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Introduction
Students are taught the perils of inferring causality from 

observational studies, and the shortcomings of nonrandomized clinical 
trials. In his seminal text book on modern epidemiology, Rothman et 
al. [1] dedicate considerable discussion to causal inference and even 
goes so far as to try to present and critique criteria necessary to consider 
or establish when concluding a causal relationship between two 
variables. Although formal conceptualization of causal inference began 
early in the last century, there remains disagreement concerning the 
ability to discovery novel causal effects from all but the most rigorous 
of controlled clinical trials and mechanistic experiments. Causality is 
connected to probability by some experts (e.g. [2], and [3]), whereby 
an attempt is made to quantitate the probability that A causes B, with 
assumptions about the mechanism by which individuals were assigned 
to levels of A. If that probability exceeds some threshold, a causal 
relationship is claimed. However, interpreting probabilities as causal 
quantities in the absence of clear knowledge about the assumptions 
underlying, this interpretation can lead to confusion. To avoid such 
confusion, Pearl promoted a deterministic interpretation of causal 
inference at the population level using structural equation modeling 
[4-6]. Rubin also defines the causal effect deterministically, but at the 
individual level [7]; for discussions on causal effect definition see also 
[8-11] and for causality in genetics effects see [12-13].

The difference between the “individual” and “population” causal 
effect has meaning that transcends esoteric or theoretical considerations. 
As an example, let’s consider a drug, a desired outcome and an adverse 
event. The policy arm of health care wants to know whether prescribing 
the drug to the population of patients will increase the frequency of the 
desired outcome (and presumably reduce disease incidence) without 
undo increase in the frequency of the adverse event. The physician, 
on the other hand, wants to know whether prescribing the drug to 
the patient in his/her office at that time will elicit the desired outcome 
without leading to the adverse event in that patient. Typically, analyses 
and inference are done on a large sample from the population and then 
the results are used to make inference about whether the next individual 
sampled from the same population will respond or not. In its simplest 
form, inference about the response of the next individual sampled from 
the population is the average response in the population. Personalized 
medicine connotes the idea that treatment has been tailored to specific 
characteristics of the individual. In practice, treatment is not tailored 

to each individual, but rather is tailored to groups of individuals based 
on the results of specific diagnostic information, such as the level of 
a biomarker or genetic information. The term “Decision Medicine” 
has recently been suggested, which indicates a more immediate 
translational perspective [14].

The question we ask is whether we should approach causal 
inference including the assumptions and data analysis task differently 
depending on whether our primary interest is the average response of 
treatment in the population or the ability to characterize the response 
for an individual or a subgroup. Regardless of the term, the field of 
personalized medicine has much to benefit from advances in causal 
inference. This perspective provides a tutorial of modern causal 
inference and then provides suggestions how application of specific 
kinds of causal inference would promote advances in translational 
applications of personalized or decision medicine. The example 
application is carried out pragmatically using a graphical approach 
followed by Structural Equation Modeling (SEM). 

A short tutorial on causal inference

Because causal inference is a challenging concept for many 
clinicians and researchers, even those trained in biostatistics, it is 
informative to reconsider the relationships among prediction, causation 
and association. Knowing the menu of causes of an outcome improves 
prediction above what may be done with a set of variables that are only 
associated with the response variable. Clearly, causation facilitates 
prediction, but the ability to predict does not imply causation because 
of the ubiquitous presence of association. The general dogma is that 
causal variables are better predictors of response compared to variables 
that are associated with response only because of their correlation with 
the causative variables. In some cases, these relationships have been 
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Abstract
Causal analyses and causal inference is a growing area of biostatics. In parallel, there is increasing focus on 

using genomic information to guide medical practice, i.e. personalized medicine or decision medicine. This perspective 
discusses causal inference in the context of personalized or decision medicine, including the assumptions and the 
concept that the task is different depending on whether the primary goal is the average response of treatment in the 
population or the ability to characterize the response for an individual or a subgroup. This perspective provides a tutorial 
of modern causal inference and then provides suggestions how application of specific kinds of causal inference would 
promote advances in translational sciences. The concept of the subpopulation causal effect is one path toward improved 
decision medicine. A dataset containing cardiovascular disease risk factor levels and genomic information is analyzed 
and different causal effects are estimated.

