 also seems to play a role in preimplantation
development [56]. The ING2 expression was observed to be rapidly
increased during the 2-cell to 4-cell cleavage-stage. In line with this,
KD of ING2 in mouse zygote slows down the embryonic development
[56].

The relatively mild phenotype of KO mice of these highly conserved
factors suggests that ING1 and ING2 share similar functions and may
compensate for the loss of function of the ING2 or ING1 null mutant,
respectively. Also other ING family members might take over some
essential functions for null mutants of one ING gene. Thus, we propose
that the presence of multiple ING genes might serve as a redundant
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and security viability system to reduce disadvantageous mediated by
mutations of one of the ING genes.

Similarly, in C. elegans the depletion of the ING homolog protein
suggests that this protein inhibits ionizing radiation-induced germ-cell
apoptosis [57]. Moreover, nematodes expressing a mutant ING protein
exhibit a weak uncoordinated phenotype.

Although ING proteins are rarely studied in plants, the functions
and effects of PHD fingers of other factors are well established. Many
proteins in plant contain putative PHD fingers and were found to be
involved in various developmental processes including flowering,
development of anthers, and inflorescences [58-60].

ING factors epigenetically regulate the gene expression of both
mRNA and miRNA genes [42,50,61,62]. However, not much is known
about the (I) control of binding to ING interacting factors, (II) the
ING-specific transcriptome landscape, (III) mechanism(s) that control
normal cell cycle by ING isoforms, (IV) sensing of cellular stress and
its signaling that affects ING-factors to induce cellular senescence,
apoptosis or DNA repair. Further it is unclear (V) which of the ING
isoform functions is lost or decreased during early tumorigenesis.

Also the functional overlapping role of tumor suppressive function
by each ING factor is unclear. However, there must be important
biological reasons for the ING proteins to be naturally selected with a
very high preservation of their amino acid sequence. Thus, many
questions remain open to better understand the epigenetics of ING
pathway as tumor suppressors and with relevance to human aging.
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