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Abstract
It has been recently established that the adult heart harbors a reservoir of myocardial stem/progenitor cells. 

The regenerative potential of the heart is, however, insufficient to fully restore the functional myocardium after 
damage, motivating the use of cell- and growth factor-based replacement strategies. In this review, we summarize 
the progress that has been made in this field and discuss its actual contribution to the stimulation of endogenous 
mechanisms of myocardial repair/regeneration. Particular emphasis has been paid to paracrine secretion occurring 
in host tissues as the major mechanism involved in the beneficial outcomes of cell transplantation into the injured 
myocardium. The advantages of using cell therapy over single and combined growth factor administration have been 
also extensively discussed.
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Introduction
Ischemic heart disease represents the dark aspect of the medal 

of the improvement of life quality in developed countries, where it 
can be regarded as a major health issue. Massive death of ventricular 
cardiomyocytes following acute myocardial infarction (AMI), 
progressive cardiomyocyte loss due to coronary ischemia and 
increasing overload on the residual viable myocardium can eventually 
result in myocardial dysfunction and heart failure [1,2]. The current 
pharmacological therapies, which are directed to lower blood pressure 
and cardiac afterload, sustain heart contractility and improve the 
metabolic derangements predisposing to atherosclerosis, undoubtedly 
have a major role in the primary and secondary prevention of ischemic 
heart disease. However, once the vicious cycle to heart failure has 
started, their overall efficacy is limited and the prognosis is poor. At 
present, the only available treatment for end-stage heart failure is heart 
transplantation, which is obviously limited by donor organ shortage 
and rejection issues [3]. This is mostly due to the lack of effective 
regenerative capacity in the adult mammalian heart. Indeed, myocardial 
regeneration varies greatly in phylogenetically different vertebrates, 
being inversely related to their complexity. In particular, the heart of 
zebrafish can easily regenerate after non lethal injury [4,5], as can the 
newt heart [6,7]. On the contrary, the heart of mammals reacts to injury 
by scarring while regeneration plays a negligible role [7,8]. A major 
reason for such different behaviors consists in the fact that cardiac 
muscle cells in lower vertebrates retain the ability to de-differentiate, 
proliferate and re-differentiate under appropriate stimuli [6], whereas 
this reprogramming capacity is no more exploited by mammal adult 
cardiomyocytes, so that myocardial regeneration - if any exists - only 
depends on the very limited pool of cardiac stem/progenitor cells 
(CSCs) which are distributed throughout the myocardium and at the 
points of coronary artery branching, in specific cardiogenic niches  [9-
17]. This has dramatically changed the traditional view of the heart 
as a terminally differentiated post- mitotic organ, suggesting that it is 
in continuous turnover and has intrinsic regenerative potentials [18-
23]. Although such idea is valid in principle and has been partially 
confirmed in experimental models, clinical evidence indicates that a 
functionally relevant myocardial regeneration by CSCs, especially after 
massive tissue loss, cannot be achieved [22,24,25].

Recent attention has also been pointed at the cardiac stroma, which 
can behave differently in lower vertebrates and mammals, favoring 
myocardial regeneration or scarring, respectively. During organ 
development, form is imprinted in the stromal compartment, which 
can be considered not only as a mere support for parenchymal cells, 
but also as a key regulator of cell proliferation, survival, differentiation, 
and morphogenetic movements [26]. Of note, peculiar stromal cells 
(telocytes) have been identified in the cardiogenic niches of adult human 
hearts and in the myocardium of peri-natal developing mouse hearts 
[27,28]. These cells are characterized by numerous, slender cytoplasmic 
processes (filopodes) forming a sort of scaffold which appears to direct 
the migration of myocardial precursors during heart morphogenesis. 
Conversely, in the adult myocardium, stromal cells have conceivably 
lost their former ‘scaffolding’ capacity, while they are prompted to 
differentiate into ‘scarring’ myofibroblasts by pro-inflammatory 
growth factors and cytokines. On the above grounds, it is clear that an 
enhanced understanding of the molecular signals and mechanisms that 
control heart regeneration in appropriate animal models may help to 
devise suitable methods to promote therapeutic heart regeneration in 
humans. In particular, it will be important to define how and at which 
extent the interaction between myocardial precursor cells and cardiac 
stromal cells plays a role in heart morphogenesis and regeneration 
and how this interaction can be modulated to operate a shift from the 
fibrogenic to the regenerative pattern in the healing heart.

