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Abstract
The first cellular response to a carcinogen is a cell cycle arrest program that may end in a permanent arrest with 

features of cellular senescence. This may be an evolutionary conserved response to delay environmental-induced 
cancer until the replicative life of the organism has ended. With the concomitant alteration of genes involved in 
cellular senescence, which promotes cellular immortalization, a further carcinogenic insult may increase the chances 
of tumorigenesis and the development of a malignant clone. Therefore, understanding cellular senescence and how it 
can be modified by environmental carcinogens, including food, may be essential for controlling the increase of cancer 
prevalence.
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Carcinogenesis
Carcinogens are widespread in nature. Humans and animals 

have been exposed to carcinogens for millions of years, both those 
in the external environment, including food, and those generated 
endogenously. It has been estimated that 80-90% of human tumors are 
generated by exposure to carcinogens, both environmental (chemicals, 
viruses, and non-ionizing and ionizing radiation) and endogenous 
(including reactive oxygen species from metabolism) [1,2].

Cancer development in humans and animals as a result of 
environmental factors, chemicals, viruses, radiation, and diet is a 
long process, requiring a large portion (from a third to half) of the 
lifespan of the organism [1,2]. There have been many hypotheses to 
explain this delayed carcinogenic effect, including the dominant role 
for immunological surveillance, first suggested by Thomas in 1959 
[3,4], and tumor dormancy [5]. It is now understood that several 
mutations need to accumulate in different hallmarks to result in a full 
tumorigenic phenotype, including mutations responsible for avoiding 
immunological surveillance [6,7]. Initiation with one of many different 
carcinogens should be followed by the spontaneous or autonomous 
proliferation of cells intended to form a tumor. However, the autonomous 
or semiautonomous growth of initiated cells only occurs late in the 
carcinogenic process. Focal lesions with autonomous cell proliferation 
can only be observed after large doses of carcinogens and much longer 
periods of exposure than that required for initiation. In fact, virtually 
every chemical carcinogen is an inhibitor of cell proliferation [8,9]. 
Haddow has suggested that the inhibition of cell proliferation could be 
an early effect of carcinogens and that in such an environment, resistant 
cells might arise and be encouraged to proliferate [10]. The growth 
of rare altered cells leading to focal neoplasms is a key phenomenon 
in the promotion of cancer development in virtually all experimental 
carcinogenesis models and in many human systems [1,6].

In most instances of cancer development in humans or animals 
in which a precursor cell population or a lesion has been identified or 
proposed, the “preneoplastic” and “precancerous” changes are always 
focal and often clonal, involving only a very small number of altered 
cells [1,11,12]. 

Different chemical agents, both mutagens and non-mutagens, have 
been shown to induce cellular senescence. Treatment of primary cells 
with high doses of radiation and other DNA-damaging agents results 
in senescence [13]. Similar effects were obtained after treatment with 

H2O2 or other reactive oxygen species [13-16]. Interestingly, the 
treatment of various tumor cell lines with different chemotherapeutic 
agents, radiation, or differentiating agents also induces irreversible 
growth arrest, with features similar to cellular senescence [17]. Moderate 
doses of doxorubicin induced a senescent phenotype in 11 out of 14 
tumor cell lines, independent of p53 status [18]. A similar effect has 
been observed in cell lines derived from human tumors treated with 
cisplatin [19], hydroxyurea [20] and bromodeoxyuridine [21] which 
are all DNA-damaging agents. The propensity of tumor cells to undergo 
senescence in response damage induced by commonly used chemicals 
was compared in cell lines with various origins [17]. Under equitoxic 
doses, the strongest induction of a senescent phenotype was observed 
with DNA-interacting agents (doxorubicin, aphidicolin, and cisplatin) 
and the weakest effect was observed with microtubule-targeting drugs 
(taxol and vincristine). A moderate response was observed with ionizing 
radiation, cytarabine, and etoposide. The induction of senescence by 
the drugs was dose dependent and correlated with the growth arrest 
observed in culture [13,20-22]. Drug-induced senescent phenotypes 
have been confirmed in vivo ([23-25] and references therein). 

Since the early 80s and the seminal work of Newbold et al. [26,27], 
cellular senescence has been viewed as a barrier to tumorigenesis. These 
and other authors have shown that it is necessary to bypass senescence 
to initiate immortal and/or tumoral clones from a naïve culture. They 
estimated that the efficacy of carcinogens that produced these clones 
was greatly increased (Table 1).

However, despite the highly increased ratio of immortalization, the 
vast majority of cells remain non-proliferative, and they most probably 
have entered carcinogenic-induced senescence. The molecular analysis 
of immortal clones shows alterations, either structural or epigenetic, in 
the genes involved in cellular senescence [28-34]. It is thought that these 
alterations are caused directly by carcinogens. This may lead to biased 
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identification. Only carcinogens able to alter cellular proliferation 
in parallel with causing immortalization will produce tumors which 
include unspecific mutagens or genome epigenetic modifiers.