Journal of 
Data Mining in Genomics & ProteomicsJo

ur
na

l o
f D

ata
 Mining in Genomics &

Proteom
ics

ISSN: 2153-0602

Yazdani and Boerwinkle, J Data Mining Genomics Proteomics 2014, 6:1 

DOI: 10.4172/2153-0602.1000163

http://dx.doi.org/10.4172/2153-0602.1000163
http://dx.doi.org/10.4172/2153-0602.1000163


Citation: Yazdani A, Boerwinkle E (2014) Causal Inference in the Age of Decision Medicine. J Data Mining Genomics Proteomics 6: 163. 
doi:10.4172/2153-0602.1000163

Page 2 of 6

Volume 6 • Issue 1 • 1000163J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

mathematically formalized, [15]. Contrary to this dogma, a single 
associated variable may be a better predictor of average response in the 
population than a single causal variable because the associated variable 
may be correlated with multiple causal variables. In addition, a good 
predictor of population relationships may not be a good predictor of 
the response to an intervention. A causal variable, on the other hand, 
can be both a good predictor of population relationships and a good 
predictor of the response to an intervention.

The relationship among prediction, causation and association is 
more than just intellectual curiosity when we consider the results of an 
intervention or randomization. A classic example is offered by HDL-
cholesterol, triglycerides and Coronary Heart Disease (CHD). HDL-
cholesterol and triglycerides are negatively correlated. For many years, 
cardiovascular scientists believed that HDL-cholesterol was causally 
protective of CHD because of reverse cholesterol transport. It even had 
the nickname “good cholesterol”. However, recent intervention studies 
with drugs that raise HDL-cholesterol show that CHD rates were not 
changed by the intervention [16]. Similarly, Mendelian randomization 
studies with genetic variants that raise HDL cholesterol levels do not 
affect CHD risk [17]. These data have caused a shift in thinking that 
the causal variable is triglyceride levels, not HDL-cholesterol; HDL-
cholesterol was only associated with the disease through its inverse 
correlation with triglycerides.

In clinical or human population studies, a causal effect of a 
treatment or exposure is defined as the difference between the 
proportion of individuals in the population with the outcome of 
interest where all individuals have been exposed or treated, E(Y (t)), 
and the proportion of the same individuals with the outcome of interest 
where all individuals have not been exposed or treated, E(Y(c)) [18]. 
As one can see from this definition, we must have 2N measurements 
in a population of N individual, which is problematic and has been 
called “fundamental problem” [19]. In each experiment, we can at 
most observe N responses on n1 treated and n2 untreated individuals 
(N=n1+n2), such as that in a classic placebo-controlled clinical trial. 
A comparison of responses between the treated and untreated groups 
must be done on individuals that are the same for all relevant variables, 
and the degree to which they are not the same dictates the need for 
covariates and an understanding of confounding. Alternatively, we can 
observe 2N responses in N individuals treated serially, such as that in 
a crossover study. 

A key element in elucidating the causal effect is understanding 
bias in the Assignment Mechanism (AM). The AM is the system or 
structure used to assign treatment to individuals, which is formalized 
by Rubin [7]. See the accompanying text box for definitions of other 
words related to causal inference. To discover the causal effect between 
treatment and outcome, we need to understand the assignment 
mechanism (i.e. data generating process) as completely as possible. 
An experimental study is one in which the assignment mechanism is 
known, such as a randomization clinical trial. Randomization is a tool 
to eliminate confounding and, therefore, randomization is a favorite 
study design of clinicians and population scientists desiring to make 
causal inference. Since the assignment is done randomly, the covariates 
should be balanced between treated and untreated groups and any 
observed difference in the outcome is ascribed to the effect of treatment. 
With randomization, a comparison of the conditional probabilities 