Given that the intrinsic regenerative potential of the adult heart 
is low and clinically negligible; two lines of thought have directed the 
research in cardiac regenerative medicine. The first and most obvious 
line consists in the local transplantation of stem cells. Different cell types 
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- mainly bone marrow-derived stromal cells (MSCs) and CSCs have 
been grafted by different techniques with the aim to repair the damaged 
heart. More recently, induced pluripotent stem cells (iPSCs) generated 
from somatic cells via epigenetic and transcriptional reprogramming 
have been used for cardiac regenerative purpose [29,30]. These 
cells largely resemble human embryonic stem cells in terms of their 
pluripotency, surface markers, morphology, proliferation and in vivo 
teratoma formation. Importantly, iPSCs can be differentiated into 
cardiomyocytes, although their functionality and the underlying 
mechanisms require further investigations and scrutiny [29-31]. 

Cell based therapeutic approach have brought objective 
improvements of myocardial contractile performance, scarring 
and adverse heart remodeling together with the stimulation of the 
endogenous repair mechanisms [14,29-35]. The second line is based 
on a different approach, which aims at potentiating the intrinsically 
poor proliferative/differentiative potential of resident CSCs by the 
administration of suitable growth factors and cardiotropic hormones. 
This review aims at summarizing and discussing key clues and 
evidences on these exciting issues.

Cardiac Stem Cells and Progenitors in the Adult 
Mammalian Heart 

As observed above, adult mammalian myocardium, including 
that in humans, contains a small pool of cells with the phenotype and 
behavior of CSCs [9,10,12,14-17,19,20,22,23]. 

These cells are mainly involved in maintaining cardiac tissue 
homeostasis throughout life, but they can also contribute to restore 
the cardiomyocytes and in some cases, the microvessels, lost due 
various pathological insults [16,35]. These cells possess one or more 
criteria of stem cells (self- renewal, pluripotency, clonogenicity) and 
have different origin: intra-cardiac origin (stem cells residing within 
the myocardium and epicardial derived stem cells), and extra-cardiac 
circulatory sources, such as the bone marrow.

The identification of these cells has been carried out by a number of 
independent groups on the basis of the expression of specific markers 
(membrane epitopes and transcriptional factors) in different species. 
However, whether these markers identify distinct cell population or 
different developmental and/or physiological phases of the same CSC, 
is controversial and remains to be fully elucidated [12,15, 35-37].

A variety of CSC populations have been identified so far in the 
post-natal and adult heart and are distributed throughout the heart: 
c-Kit+/Lin- cardiac stem cells; Sca-1+ cardiac progenitors; Isl1+ cardiac 
progenitors and epicardium derived cells (EPDCs) (Figure 1). Of 
interest, CSCs can also be obtained from tissue culture of cardiac 
explants on the basis of their ability when grown in suspension to form 
aggregates called “cardiospheres”, because of their similarity to the 
pseudoembryoid bodies formed by neural cells, neurospheres.

It has been demonstrated that cardiospheres are composed of 
heterogeneous cell populations consisting of proliferating c-Kit+, Sca-
1+, and Flk-1+ cells in their core and differentiating cells expressing 
cardiac and endothelial markers on the periphery [16,35,38,39].

c-Kit+/Lin- CSCs

These cells have been characterized by the expression of stem 
cell factor (SFA; also called c-Kit ligand) receptor, c-Kit (CD117) 
and by the absence of any markers of the hematopoietic lineages 
(Lin). The c-kit receptor is a transmembrane protein with tyrosine 

kinase activity belonging to type III receptor tyrosine kinase family. 
Binding of c-Kit with SFA through autocrine or paracrine actions, 
leads to oligomerization and auto-phosphorylation of the receptor and 
activation of multiple downstream signaling pathways, including the 
phosphatidylinositide 3-kinase (PI3K)/Akt and p38 MAPK signaling 
involved  in regulating of cell survival, proliferation, migration and 
differentiation [40,41]. c-Kit+/Lin- CSCs are present in the early 
post-natal and adult myocardium of mammals (rodents, pigs, dogs, 
humans) with a frequency of approximately 1 cell per 10,000 of the 
total myocytes and higher proportion in the atria and heart apex 
[9,19,42,43]. They cells are multipotent, being able to express the 
cardiac specific transcription factors including Nkx2.5, Gata4, myocyte 
enhancer factor 2c (Mef2c) [44,45]. These cells can differentiate into 
mature cardiomyocytes as well as into smooth muscle and endothelial 
cells both in vitro and in vivo. Their multipotency was further supported 
by their ability to form cardiospheres [16].