Thus, it seems that the first response to a “mutagenic stress” may 
be the induction of cellular senescence. The cell becomes immortal 
only when this physiological barrier is inactivated and then a focal 
clone that can give rise to a tumor is initiated. We can speculate that 
cellular senescence is an evolutionary barrier developed to delay 
environmentally induced tumorigenesis until the replicative lifespan of 
the individual has ended. 

We can suggest, therefore, that cellular senescence is the 
first response to environmental carcinogens. We also argue that 
inhibition of such cellular senescence process will trigger a much 
higher immortalization effect, and therefore carcinogenic, for many 
environmental carcinogens. As mentioned above, many agents acting 
on diverse mechanisms have been reported to act inducing senescence 
in a variety of cell types (Table 2).

Cellular Senescence
Cellular senescence is a unique state of irreversible proliferative 

quiescence and terminal differentiation and is characterized by changes 
in transcription, chromatin conformation, cytoplasmic and nuclear 
morphology, and DNA damage signaling and a strong increase in the 
secretion of pro-inflammatory cytokines [35-37]. Senescence is the 
first line of defense against potentially transformed cells that remain 
in a state of permanent proliferative stop [30,38,39]. Progression 
to malignancy correlates with a bypass of cellular senescence [40]. 
Senescence has been observed in vitro and in vivo in response to various 
stimuli, including oncogenic stress [41,42], oxidative stress [43], and 
chemotherapeutic agents [17,25]. Cells with cellular and molecular 
characteristics of senescence have been found to be associated with 
the activation of oncogenes and the inactivation of tumor suppressor 
genes in precancerous benign neoplasms in both humans and in 
animal models [44-47]. For example, human nevis are clonal neoplasms 

containing benign melanocytes senescent through activation of the 
oncogene B-RAF [46]. In some mouse models, the inactivation of 
senescence effectors in parallel to oncogenic activation results in 
cancerous growth progression instead of benign tumors [24,44,48,49]. 
Senescence activation can be considered to be a cellular response to 
cell damage and is an attempt to address impaired tissue homeostasis. 
Thus, senescence inhibits the activation of the tumorigenesis process 
[39]. The pathways involved in cellular senescence exhibit several levels 
of regulation with redundancy between the different levels. Moreover, 
signal transduction through canonical signaling pathways, additional 
layers of regulation by miRNAs and methylation have been recently 
discovered [50,51]. The shortening of telomeres has been proposed 
to be the “clock” responsible for counting divisions in human cells 
and limits the number of duplications [52]. In general, most tumors 
contain telomeres elongated by telomerase activity, which allows the 
constitutive elongation of telomeres. Telomerase activity is essential 
for replicative immortality in humans but not in most murine models 
[42]. Cellular senescence can also be elicited by other types of stress, 
including oncogenic, redox, and DNA-damage stresses, but in these 
cases, the establishment of cellular senescence is also independent of 
telomerase [53].

Senescence dynamics show two different stages: cell cycle arrest 
and the subsequent acquisition of senescence characteristics, including 
proliferative permanent arrest (geroconversion). Senescence effector 
pathways converge to cell cycle arrest through the inhibition of 
CDKs. Therefore, most of the pathways that are known to influence 
senescence affect the cell cycle, either directly or indirectly. The best 
known effector pathways are the p16INK4a/pRB, the p19ARF/p53/
p21CIP1, and the PI3K/mTOR/FOXO pathways [54-57], which show 
a high degree of interconnection. Additionally, two routes have been 
proposed to be responsible for geroconversion. These include the pRb 
pathway and the mTOR pathway [58-62]. If the senescence program 
is not activated, the cell stops proliferating but retains the ability to 
resume growth once the limiting factors have been eliminated [58,59]. 
It has also been shown that if the mTOR pathway is activated, arrest 
is permanent and the cell enters senescence [63]. This can also be 
achieved by producing permanent changes in chromatin, especially in 
E2F transcription sites, which block the transcription of genes involved 
in proliferation [64]. Permanent inactivation of pRb, perhaps with the 
contribution of phosphatases [61] has been shown to give the signal 
for the recruitment of different mufflers to heterochromatin. Human 
cells show heterochromatin compaction during senescence (SAHF, 
senescence associated heterochromatin foci dependent of the pRb 
pathway) [64]. These SAHFs stabilize gene silencing, cause cell cycle 
arrest and appear to be crucial for the stability of the permanent stop 
during senescence. Mutations in these effector pathways extend the 
cellular lifespan and contribute to immortality in tumors.