( | )P Y y T t= =  and ( | )P Y y T c= = , leads to causal inference about 
treatment T on outcome Y. However, the main reason for the ability to 
make causal inference based on this comparison is an understanding of 
the assignment mechanism (i.e. randomization), not an understanding 

of the conditional probabilities. Lack of complete understanding of the 
assignment mechanism of treatments to individuals in observational 
studies is one reason that causal inference is difficult in common 
epidemiologic settings. The interested reader is encouraged to 
investigate the contrasting conclusions from observational studies 
and controlled clinical trials for hormone replacement therapy and 
coronary heart disease in women [20]. Although randomization 
leads to causal inference, it is often not practical or even desirable in 
the case where there may be an obvious alternate optimum treatment 
assignment [21]. So, there is a need to pursue methods and criteria for 
causal inference in observational and other study designs.

Definitions of Common Terms in Causality

Causal effect: To define the causal effect, we need to first indicate 
what we intend to do with the information, and possible responses 
include:

1) We seek the effect of treatment over the population; this effect 
is considered as a property of the treatment.

2) We are interested in individual causal effect which is seen as 
the individual reaction to the treatment.

3) We are interested in subpopulation (treatment-variable) 
causal effect which is a result of an interaction between the 
subpopulation stratifying variable and treatment. 

Covariates: Variables influential to individual’s response other than 
the primary variables of interest are called covariates; covariates are 
causes of response. The level of a covariate is to be measured or inferred 
for each individual 

Treatment assignment mechanism is a system or process to assign 
treatment to individuals and we need to clarify this system in order to 
discover the causal relationship between treatment and response.

Illumination assumption: A complete understanding of how 
individuals have been assigned to treatment or how observations (data) 
have been generated.

Confounders of assignment mechanism: Confounders are 
covariates that influence both the response and the level of treatment. 
As a result, the distribution of confounders is different in treated and 
untreated groups. 

The status quo: the population causal effect
Usual practice, with just a few exceptions, considers all individuals 

to be the same and differences in response among individuals to 
be dealt with by increasing dose or identifying alternative or add-
on treatments. Classic examples of this approach exist within the 
majority of professional guidelines (e.g. American Heart Association 
cholesterol and blood pressure treatment guidelines) that are 
ubiquitous and impactful, but rarely take into account individual 
patient characteristics. In this case, we measure the causal effect over 
the population. To estimate the population causal effect, the response 
variable measured in a sample of treated and untreated individuals are 
compared. This is interpreted as causal effect if other covariates are 
balanced or randomized between the treated and untreated groups. 
A major source of confounding is the AM - the way in which each 
individual has been assigned a treatment level. In a randomized clinical 
trial, treatment is assigned to an individual according to a specified 
process, and, therefore, the AM is known. In observational studies, 
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there are questions as to why some individuals have been provided 
a specific level of treatment and some have not, and confounding by 
indication is a threat to rigorous inference [22]. Before proceeding to 
the more complicated cases of individual and subpopulation effects, 
it is instructive to present the population causal effect more formally. 

Assume we have N individuals in the population under study. 
If all N individuals are assigned to the treatment group, we observe

1( ) ( ( ),..., ( ),..., ( ))i NY t Y t Y t Y t= , and if all N individuals are assigned to 
the control group, we observe 1( ) ( ( ),..., ( ),..., ( ))i NY c Y c Y c Y c= . The 
quantity ( ( ) ( ))E Y t Y c−  is introduced as the population causal effect, 
where )(tY and )(cY  are potential responses of the entire population 
under treatment and control, respectively [23]. Since the reactions of 
all N units under both levels of treatment are considered, the quantity 
leads us to the population causal effect. However, in most applications, 
treatment and control cannot be assigned to each individual; and 
we observe some values of vector ( )Y t  and some values of vector 