Sca-1+ CSCs

These cells have been characterized by the expression of the stem 
cell antigen (Sca)-1 in the murine adult heart. The exact counterpart 
of these cells in the human heart is currently unknown [35]. Sca-1 (or 
lymphocyte activation protein-6A, Ly6A) is a glycosyl phostidylinositol 
(GPI)-anchored cell surface protein of the Ly6 gene family, originally 
described as one of the cell surface markers of hematopoietic stem cells. 
Sca-1 is localized to lipid rafts where it regulates signaling complexes 
associated with maintenance and self-renewing of the stem cell 
compartment [46].

Freshly isolated, Sca-1+ cells express the early cardiac specific 
transcription factor Gata4 and Mef2c but not Nkx2.5. They can 
differentiate into cardiomyocytes after treatment with 5-azacytidine 
and can form spontaneously beating clusters when exposed to 
oxytocin in culture [18,47]. These cells may give rise to different cell 
subpopulations: i) Sca-1+/CD31- cells with a cardiomyocyte and 
endothelial cell differentiation potential [48,49]; ii) Sca-1+/ tyrosine-
kinase platelet-derived growth factor receptor (PDGFR)α+ cells with a 
pro-epicardial origin which are located in the perivascular adventitia of 
the adult heart and are able to generate smooth muscle and endothelial 
cells [50,51]; iii) a small side population (SP) (owing this name to 
the distinct localization of these cells on flow cytometry analysis as 
compared to the main population) characterized by an  high expression 
of ATP binding cassette (Abc) transporter family members including 
the Abc sub-family G member 2 (Abcg2, also known as breast cancer 
resistance protein 1, Bcrp1) and the multidrug resistance protein- 
1(MDR-1) responsible for the unique ability of these cells to efflux 
DNA binding dyes (that has allowed their identification). 

The SP cells are characterized by the low expression of c-Kit, CD34 
and CD45 and the lack of CD31, thus excluding their endothelial 
origin within the heart, and can contribute to diverse cardiac lineages 
[21,49,52,53].

Isl-1+ CSCs

A population of undifferentiated cells expressing the LIM-
homeodomain transcription factor islet- (Isl)-1, the marker for cardiac 
progenitors of the secondary heart field in the developing heart, has 
been identified in the newborn and, more recently, also adult heart of 
rodents and humans, most commonly in the outflow tract, the atria and 
the right ventricle. Isl-1+ CSCs represent specific cardiac progenitors 
conceivably the remnants of primitive cardiomyoblasts. This marker 
is involved in CSC proliferation and its expression is downregulated 
as soon as the precursor cells adopt a differentiated cardiac (Nkx2.5, 

http://en.wikipedia.org/w/index.php?title=Secondary_heart_field&action=edit&redlink=1
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Gata4, Mef2c) and vascular phenotype (vascular endothelial growth 
factor receptor 2, VEGFR2, or the mouse and human counterparts, 
fetal liver kinase-1, Flk-1 and KDR, respectively) [54-58]. Moreover, 
Isl-1+ CSCs do not express c-Kit or Sca-1 and are CD31 negative 
[54]. Moreover lineage tracing experiments have shown that Isl-1+ 
progenitors can contribute also to generate the cardiac conduction 
system and smooth muscle [55-59].

Epicardium derived cells (EPDCs) 

An increasing number of recent findings indicates that the post-
natal and adult mammalian epicardium may represent a source of 
cardiac progenitors [60-63]. These cardiac progenitor cells represent 
a subset of epicardial cells which undergoes an epithelial-to-
mesenchymal transition (EMT) generating a population of epicardium 
derived cells (EPDCs) which  invade the myocardium to differentiate 
into various cell types, including coronary smooth muscle and 
endothelial cells, perivascular and cardiac interstitial fibroblasts [63-
66]. Lineage tracing experiments have demonstrated a contribution of 

these cells to cardiomyocytes [67-69]. EPDCs are c-Kit negative and 
Sca-1 positive [69].