Genetic experiments have contributed to understanding why 
oncogenic signals need to bypass this barrier to induce tumors and have 
identified which proteins may be involved in immortalization [6,43,65]. 
The absence of p53 function induced by dominant negative mutants, 
specific p53 shRNAs, antisense mRNA, oligonucleotides, or viral 
oncoproteins (such as SV40 T antigen or HPV16 E6) is sufficient to 
substantially extend the lifespan of several cell types in culture [66-68]. 
Likewise, the alteration of p53regulators may extend the lifespan to an 
extent similar to p53 loss. p33ING1, MDM2, p14ARF, the PML tumor 
suppressor, and the cyclin-dependent kinase (CDK) inhibitor p21WAF1 
have been related to p53, and their alterations bypass senescence (see 
[66-68] and references therein). The retinoblastoma tumor suppressor 
pathway, pRb, and its regulators have also been related to senescence. 

Species Spontaneous Carcinogen exposure*

Human 10-10 10-6/-7

Mouse 10-5 10-3/-4

Rat 10-6 10-4

Syrian hamster 10-9 10-6/-7

Chinese hamster 10-6 10-4

Table 1: Relative propensities of fibroblasts from different mammalian species to 
spontaneous- or carcinogen-induced immortalization.
*The efficacy of carcinogen-induced immortalization is dependent on the specific 
carcinogen and the doses. Here, an estimation of immortalization efficacy for a 
variety of carcinogens and doses is provided.

Agent Mechan™ism Cell type Reference

Ionizing radiation DNA-Damage
Oxidative stress

Primary,
Tumor cells [18,30]

H2O2 Oxidative stress Primary [31]

Na Butirate Epigenetic silencing Primary,
Tumor cells [32]

Cisplatin, doxorubicin, 
aphidicolin, etoposide, 
citarabine, BrDU

DNA-damage
Oxidative stress

Primary,
Tumor cells

[18]
[30,23]

Retinoids Differentiating agent Primary,
Tumor cells [33,34]

Taxol, vincristine Microtubule targeting Primary,
Tumor cells [18,30]

Table 2: Agents inducing senescence.
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CDK inhibitors, such as the INK4 family, E2F factor, BMI1, PP1a, Spn, 
and TBX2, and viral oncoproteins, such as E7, SV40 large T antigen, 
and E1A, have been shown to contribute to senescence [35,69,70]. 
Other pathways such as the PI3K/FoxO/mTOR pathway also have been 
strongly related to cellular senescence and with aging in many species 
[58,59,71,72]. A variety of models have been used to identify and study 
senescence/immortalization genes and pathways. To that end, the 
application of functional screenings to mammalian cells undergoing 
senescence has led to the identification of new regulatory pathways 
impinging on new physiological processes. Using primarily genetic 
screenings [73-77] as well as transcriptomics, miRNA deregulation 
analysis, and whole exome sequencing, many other genes have been 
shown to contribute to a senescence-like phenotype including PGM, 
IGFBP3 and IGFBPrP1], PAI-1, MKK3, MKK6, Smurf2, HIC-5, 
TBX2, BCL6, DRIL1, SAHH, PPP1A, Spn, KLF4, and CXCR2-binding 
chemokines, ([78] and references therein). Interestingly, all of these 
genes have been shown to be related to human tumorigenesis. 

In conclusion, there are many regulators of senescence and many 
more to be discovered, and alterations to these regulators might render 
cells immortal and therefore allow carcinogenesis. Thus, the full panel 
of molecular alterations induced by carcinogens should be studied. 
Furthermore, compounds targeting these proteins and providing 
cellular immortalization without leaving a structural or epigenetic 
footprint may exist. In this case, the design of more specific and 
physiological assays may be necessary to determine the relevance of 
environmental compounds that may alter the senescence program and 
decisively contribute to immortalization and tumorigenesis.
Acknowledgements

The AC laboratory was supported by grants from the Spanish Ministry of 
Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028), 
Consejeria de Ciencia e Innovacion (CTS-6844) and Consejeria de Salud of the 
Junta de Andalucia (PI-0135-2010 and PI-0306-2012).

References

1.	 Farber E, Rubin H (1991) Cellular adaptation in the origin and development of 
cancer. Cancer Res 51: 2751-2761.

2.	 Farber E, Cameron R (1980) The sequential analysis of cancer development. 
Adv Cancer Res 31: 125-226.

3.	 Thomas L, Lawrence SH (ed.) (1959) Discussion in Cellular and humoral 
aspects of hypersensitivity. 529-532. 

4.	 Prehn RT (1976) Tumor progression and homeostasis. Adv Cancer Res 23: 
203-236.

5.	 Alsabti EA (1979) Tumor dormancy: a review. J Cancer Res Clin Oncol 95: 
209-220.

6.	 Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70. 