( )Y c  regarding the actual treatment assignment, and not the two 
components for each individual. For the quantity ( ( ) ( ))E Y t Y c−  to be 
interpreted as a valid population causal effect, there are two categories 
of assumptions that must be considered: monitoring and illumination 
[24]. The monitoring assumption is satisfied if there is no interference 
either from the study subjects or from external factors. Violating the 
monitoring assumption means that the difference between treatment 
and control responses cannot be solely ascribed to the treatment. In 
statistics, the monitoring assumption is called Stable Unit Treatment 
Value Assumption or SUTVA [25]. Clarification of the AM (i.e. 
illumination) represents a complete understanding of how individuals 
have been assigned to treatment or how observations (data) have been 
generated, which may be formalized by potential outcomes called 
ignorability or conditional ignorability. Ignorability means treatment 
is assigned independently of an individual’s reactions, ( ( ), ( ))T Y t Y c⊥  
[22]. 

Let variable ( )obsY t  stand for the observed components of ( )Y t  
and variable ( )obsY c  stand for the observed components of Y(c). 
The notation ( )RAM K  is introduced as the causal element [24]. RK
comprises any knowledge related to response. Through a better 
understanding of ( )RAM K , we can identify a realization in which the 
responses are proper for causal inference. In the population in which 
the causal element ( )RAM K  has been identified and the treated and 
control units have been observed, we are able to infer causal effects by 
comparing the following two quantities,

( ( ) | ( ) ) & ( ( ) | ( ) )obs R obs RP Y t y AM K f P Y c y AM K f= = = = .

Both quantities are conditioned on AM (KR)=f which means the 
assignment mechanism has been identified regarding knowledge 
related to response, and the assignment mechanism is the same over 
the population. It is important to note the causal element ( )RAM K  
cannot be replaced by a design variable or an adjusting covariate. The 
notation ( )RAM K  means the assignment mechanism has been fully 
identified by considering knowledge related to the response, thus 
conveying more information than conditioning on a covariate. 

The assignment mechanism can be illustrated by causal graphs 
and the causal effect can be estimated by structural equation modeling 
which is compatible with causal graphs [4]. We use this framework in 
the example application provided at the end, because it is practical in 
biomedical and translational settings. 

Personalized medicine and the individual causal effect

Personalized medicine is the ability to use an individual’s genetic 

make-up and life experiences to better maintain health, diagnose and 
treat disease, and avoid adverse outcomes resulting from treatment. 
Similarly, we interpret the individual causal effect of a treatment as the 
expected response of each individual to the treatment in comparison 
with its response to the control. The individual causal effect differs 
from the population causal effect because the expected response is no 
longer the same among individuals. To formalize the individual causal 
effect, )(tYi and )(cYi are defined as the response of individual i to the 
treatment and control, respectively. A comparison of the potential 
outcomes of individual i, such as Yi (t) - Yi(c), gives us the causal effect 
of the treatment on individual i.  In most cases, however, only one of 
the potential outcomes is observed and the other is missing. To avoid 
this fundamental problem, we often consider one unit over time and 
assume that the effects of relevant covariates are held constant, such as 
in a typical cross-over design. The causal effect ( ) ( )Y t Y c− is a random 
variable whose value is different for each individual and has variance 
σ2

t in the population.

In the contemporary era of genomics, personalized medicine has 
become synonymous with genomic medicine, and the individualized 
effects of treatment are thought to be due to genetic differences among 
individuals. Considering an individual’s genotype as a random effect 
influencing the level of the phenotype and creating correlations among 
related individuals is as old as the field of human genetics itself [26]. 
However, it has only been recently that the technology exists to begin to 
estimate the level of an effect, such as, for an individual. Genome-wide 
association studies using dense genotyping arrays (e.g. [27]), exome 
sequencing [28], or whole-genome sequencing [29] are beginning to 
identify the genes and alleles influencing many medically-relevant 
traits, including treatment response.  Early attempts to model )(tYi
considered only a few loci and created a genetic risk score for each 
individual [30]. More recently, Visscher and et al used genetic markers 
spanning the human genome to estimate the heritability of a trait, such 
as treatment response [31]. To the extent that Yi (t)-Yi (c) is genetic, the 
heritability of a trait is a function of σ2

t. However, these methods do not 
allow for accurate estimation of )(tYi  for an individual.