Induction of Endogenous Cardiac Repair Mechanisms 
by Cell Therapy
Functional benefits of cell therapy on cardiac regeneration

Myocardial infarction and ischemic cardiomyopathy are typified 
by the irreversible loss of cardiomyocytes and vasculature, which 
are essential for maintaining cardiac integrity and function. For this 
reason, the goal of cardiovascular research has been in the last years, to 
find methods to repair the damaged myocardium in order to prevent 
or reverse the pathological cardiac remodeling [70]. In this scenario, 
stem cell-based therapies aimed at substituting the lost myocytes via 
trans-differentiation or differentiation of injected exogenous stem cells, 
have became an attractive and promising experimental treatment for 
heart disease and failure. Bone marrow-derived mesenchymal stromal 
cells (MSCs), and, more recently, the endogenous CSCs have emerged 

Figure 1: Cardiac stem cells and progenitors (CSCs) and their lineage specifications. Abbreviations: Abcg2: ATP binding cassette transporter sub-family G 
member 2; c-Kit: Stem Cell Factor; cTnT: Cardiac Troponin T; Cx43: Connexin 43; EDCPs: Epicardium Derived Cells; Hcn4: Hyperpolarization Activated Cyclic 
Nucleotide-gated Potassium Channel 4 Prominently Expressed in the Pace Maker Region of the Mammalian Heart; Isl-1: LIM-homeodomain Transcription Factor 
Islet-1; Lin: Markers of the Hematopoietic Lineages; Mef2c: Myocyte Enhancer Factor 2c; PDGFRα: Tyrosine-kinase Platelet-derived Growth Factor Receptor; -sma: 
-Smooth Muscle Actin; Sca-1: Stem Cell Antigen-1; SP: Side Population.  References: [119,120,125,129,130].
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as leading candidates for cell therapy [14,43,71-74]. Arguments in 
favor of MSCs include the easy accessibility from the bone marrow 
and also from the adipose tissue, the great expansion potential in 
vitro, the presumptive plasticity, the ability to migrate and home at 
site of injury and the immunosuppressive properties that may allow 
allogenic transplantation [75,76]. In turn, CSCs encompass different 
cell populations derived from the heart itself, as reported above, 
which obviously possess superior cardiomyogenic potential in vitro 
given their involvement in physiological cardiomyocyte turnover 
[16,35,43]. However, the actual use of these cells to repair the damaged 
myocardium is currently debated, owing to the low-yield, time 
consuming and expensive procedures of isolation and amplification 
in vitro [73]. Several of the previous studies have demonstrated the 
therapeutic benefits of cell-based therapy in numerous animal model, 
showing that MSC and CSC transplantation in the ischemic heart 
led to a marked improvement of the ventricular contractile function 
and ejection fraction, and to a significant amelioration of ventricular 
remodeling [14,35,43,71,73]. Clinical trials using autologous MSCs 
have also been initiated in humans for both acute myocardial infarction 
and ischemic cardiomyopathy with preliminary successful results 
[71,73,77]. However, a critical  issue of debate in cell-therapy for cardiac 
regeneration is related with the route of stem cell delivery, as not all 
methods are suited to provide enough cell engraftment in the damaged 
organ to be repaired. Basically, the most used delivery techniques include 
direct injection into the myocardium and intracoronary infusion [78]. 
Recently, local implantation of biocompatible scaffolds pre-colonized 
with stem cells has been proposed and used as a promising therapeutic 
option to improve cell settlement and survival [79,80].