7.	 Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. 
Cell 144: 646-674.

8.	 Farber E (ed.) (1976) The pathology of experimental liver cell cancer. Elsevier/
North Holland biomedical press, Amsterdam, The Netherlands.

9.	 Carbone M, Pass HI (2004) Multistep and multifactorial carcinogenesis: when 
does a contributing factor become a carcinogen? Semin Cancer Biol 14: 399-
405.

10.	Haddow A (1950) The chemotherapy of cancer. Br Med J 2: 1271-1272.

11.	Farber E (1990) Clonal adaptation during carcinogenesis. Biochem Pharmacol 
39: 1837-1846.

12.	Foulds L (1965) Multiple etiologic factors in neoplastic development. Cancer 
Res 25: 1339-1347.

13.	Chen QM (2000) Replicative senescence and oxidant-induced premature 
senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 
908: 111-125.

14.	Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. 
Free Radic Biol Med 60: 1-4.

15.	Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular 
senescence. IUBMB Life 57: 277-281.

16.	Bertram C, Hass R (2008) Cellular responses to reactive oxygen species-
induced DNA damage and aging. Biol Chem 389: 211-220.

17.	Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 
63: 2705-2715.

18.	 Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A et al. (1999) A 
senescence-like phenotype distinguishes tumor cells that undergo terminal 
proliferation arrest after exposure to anticancer agents. Cancer Res 59: 3761-
3767.

19.	Wang X, Wong SC, Pan J, Tsao SW, Fung KH, et al. (1998) Evidence of 
cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma 
cells. Cancer Res 58: 5019-5022.

20.	Yeo EJ, Hwang YC, Kang CM, Kim IH, Kim DI, et al. (2000) Senescence-like 
changes induced by hydroxyurea in human diploid fibroblasts. Exp Gerontol 
35: 553-571.

21.	Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, et al. (1999) 
5-Bromodeoxyuridine induces senescence-like phenomena in mammalian 
cells regardless of cell type or species. J Biochem 126: 1052-1059.

22.	Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, et al. (1999) Role of p53 and 
p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human 
tumor cells by chemotherapeutic drugs. Oncogene 18: 4808-4818.

23.	te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA 
damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer 
Res 62: 1876-1883.

24.	Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, et al. (2002) A senescence 
program controlled by p53 and p16INK4a contributes to the outcome of cancer 
therapy. Cell 109: 335-346.

25.	Roninson IB (2002) Tumor senescence as a determinant of drug response in 
vivo. Drug Resist Updat 5: 204-208.

26.	Newbold RF, Overell RW, Connell JR (1982) Induction of immortality is an early 
event in malignant transformation of mammalian cells by carcinogens. Nature 
299: 633-635.

27.	Newbold RF, Overell RW (1983) Fibroblast immortality is a prerequisite for 
transformation by EJ c-Ha-ras oncogene. Nature 304: 648-651.

28.	Yasaei H, Gilham E, Pickles JC, Roberts TP, O’Donovan M et al. (2013) 
Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B 
and p53 tumour-suppressor genes drive induced senescence bypass in normal 
diploid mammalian cells. Oncogene 32: 171-179. 

29.	Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting 
the epigenome. Curr Drug Targets 12: 1925-1956.

30.	Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and 
cancer therapy. Oncogene 23: 2919-2933.

31.	Duan J, Duan J, Zhang Z, Tong T (2005) Irreversible cellular senescence 
induced by prolonged exposure to H2O2 involves DNA-damage-and-repair 
genes and telomere shortening. Int J Biochem Cell Biol 37: 1407-1420.

32.	Terao Y, Nishida J, Horiuchi S, Rong F, Ueoka Y, et al. (2001) Sodium butyrate 
induces growth arrest and senescence-like phenotypes in gynecologic cancer 
cells. Int J Cancer 94: 257-267.

33.	Christov KT, Shilkaitis AL, Kim ES, Steele VE, Lubet RA (2003) Chemopreventive 
agents induce a senescence-like phenotype in rat mammary tumours. Eur J 
Cancer 39: 230-239.

34.	Wainwright LJ, Lasorella A, Iavarone A (2001) Distinct mechanisms of cell cycle 
arrest control the decision between differentiation and senescence in human 
neuroblastoma cells. Proc Natl Acad Sci U S A 98: 9396-9400.

35.	Carnero A (2013) Markers of cellular senescence. Methods Mol Biol 965: 63-81.

36.	Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192: 
547-556.