If the response to treatment is a unique characteristic of the 
individual that cannot be predicted a priori, then true personalized 
medicine has little practical utility in medicine or biomedical research. 
Because every individual is unique, it is difficult to achieve evidence-
based personalized medicine. In addition, individualized treatment 
strategies would be cost-prohibitive. Instead, personalized medicine is 
being replaced by decision medicine in the practical setting. Decision 
medicine is different than traditional medicine, which typically 
operates under the assumption of a population causal effect, and 
personalized medicine, which considers an individual causal effect. 
Decision medicine, on the other hand, uses available information to 
categorize individuals into groups based on the results of formal or 
assumed interaction analyses, and then considers the population causal 
effect within a group. Such interaction causal effects are discussed in 
the next section. 

Decision medicine and the subpopulation causal effect 

Between the two extremes of considering the effect of treatment 
to be the same for each individual (i.e. population causal effect) 
and the effect to be a unique characteristic of each individual (i.e. 
individual causal effect) lays the practical domain of the subpopulation 
causal effect. The subpopulation causal effect simply means that the 
causal effect of treatment on groups (i.e. subpopulations), within the 
population, are different for each group. The subpopulation causal 
effect is an underlying principal of pharmacogenetics and decision 
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medicine, where the groups may be defined by genotype or other 
relevant characteristics (e.g. gender). The groups may be defined based 
on the results of a statistical test of interaction between the treatment 
and a covariate or based on a priori biologic or clinical knowledge. 
The subpopulation causal effect is a practical compromise between 
the population and individual causal effect, which either do not take 
into account the unique characteristic of each individual or do show a 
practical path forward, respectively. 

To discover an interaction effect, the illumination of the AM 
is not enough because there might be an interaction between T and 
a covariate Z on response, while Z does not vary with treatment. In 
such a case, we need to consider Z as an effect modifier. However, the 
illumination of the AM does not provide this information because Z is 
not a confounder of the treatment AM. All of this leads to fundamental 
challenges for the applied practitioner of causal inference; for each 
covariate we must consider the possibility that it is modifying the effect 
of treatment (i.e. interaction) [10].

To make the difference between the population and subpopulation 
effects more tangible, we consider a simple linear model. To find the 
population causal effect of T on Y, only the potential confounders of the 
treatment AM denoted by X are modeled, y t x uα β γ= + + + . In this 
equation, u is a realization of U which includes variables independent 
of T, and  stands for population causal effect of treatment on response 
Y. Now consider that there might be an interaction between T and a 
covariate P on response Y: ' '.y t x p t p uα β γ η λ= + + + + + , where 'U  
is independent of T. The subpopulation causal effect is a combination 
of the effect of T alone and the effect of an interaction between T and a 
covariate, P. In the equation below, we see the difference between the 
coefficients of T in the two above equations:

=β ' ( 1)P pβ λ+ ⋅ = .

The effect of treatment in the class of P=1 is 'β λ+  and the effect of 
treatment in the class of P=0 is 'β . If λ  is positive and we do not classify 
individuals regarding P, we will overestimate the effect of treatment for 
individuals in the group P=0 and underestimate it for individuals in 
the group P=1. 