Mechanisms underlying the functional benefits of cell therapy

At variance with the most logical expectations, recent reports have 
shown that the beneficial effects of cell therapy, whether MSC- or CSC- 
based, cannot be attributed to differentiation of the transplanted cells 
into functional cardiomyocytes. This is not surprising for MSCs, which 
although expressing Sca-1 like CSCs [81], fail to express the other 
specific cardiomyogenic markers once engrafted into the host tissue 
[82]. Instead, it represents an unexpected limitation for CSCs. Most of 
the engrafted cells, in fact, cannot survive within the host myocardium 
(the vast majority of the injected cells do not persist several weeks 
after delivery) and the frequency of true myocardial differentiation 
is very low compared with the magnitude of the functional repair 
[73,74,82-86]. The recognition of the existence of a pool of endogenous 
CSCs in the adult heart by a number of independent groups has 
shifted the attention of many researchers in this field to the ability 
of the transplanted cells to activate, through juxtacrine/paracrine 
mechanisms, the host’s intrinsic reparative processes. In particular, 
by using dual labeling with GFP and sex mismatch strategies, it has 
been demonstrated that the injection of allogenic porcine MSCs into 
the infarcted areas of pig hearts promotes cardiac regeneration by 
augmenting the formation of new cardiomyocytes from the endogenous 
c-Kit+ precursors [87]. Moreover, the intracoronary injection of 
autologous MSCs into pigs with hibernating myocardium, have been 
reported to stimulate the proliferation of the resident c-Kit+ CSCs and 
the mobilization of endogenous precursors from the extra-cardiac 
sources, such as bone marrow [88]. We have recently demonstrated 
that mouse bone marrow-derived MSCs co-cultured with mouse 
neonatal cardiomyocytes are capable of stimulating cardiomyocytes 
proliferation, through the activation of the Notch-1/Jagged1 pathway 
[89]. Recent findings suggest that even when autologous or syngenic 
CSCs are used, direct differentiation is not the primary mechanisms 
by which these cells promote cardiac repair/regeneration responsible 

for the functional improvements [14]. This assumption is based on the 
data showing the intracoronary infusion of GFP-labelled adult CSCs in 
a model of chronic myocardial infarction stimulate endogenous CSC 
proliferation, a phenomenon which persists even after the transplanted 
cells had disappeared [90]. In addition, direct differentiation of 
cardiospheres derived from adult hearts have been demonstrated to 
account for a 30% up to 50% of the regenerative response observed after 
the injection of these cells in the infarct border zones of immuodeficient 
mice [91]. Based on these findings, studies from our group and others 
have tried to identify the paracrine factors that could mediate cardiac 
repair/regeneration [71,73,89,92-94]. It has been found that MSCs 
produce and secrete a broad repertoire of trophic factors and cytokines, 
including fibroblast growth factor (FGF), VEGF, hepatocyte growth 
factor (HGF), Insulin growth factor (IGF-1), stem cell-derived factor 
(SDF)-1, interleukin (IL)-6, which have been reported to drive the 
regeneration of injured hearts, being capable of recreating a suitable 
microenvironment for cardiac repair, protecting the ischemic myocytes 
from apoptosis [95], inhibiting the inflammatory response, stimulating 
neo-angiogenesis and extracellular matrix (ECM) remodeling [71] 
and potentiating the endogenous self repair mechanisms (Figure 2) 
[89,94,96,97]. Interestingly, the release of these factors is enhanced 
in response to stress or inflammation [98-100]. Furthermore, recent 
data indicate that MSCs and CSCs can release microparticles and 
exosomes containing paracrine signals and micro-RNAs, which can 
influence the regenerative process through mechanisms not completely 
understood [77,101]. The paracrine action of the transplanted cells on 
cardiac repair has been further supported by the data showing that the 
extra-cardiac injection of MSCs into the skeletal muscle was capable of 
significantly improving the ventricular functions and promote cardiac 
regeneration in the hamster, despite the fact that the injected cells were 
trapped into the remote musculature [102]. It is important to point out 
that the simple administration of MSC-conditioned medium may not 
have the same impact as the injection of the cells. In fact, in a swine 
model of myocardial infarction, the single application of concentrated 
conditioned media was unable to recruit c-Kit+ CSCs and reduce 
the infarct size, whereas injection of MSC was [87]. Moreover, the 
administration of human bone-marrow derived endothelial progenitor 
cells into mice after myocardial infarction, elicited a significant 
elevation of circulating factors involved in angiogenesis, anti-apoptosis 
effect, proliferation of host cardiomyocytes and chemoattraction. The 
majority of these factors was of murine origin and was found at high 
level in the injured myocardium after 14 days, a time point at which 
most of the injected cells had disappeared [103]. These data indicate 
that sustained release of paracrine factors could be attributed to the 
interaction between the transplanted cells and the host cells and tissues, 
which explain the persistence of the paracrine response. 