37.	Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-
associated secretory phenotype: the dark side of tumor suppression. Annu Rev 
Pathol 5: 99-118.

http://www.ncbi.nlm.nih.gov/pubmed/2032214
http://www.ncbi.nlm.nih.gov/pubmed/2032214
http://www.ncbi.nlm.nih.gov/pubmed/6250325
http://www.ncbi.nlm.nih.gov/pubmed/6250325
http://www.ncbi.nlm.nih.gov/pubmed/775933
http://www.ncbi.nlm.nih.gov/pubmed/775933
http://www.ncbi.nlm.nih.gov/pubmed/393706
http://www.ncbi.nlm.nih.gov/pubmed/393706
http://www.ncbi.nlm.nih.gov/pubmed/10647931
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://www.ncbi.nlm.nih.gov/pubmed/15489132
http://www.ncbi.nlm.nih.gov/pubmed/15489132
http://www.ncbi.nlm.nih.gov/pubmed/15489132
http://www.ncbi.nlm.nih.gov/pubmed/14792004
http://www.ncbi.nlm.nih.gov/pubmed/2191651
http://www.ncbi.nlm.nih.gov/pubmed/2191651
http://www.ncbi.nlm.nih.gov/pubmed/5320360
http://www.ncbi.nlm.nih.gov/pubmed/5320360
http://www.ncbi.nlm.nih.gov/pubmed/10911952
http://www.ncbi.nlm.nih.gov/pubmed/10911952
http://www.ncbi.nlm.nih.gov/pubmed/10911952
http://www.ncbi.nlm.nih.gov/pubmed/23434764
http://www.ncbi.nlm.nih.gov/pubmed/23434764
http://www.ncbi.nlm.nih.gov/pubmed/16036611
http://www.ncbi.nlm.nih.gov/pubmed/16036611
http://www.ncbi.nlm.nih.gov/pubmed/18208352
http://www.ncbi.nlm.nih.gov/pubmed/18208352
http://www.ncbi.nlm.nih.gov/pubmed/12782571
http://www.ncbi.nlm.nih.gov/pubmed/12782571
http://www.ncbi.nlm.nih.gov/pubmed/10446993
http://www.ncbi.nlm.nih.gov/pubmed/10446993
http://www.ncbi.nlm.nih.gov/pubmed/10446993
http://www.ncbi.nlm.nih.gov/pubmed/10446993
http://www.ncbi.nlm.nih.gov/pubmed/9823301
http://www.ncbi.nlm.nih.gov/pubmed/9823301
http://www.ncbi.nlm.nih.gov/pubmed/9823301
http://www.ncbi.nlm.nih.gov/pubmed/10978678
http://www.ncbi.nlm.nih.gov/pubmed/10978678
http://www.ncbi.nlm.nih.gov/pubmed/10978678
http://www.ncbi.nlm.nih.gov/pubmed/10578056
http://www.ncbi.nlm.nih.gov/pubmed/10578056
http://www.ncbi.nlm.nih.gov/pubmed/10578056
http://www.ncbi.nlm.nih.gov/pubmed/10490814
http://www.ncbi.nlm.nih.gov/pubmed/10490814
http://www.ncbi.nlm.nih.gov/pubmed/10490814
http://www.ncbi.nlm.nih.gov/pubmed/11912168
http://www.ncbi.nlm.nih.gov/pubmed/11912168
http://www.ncbi.nlm.nih.gov/pubmed/11912168
http://www.ncbi.nlm.nih.gov/pubmed/12015983
http://www.ncbi.nlm.nih.gov/pubmed/12015983
http://www.ncbi.nlm.nih.gov/pubmed/12015983
http://www.ncbi.nlm.nih.gov/pubmed/12450785
http://www.ncbi.nlm.nih.gov/pubmed/12450785
http://www.ncbi.nlm.nih.gov/pubmed/7121596
http://www.ncbi.nlm.nih.gov/pubmed/7121596
http://www.ncbi.nlm.nih.gov/pubmed/7121596
http://www.ncbi.nlm.nih.gov/pubmed/6877385
http://www.ncbi.nlm.nih.gov/pubmed/6877385
http://www.ncbi.nlm.nih.gov/pubmed/22410783
http://www.ncbi.nlm.nih.gov/pubmed/22410783
http://www.ncbi.nlm.nih.gov/pubmed/22410783
http://www.ncbi.nlm.nih.gov/pubmed/22410783
http://www.ncbi.nlm.nih.gov/pubmed/21158707
http://www.ncbi.nlm.nih.gov/pubmed/21158707
http://www.ncbi.nlm.nih.gov/pubmed/15077154
http://www.ncbi.nlm.nih.gov/pubmed/15077154
http://www.ncbi.nlm.nih.gov/pubmed/15833273
http://www.ncbi.nlm.nih.gov/pubmed/15833273
http://www.ncbi.nlm.nih.gov/pubmed/15833273
http://www.ncbi.nlm.nih.gov/pubmed/11668507
http://www.ncbi.nlm.nih.gov/pubmed/11668507
http://www.ncbi.nlm.nih.gov/pubmed/11668507
http://www.ncbi.nlm.nih.gov/pubmed/12509956
http://www.ncbi.nlm.nih.gov/pubmed/12509956
http://www.ncbi.nlm.nih.gov/pubmed/12509956
http://www.ncbi.nlm.nih.gov/pubmed/11481496
http://www.ncbi.nlm.nih.gov/pubmed/11481496
http://www.ncbi.nlm.nih.gov/pubmed/11481496
http://www.ncbi.nlm.nih.gov/pubmed/23296651
http://www.ncbi.nlm.nih.gov/pubmed/21321098
http://www.ncbi.nlm.nih.gov/pubmed/21321098
http://www.ncbi.nlm.nih.gov/pubmed/20078217
http://www.ncbi.nlm.nih.gov/pubmed/20078217
http://www.ncbi.nlm.nih.gov/pubmed/20078217