Example application 

In practice and in real data applications, the concept of causal 
inference is best visualized as a Bayesian Network. In addition, the 
Bayesian network framework facilitates both estimation and hypothesis 
testing (i.e. statistical inference) in a real data analysis setting. A 
causal graph (Bayesian Network) is an illustration of the causal 
relationship among covariates, treatment, and response variable, as 
well as representation of assumptions. The existence of a directed edge 

YX →  means that X may have a direct causal effect on Y. Assume 
a DAG D = (v, ε) where v is a set of random variables represented by 
nodes (or simple by letters) in DAG D and ε is a set of edges which 
connect the variables. The concept of a causal graph ),( εvD =  
depends on the variables v  and edges ε  and any inference depends on 
the set (v, ε). Assume P  is a joint probability distribution on v . D and P 
must satisfy the basic Markov condition that every variable, vX i ∈
, is independent of any subset of its predecessors conditioned on the 
set of its direct or immediate causes (parents), [4]. The two primary 
underlying assumptions are that there are no latent variables and no 
loops in the graph. With this brief review, we now embark on a real 
data example.

The aim of this example application is to identify causal relationships 
among 5 cardiovascular disease risk factors: body mass index (BMI), 

glucose, triglycerides, HDL-cholesterol and total cholesterol. We 
apply graphical models to visualize the AM and use SEM to estimate 
the causal effect, since they are the most pragmatic approaches 
to causal analysis. The data were collected on 14,749 individuals 
(10,753 European-Americans and 3,996 African-Americans) from 
the Atherosclerosis Risk in Communities study [32]. GWAS array 
genotype data were also available and principal components over these 
genotype data were calculated and used in the analysis to account for 
population structure [33]. There are multiple algorithms to identify 
causal structure which can be categorized in constraint-based, score-
based, or hybrid learnings [34-36]. Here, the Peter and Clark (PC) 
algorithm, which is a constraint-based algorithm, was used. The PC 
algorithm is available in the pcalg package implemented on CRAN [37] 
and was extended to consider both genotype and phenotype data. The 
causal graph across the entire sample set is shown in Figure 1, but the 
principle components from the genome are not depicted to highlight 
the causal relationship among the phenotypes.  

The central role of BMI on plasma glucose and lipid levels is evident 
from the graph. BMI influences TRG levels both directly and via HDL 
levels. Based on this topology, the structural equation for triglyceride 
levels is:

TRG BMI uα= ⋅ + ,                             (1)

where BMI is the treatment and TRG is the response variable, and 
there is no confounder of the AM depicted in figure 1. The estimated 
coefficient of BMI is ˆ 0.18α = . Because of the central role of BMI in 
the above graph and because BMI levels differ markedly between race 
groups, we hypothesize that the analyses should be repeated stratified 
by race. The race stratified causal graphs are shown in figure 2, a and b.

Within each race group, the topology or structures among 
phenotypes are similar, but not the same; there is no direct effect of 
BMI on triglyceride levels in the sample of African-Americans. To 
find the population causal effect of BMI on TRG, we must identify the 
causal effect within each race group:

AA AA AA AATRG BMI uα= ⋅ +     EA EA EA EATRG BMI uα= ⋅ + , 

where the subscripts AA and EA indicate African-Americans and 
European-Americans, respectively. There is no confounder for 
this causal identification based on graphical back-door and front-
door criteria, [4]. The coefficients 0.09AAα =  and  0.26EAα =  
are interpreted causally because we assume U BMI⊥  in each 
subpopulation regarding race, which means by changing BMI, the 

Figure 1: The estimated causal graph across the entire sample set.
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rest of the model remains intact. The population causal effect of 
BMI on TRG is 0.22, which is a weighted sum of race-specific causal 
effects, EA EA AA AAr rα α⋅ + ⋅ , where EAr and AAr  are, respectively, 
the proportion of European-American and African-American in the 
population. We can see that the population causal effect of BMI on 
TRG, 0.22, is absolutely higher than the effect for AA due to the high 
effect for EA as well as the bigger portion of EA, the number of EA is 
nearly three times larger than AA. If we apply the population causal 
effect for every individual, we would overestimate the effect for AAs 
and underestimate it for EAs.