Induction of Endogenous Cardiac Repair Mechanisms 
by Growth Factors and Cardiotropic Hormones 
Growth factors

The proper spatio-temporal delivery of cardiotropic growth factors 
and hormones may also represent a major option in the therapeutic 
strategies to induce myocardial regeneration after an ischemic event 
(Figure 2). This approach may have, at least conceptually, some 
advantages over those based on cell transplantation, consisting mainly 
in availability “off-the-shelf” and easy application. Among these factors, 
the positive effects on myocardial repair of IGF-1and HGF have been 
extensively demonstrated [104,105]. Indeed, the cytoprotective and 
proliferative effects of IGF-1, the major growth hormone effector, 
together with the pro-angiogenic and anti-fibrotic properties of 
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HGF, have been shown to constitute a powerful combination, which 
addresses various aspects of myocardial regeneration. In particular, the 
intracoronary administration of the two growth factors in pigs with acute 
myocardial infarction, have been shown to effectively reduce adverse 
pathological cardiac remodeling and improve the regenerative response 
of c-Kit+ CSCs [106]. Similar results have been obtained whit FGF and 
IGF-1 delivered in the rat ischemic myocardium by means of injectable 
hydrogels, designed to reduce their systemic spread and maximize their 
local therapeutic effect [107]. This technique has also been proven to be 
an optimal approach to increase therapeutic neo-angiogenesis in the 
damaged myocardium. Local delivery of VEGF, the major mediator 
of angiogenesis [108], and PDGF, which stimulates the recruitment 
of smooth muscle cells into newly formed vessels [109], endowed 
into alginate hydrogels after myocardial infarction induced better 
remodeling of the vasculature and improvement of cardiac function 
as compared to the untreated animals or those treated with simple or 
combined growth factor solutions [110]. Despite their effectiveness, 
the administration of growth factors has been shown to have some 

limitations. In a study conducted by Ellison and co-workers [106] it has 
been reported that the cardiomyocytes generated in response to growth 
factor administration in the infarcted pig myocardium, are immature 
and have limited force-generating capacity, allowing to conclude that 
the documented beneficial effects on ventricular performance are 
likely due to other mechanisms than cardiac regeneration, including 
decreased cardiomyocyte loss and improved ventricular remodeling. 
Moreover, the single transendocardial injection of concentrated 
conditioned media from MSCs in a swine model of acute myocardial 
infarction may not able to reduce infarct size and recruit endogenous 
c-Kit+ CSCs [87]. 

Relaxin

Among the cardiotropic hormones, which have been studied for 
heart regenerative purposes, relaxin (RLX) definitely deserves to be 
mentioned. RLX belongs to the relaxin peptide family of structurally-
related hormones, which in humans encompasses RLX H1, H2 and 
H3 as well as insulin-like peptides (INSL-) 3 to 6 [111]. Of these, 