Page 4 of 4

Citation: Vergel MDM, Carnero A (2014) Cellular Senescence as a Barrier to Environmental Carcinogenesis. J Carcinog Mutagen S3: 004. 
doi:10.4172/2157-2518.S3-004

J Carcinog Mutagen                                   ISSN:2157-2518 JCM, an open access journal journal DNA damage/ repair: 
Mutagenesis : Carcinogenesis

38.	Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, et al. (1994) Cellular 
senescence and cancer. Cold Spring Harb Symp Quant Biol 59: 411-418.

39.	Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell 
Biol 13: 748-753.

40.	Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and
cancer. J Clin Invest 113: 160-168.

41.	Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras 
provokes premature cell senescence associated with accumulation of p53 and 
p16INK4a. Cell 88: 593-602.

42.	Vergel M, Marin JJ, Estevez P, Carnero A (2010) Cellular senescence as a
target in cancer control. J Aging Res 2011: 725365.

43.	Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular 
senescence. Int J Biochem Cell Biol 37: 961-976.

44.	Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, et al. (2005) Tumour 
biology: senescence in premalignant tumours. Nature 436: 642.

45.	Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, et al. (2005) Crucial
role of p53-dependent cellular senescence in suppression of Pten-deficient 
tumorigenesis. Nature 436: 725-730.

46.	Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, et al.
(2005) BRAFE600-associated senescence-like cell cycle arrest of human
naevi. Nature 436: 720-724.

47.	Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Muñoz-Galvan S, et 
al. (2013) Conditional transgenic expression of PIM1 kinase in prostate induces 
inflammation-dependent neoplasia. PLoS One 8: e60277.

48.	Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, et al. (2003)
Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are
compromised by E2f1 loss. Mol Cell 11: 905-914.

49.	Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, et al. (2002)
Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289-298.

50.	Carnero A, Lleonart ME (2011) Epigenetic mechanisms in senescence,
immortalisation and cancer. Biol Rev Camb Philos Soc 86: 443-455.

51.	Feliciano A, Sánchez-Sendra B, Kondoh H, Lleonart ME (2011) MicroRNAs
Regulate Key Effector Pathways of Senescence. J Aging Res 2011: 205378.

52.	Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory.
Exp Gerontol 31: 443-448.

53.	Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things 
happen to good cells. Nat Rev Mol Cell Biol 8: 729-740.

54.	Carnero A, Link W, Martinez JF, Renner O, Castro ME, et al. (2003) Cellular
Senescence and Cancer. Res Adv Cancer 3: 183-198. 

55.	Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer
Cell 2: 103-112.

56.	Ohtani N, Yamakoshi K, Takahashi A, Hara E (2004) The p16INK4a-RB
pathway: molecular link between cellular senescence and tumor suppression.
J Med Invest 51: 146-153.

57.	Zanella F, Link W, Carnero A (2010) Understanding FOXO, new views on old
transcription factors. Curr Cancer Drug Targets 10: 135-146.

58.	Blagosklonny MV (2008) Prevention of cancer by inhibiting aging. Cancer Biol
Ther 7: 1520-1524.

59.	Blagosklonny MV (2013) Hypoxia, MTOR and autophagy: converging on
senescence or quiescence. Autophagy 9: 260-262.

60.	Castro ME, Ferrer I, Cascón A, Guijarro MV, Lleonart M, et al. (2008) 
PPP1CA contributes to the senescence program induced by oncogenic Ras.
Carcinogenesis 29: 491-499.

61.	Ruiz L, Traskine M, Ferrer I, Castro E, Leal JF, et al. (2008) Characterization
of the p53 response to oncogene-induced senescence. PLoS One 3: e3230.

62.	Narita M, Lowe SW (2004) Executing cell senescence. Cell Cycle 3: 244-246.

63.	Demidenko ZN, Blagosklonny MV (2008) Growth stimulation leads to cellular 
senescence when the cell cycle is blocked. Cell Cycle 7: 3355-3361.