Note the above computations estimate the total causal effect of BMI 
on TRG which comprises direct effect as well as indirect effect through 
mediators, here through TC and HDL. In the analysis given below, 
other mediators are included in the structural equation to estimate the 
direct effect of BMI on TRG. The structural equation for the European-
Americans is 

 EA EA EA EA EA EA EA EATRG BMI HDL TC uα λ θ= ⋅ + ⋅ + ⋅ + ,          (2)

and the direct effect of BMI on TRG is ˆ 0.11EAα = .

To better reflect the personalized effects of BMI on the other 
phenotypes, we next consider genotypes which influence only 
the variables of interest. There are 11 genotype-derived principle 
components which influence TRG, denoted by vector G in the equation 
below. By entering G into the model, we are able to account for more 
of the variation of TRG and increase the coefficient of determination 
of the model: 

T
EA EA EA EA EA EA EA EA EA EATRG BMI HDL TC G uα λ θ β= ⋅ + ⋅ + ⋅ + + ,       (3)

where EAG  and EAβ  are 11 1×  column matrixes. Since G comprises 
only variables influential on TRG and is independent of BMI, the 
coefficient of BMI does not change by entering G into the model. By 
taking into account genotype, equation 3 moves one step closer to 
estimate TRG for a new individual at the genotype level. 

Consider the following scenario and question related to thi  
individual with a TRG level equal to 54 and a BMI equal to 25.75. What 
would be the value of iTRG  if the value of iBMI  was lowered by 5 
while the value of other mediators were held the same? For individual 
causal effect by SEM see [6]. In this example, assume i is a European-
American. Therefore, the structural equation is

0.11 0.40 0.29 0.23i i i iTRG BMI HDL TC= ⋅ − ⋅ + ⋅ + ,              (4)

where the data have been rescaled to standardized units. To answer the 
question, we keep the observed values of HDL and TC unchanged and 
set the value of BMI to calculate )5( −ii BMITRG . The causal effect of 
this change on TRG level of individual i is

Causal effect = ( 5) 43.78 54 10.22i iTRG BMI TRG− − = − = −

In other words, when individual i loses weight to lower iBMI  by 5, 
the triglyceride level is predicted to decrease by 10.22. 

Conclusion
There are two barriers slowing the integration of genomic 

information for translational studies. The first is the small effect sizes of 
most genetic loci. The second is the associative nature of most genetic 
studies, with little information about the causative mutations. To place 
decision medicine in a causal framework, the causal effect must be 
defined precisely. Pearl defines the causal effect over the population 
and renders a framework to identify population causal effect, which 
is often operationalized graphically in a practical setting [4]. Rubin 
on the other hand, defines the causal effect for each individual, and 
applies the concept of the “potential outcome” [7]. Because of the 
fundamental problem in discovering and measuring an individual 
causal effect, we typically compare similar (i.e. not the same) treated 
and untreated individuals. The degree of similarity must be defined and 
careful consideration of covariates and potential confounders must be 
considered.

Personalized medicine is a theoretical ideal that has given way to 
decision medicine for using genomic or other biomarker information 
to guide treatment decisions. In a typical epidemiologic or clinical 
trials scenario, an interaction analysis is done (and replicated) and 
then subgroups or subpopulations are created based on the interaction 
results. In the context of graphical causal inference used here, the 
topologic structural relationships among the variables may be different 
between groups. For example, in the field of pharmacogenetics, 
subgroups of patients are defined by genotype or other genomic 
information (e.g. gene expression), and the causal effect of drug 
treatment is different between subgroups but assumed to be the same 
among individuals within a subgroup. As the rate of gene discovery 
and a role of genomic information in disease association increases, the 
frequency of causal analyses in a translational setting will also increase. 
The purpose of this perspective was to provide brief tutorial of causal 
inference and to discuss the application of specific kinds of causal 
inference in decision medicine.
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