Figure 2: Schematic representation of the relevant mechanisms underlying the functional benefits of MSC- and CSC- and growth factor/cardiotropic hormone- 
based therapy. Abbreviations: CSCs: Cardiac Stem/Progenitor Cells; ECM: Extracellular Matrix; FGF: Fibroblast Growth Factor; HGF: Hepatocyte Growth Factor; 
IGF-1: Insulin Growth Factor-1; IL-1: Interleukin 1; IL 6: Interleukin-6; IL-10: Interleukin-10; IL-1RA: Interleukin 1 Receptor Antagonist; LIF: Leukemia Inhibitory Factor; 
MMPs: Matrix Metalloproteinases; MSCs: Mesenchymal Stromal Cells; NO: Nitric Oxide; PDGF: Platelet Derived Growth Factor; PGE2: Prostaglandin E2; SDF-1: 
Stromal Derived Factor-1; TGF-β: Transforming Growth Factor-β; VEGF: Vascular Endothelial Growth Factor.
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RLX H2 is the main circulating bioactive hormone. Best known for 
its physiological roles during pregnancy, it is increasingly recognized 
as a cardiotropic hormone, being produced by the heart and acting 
on specific heart receptors [111-113]. Experimental findings from 
animal models and clinical trials suggest that RLX is effective in the 
protection and/or treatment of the failing heart. Our research group 
has demonstrated that this hormone can effectively blunt myocardial 
damage in experimentally induced acute myocardial infarction in 
various species of laboratory mammals [114-117], and can be a 
valid adjuvant for precursor cell grafting to repair the post-infarct 
myocardium in swine [118]. In these studies, RLX was able to improve 
left ventricular performance and contractility, induce profound 
modifications of the elastic and trophic properties of the ischemic 
scar, up-regulate MMPs expression and increase neo-angiogenesis 
in the ischemic area and the surrounding stunned myocardium. We 
have also shown that RLX, besides contributing to the recreation of 
a suitable microenvironment for cardiac repair, was able to stimulate 
the cardiomyogenic potential of cardiac progenitor cells [119,120].  
This notion is supported by a series of matching findings. We first 
showed that mouse neonatal cardiomyocytes in culture grew forming 
spontaneously beating clusters which were connected by bridge-
like structures represented by elongated cells, likely of stromal 
origin. Interestingly, these cells were functionally coupled with the 
cardiomyocytes of the clusters by Cx43-positive gap-junctions, which 
allowed the exchange of signals among the adjacent clusters. These 
features are suggestive of a complex communication system that could 
serve to coordinate cardiomyocytes development among different 
clusters and mediate their compaction to form a functional myocardium 
similarly to embryonic cardiomyogenesis [121]. The addition of RLX to 
this cell system increased the number of connecting cells and enhanced 
the growth and differentiation attitude of the myocardial precursors 
in the clusters.  Then, we found that RLX was able to stimulate mouse 
cardiomyocyte differentiation in vitro and support their maturation 
towards a functional phenotype, through its direct interaction with 
specific receptors expressed by the cardiomyocytes [120]. Along this 
line of evidence, the widely reported antifibrotic effect of RLX [122-
125] can play a substantial role, as it may facilitate the mobilization and 
expansion of CSCs through the reduction of collagen fiber density in 
the myocardial scar [118,126]. Cardiac extracellular matrix softening 
and improved post-ischemic remodeling can therefore represent an 
additional mechanism by which RLX may support the endogenous 
regenerative potential of the adult heart. 

Conclusions and Future Directions
Cell therapy is currently considered as a promising approach 

for repairing the damaged myocardium. Originally proposed as a 
way for replacing the dead cardiomyocytes with new cells capable of 
restoring the contractile function in the ischemic scar, the rationale of 
its therapeutic use has been shifted towards the paracrine secretion of 
cardiotropic factors by the transplanted cells on the host myocardial 
tissue, capable of stimulating the endogenous CSCs. This idea has lead 
to the development of preclinical studies in which myocardial repair/
regeneration has been achieved by the administration of concentrated 
conditioned medium from MSCs or CSCs. Despite an undoubted value 
as a proof-of-concept, these studies have some practical limitations, 
mainly consisting in a rapid systemic redistribution of the injected 
paracrine factors, their inability to induce the formation of contractile 
cells and the need for repeated local inoculations to reduce scar 
size and activate the heart’s endogenous reparative processes. On 
the other hand, it is likely that the better therapeutic efficacy of cell 
transplantation over growth factor administration may be related to 

ability of the injected cells to engraft into the diseased heart, where 
they locally deliver a complex mixture of paracrine factors. Another 
advantage of cell therapy may be related to the ability of the engrafted 
cells to also establish juxtacrine interactions with endogenous CSCs. 
This is conceivable based on the observations that stromal cells can 
act as supporting cells that, through direct cell-to-cell interactions, are 
capable of guiding the compaction of myocardial trabecolae during 
the embryonic heart development and the clustering of cardiomyocyte 
aggregates in vitro to form a functional myocardium.  However, the 
major limitation of cell therapy consists in the fact that the engrafted 
cells only transiently survive within the recipient myocardium. To 
overcome this hurdle, the cells to be transplanted could be used in 
combination with added growth factors, or genetically modified ex vivo 
prior to administration to enhance the expression of genes, which can 
improve their survival, engraftment potential and therapeutic efficacy 
after delivery. Basically, there are two pathways pointing at this aim, 
i.e. increasing local vascularization and blood supply to improve the 
recipient microenvironment, and enhancing the intrinsic survival 
capability of the grafted cells. Both goals can be achieved by genetic 
manipulation or supplementation of proangiogenic, anti-apoptotic 
and preconditioning agents [127,128]. Future studies are definitely 
required to check these working hypotheses and carefully evaluate its 
translational potential for regenerative medicine. However, research in 
this exciting field will likely provide major insight into the cellular and 
molecular mechanisms underlying cardiomyocyte regeneration.
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