64.	 Narita M, Nũnez S, Heard E, Narita M, Lin AW, et al. (2003) Rb-mediated 
heterochromatin formation and silencing of E2F target genes during cellular
senescence. Cell 113: 703-716.

65.	Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, et al.
(1999) Creation of human tumour cells with defined genetic elements. Nature 
400: 464-468.

66.	Qian Y, Chen X (2013) Senescence regulation by the p53 protein family.
Methods Mol Biol 965: 37-61.

67.	Wadhwa R, Sugihara T, Taira K, Kaul SC (2004) The ARF-p53 senescence
pathway in mouse and human cells. Histol Histopathol 19: 311-316.

68.	Wynford-Thomas D (1996) p53: guardian of cellular senescence. J Pathol 180: 
118-121.

69.	Thomas DM, Yang HS, Alexander K, Hinds PW (2003) Role of the retinoblastoma 
protein in differentiation and senescence. Cancer Biol Ther 2: 124-130.

70.	Ferrer I, Blanco-Aparicio C, Peregrina S, Cañamero M, Fominaya J, et al. (2011) 
Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell
Cycle 10: 2751-2762.

71.	Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27: 2276-2288.

72.	Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer. 
Acta Physiol (Oxf) 192: 19-28.

73.	Leal JF, Fominaya J, Cascón A, Guijarro MV, Blanco-Aparicio C, et al. (2008) 
Cellular senescence bypass screen identifies new putative tumor suppressor 
genes. Oncogene 27: 1961-1970.

74.	Marasa BS, Srikantan S, Masuda K, Abdelmohsen K, Kuwano Y, et al. (2009)
Increased MKK4 abundance with replicative senescence is linked to the joint
reduction of multiple microRNAs. Sci Signal 2: ra69.

75.	Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 
is a critical downstream target of p53 in the induction of replicative senescence. 
Nat Cell Biol 8: 877-884.

76.	Peeper DS, Shvarts A, Brummelkamp T, Douma S, Koh EY, et al. (2002) A
functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced 
senescence. Nat Cell Biol 4: 148-153.

77.	Shvarts A, Brummelkamp TR, Scheeren F, Koh E, Daley GQ, et al. (2002) A 
senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative 
p19(ARF)-p53 signaling. Genes Dev 16: 681-686.

78.	Vergel M, Carnero A (2010) Bypassing cellular senescence by genetic
screening tools. Clin Transl Oncol 12: 410-417.

This article was originally published in a special issue, DNA damage/ 
repair: Mutagenesis : Carcinogenesis handled by Editor(s). Dr. Lubomir 
Manolov Stoilov, University: Institute of Genetics, Bulgaria; Dr. Kandace Jo 
Williams, University of Toledo College of Medicine, USA; Dr. Mu Wang, 
Indiana University School of Medicine, USA

http://www.ncbi.nlm.nih.gov/pubmed/7587095
http://www.ncbi.nlm.nih.gov/pubmed/7587095
http://www.ncbi.nlm.nih.gov/pubmed/11698192
http://www.ncbi.nlm.nih.gov/pubmed/11698192
http://www.ncbi.nlm.nih.gov/pubmed/14722605
http://www.ncbi.nlm.nih.gov/pubmed/14722605
http://www.ncbi.nlm.nih.gov/pubmed/9054499
http://www.ncbi.nlm.nih.gov/pubmed/9054499
http://www.ncbi.nlm.nih.gov/pubmed/9054499
http://www.ncbi.nlm.nih.gov/pubmed/21234095
http://www.ncbi.nlm.nih.gov/pubmed/21234095
http://www.ncbi.nlm.nih.gov/pubmed/15743671
http://www.ncbi.nlm.nih.gov/pubmed/15743671
http://www.ncbi.nlm.nih.gov/pubmed/16079833
http://www.ncbi.nlm.nih.gov/pubmed/16079833
http://www.ncbi.nlm.nih.gov/pubmed/16079851
http://www.ncbi.nlm.nih.gov/pubmed/16079851
http://www.ncbi.nlm.nih.gov/pubmed/16079851
http://www.ncbi.nlm.nih.gov/pubmed/16079850
http://www.ncbi.nlm.nih.gov/pubmed/16079850
http://www.ncbi.nlm.nih.gov/pubmed/16079850
http://www.ncbi.nlm.nih.gov/pubmed/23565217
http://www.ncbi.nlm.nih.gov/pubmed/23565217
http://www.ncbi.nlm.nih.gov/pubmed/23565217
http://www.ncbi.nlm.nih.gov/pubmed/12718877
http://www.ncbi.nlm.nih.gov/pubmed/12718877
http://www.ncbi.nlm.nih.gov/pubmed/12718877
http://www.ncbi.nlm.nih.gov/pubmed/12086865
http://www.ncbi.nlm.nih.gov/pubmed/12086865
http://www.ncbi.nlm.nih.gov/pubmed/20849452
http://www.ncbi.nlm.nih.gov/pubmed/20849452
http://www.ncbi.nlm.nih.gov/pubmed/21629746
http://www.ncbi.nlm.nih.gov/pubmed/21629746
http://www.ncbi.nlm.nih.gov/pubmed/9415101
http://www.ncbi.nlm.nih.gov/pubmed/9415101
http://www.ncbi.nlm.nih.gov/pubmed/17667954
http://www.ncbi.nlm.nih.gov/pubmed/17667954
http://www.ncbi.nlm.nih.gov/pubmed/12204530
http://www.ncbi.nlm.nih.gov/pubmed/12204530
http://www.ncbi.nlm.nih.gov/pubmed/15460900
http://www.ncbi.nlm.nih.gov/pubmed/15460900
http://www.ncbi.nlm.nih.gov/pubmed/15460900
http://www.ncbi.nlm.nih.gov/pubmed/20088800
http://www.ncbi.nlm.nih.gov/pubmed/20088800
http://www.ncbi.nlm.nih.gov/pubmed/18769112
http://www.ncbi.nlm.nih.gov/pubmed/18769112
http://www.ncbi.nlm.nih.gov/pubmed/23192222
http://www.ncbi.nlm.nih.gov/pubmed/23192222
http://www.ncbi.nlm.nih.gov/pubmed/18204081
http://www.ncbi.nlm.nih.gov/pubmed/18204081
http://www.ncbi.nlm.nih.gov/pubmed/18204081
http://www.ncbi.nlm.nih.gov/pubmed/18800172
http://www.ncbi.nlm.nih.gov/pubmed/18800172
http://www.ncbi.nlm.nih.gov/pubmed/14726708
http://www.ncbi.nlm.nih.gov/pubmed/18948731
http://www.ncbi.nlm.nih.gov/pubmed/18948731
http://www.ncbi.nlm.nih.gov/pubmed/12809602
http://www.ncbi.nlm.nih.gov/pubmed/12809602
http://www.ncbi.nlm.nih.gov/pubmed/12809602
http://www.ncbi.nlm.nih.gov/pubmed/10440377
http://www.ncbi.nlm.nih.gov/pubmed/10440377
http://www.ncbi.nlm.nih.gov/pubmed/10440377
http://www.ncbi.nlm.nih.gov/pubmed/23296650
http://www.ncbi.nlm.nih.gov/pubmed/23296650
http://www.ncbi.nlm.nih.gov/pubmed/14702199
http://www.ncbi.nlm.nih.gov/pubmed/14702199
http://www.ncbi.nlm.nih.gov/pubmed/8976867
http://www.ncbi.nlm.nih.gov/pubmed/8976867
http://www.ncbi.nlm.nih.gov/pubmed/12750549
http://www.ncbi.nlm.nih.gov/pubmed/12750549
http://www.ncbi.nlm.nih.gov/pubmed/21772120
http://www.ncbi.nlm.nih.gov/pubmed/21772120
http://www.ncbi.nlm.nih.gov/pubmed/21772120
http://www.ncbi.nlm.nih.gov/pubmed/18391970
http://www.ncbi.nlm.nih.gov/pubmed/18171426
http://www.ncbi.nlm.nih.gov/pubmed/18171426
http://www.ncbi.nlm.nih.gov/pubmed/17968325
http://www.ncbi.nlm.nih.gov/pubmed/17968325
http://www.ncbi.nlm.nih.gov/pubmed/17968325
http://www.ncbi.nlm.nih.gov/pubmed/19861690
http://www.ncbi.nlm.nih.gov/pubmed/19861690
http://www.ncbi.nlm.nih.gov/pubmed/19861690
http://www.ncbi.nlm.nih.gov/pubmed/16862142
http://www.ncbi.nlm.nih.gov/pubmed/16862142
http://www.ncbi.nlm.nih.gov/pubmed/16862142
http://www.ncbi.nlm.nih.gov/pubmed/11812999
http://www.ncbi.nlm.nih.gov/pubmed/11812999
http://www.ncbi.nlm.nih.gov/pubmed/11812999
http://www.ncbi.nlm.nih.gov/pubmed/11914273
http://www.ncbi.nlm.nih.gov/pubmed/11914273
http://www.ncbi.nlm.nih.gov/pubmed/11914273
http://www.ncbi.nlm.nih.gov/pubmed/20534396
http://www.ncbi.nlm.nih.gov/pubmed/20534396

	Title
	Corresponding author
	Abstract
	Keywords
	Carcinogenesis
	Cellular Senescence 
	Acknowledgements
	Table 1
	Table 2
	References



