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Introduction
Glucagon-like peptide 1 (GLP-1) is a gut-derived incretin hormone 

secreted in response to nutrients [1]. GLP-1 is used in the therapeutic 
management of diabetes because of its gluco-regulatory effects, 
including augmentation of glucose-stimulated insulin secretion, 
suppression of postprandial glucagon secretion, delayed gastric 
emptying, and hypothalamus-mediated satiety of appetite. GLP-1 
receptors are expressed not only in islet cells, kidney, lung, brain, 
and gastrointestinal tract, but also in the heart [2,3]. Several studies 
have analyzed the effect of GLP-1 on myocardial infarction (MI) and 
reperfusion injury [4]. While the cardioprotective effects of glucose-
insulin-potassium infusion in patients with MI are controversial, later 
investigations have focused on GLP-1. It has been shown that GLP-
1 can be cardioprotective in a wide spectrum of animal models of 
myocardial ischemia and reperfusion injury [5].

Degradation by dipeptidyl peptidase-IV (DPPIV) makes GLP-1’s 
half-life very short. Therefore, the use of a DPPIV inhibitor is necessary 
to prolong its half-life [6]. Longer half-life can also be achieved 
by putting GLP-1 on a chitosan scaffold, which is a new hypothesis 
proposed in this article. Bioavailability of the chitosan scaffold has been 
evaluated in both animals and human models for tissue engineering 
[7,8].

In this study, we evaluated the effects of GLP-1 on cardiac function 
and microscopic tissue changes after MI in a canine model. A chitosan 
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Abstract
Aims: Glucagon-like peptide 1 (GLP-1) is one of the new choices in the management of diabetes mellitus 

because of its glucose regulatory effects. GLP-1 receptors are expressed not only in islet cells, kidney, lung, brain, 
and gastrointestinal tract, but also in the heart. The cardiac effects of GLP-1 play a major role in the choice to use this 
treatment, considering the expression of GLP-1 receptors in heart. Degradation by dipeptidyl peptidase-IV (DPPIV) 
makes GLP-1’s half-life very short. In this study, the cardiac effects of GLP-1 with chitosan-based scaffold as well as 
the tissue changes after induction of myocardial infarction in canines were evaluated. 

Method: Twelve canines of a similar breed and weight were included in this study. They were categorized into 
three groups: A case group treated with GLP-1 based on a chitosan scaffold, a group given chitosan with normal 
saline, and a control group given normal saline alone. Every four weeks after induction of infarction, the troponin-I 
serum level, regional wall motion abnormality (RWMA), angiogenesis, and microscopic and macroscopic tissue 
changes were analyzed.

Results: Angiogenesis and infarcted area thickness (which is inversely related to the subsequent risk of 
pseudoaneurysm development) were significantly higher in the case group compared with the other two groups (p 
value<0.05). Our case group recorded lower scores of RWMA compared with other canines (p value=0.02).

Conclusion: This investigation revealed that the new compound (GLP-1+chitosan) not only lengthens the 
releasing duration of GLP-1 but also has cardioprotective effects after myocardial infarction.

scaffold was used to increase the half-life of GLP-1 and the duration of 
its release.

Materials and Methods
Twelve mixed-breed dogs (11 males and one female) with weights 

of 20-25 kilograms and no history of cardiac problems were used for 
this study. They were sorted into three groups: A case group treated 
with GLP-1 on a chitosan scaffold (Figure 1), a group treated with 
chitosan and normal saline, and a control group treated with normal 
saline alone.

Baseline electrocardiograms were obtained in six leads (using four 
limbs). Induction of general anesthesia was done, by ketamine (11 mg/
kg, IM) and xylazine (1.1 mg/kg IM) and maintained by inhalation 
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of halothan. Orotracheal intubation was performed and the animals 
underwent left craniolateral thoracotomy. The left anterior descending 
(LAD) coronary artery was ligated distal to first septal and diagonal 
branch origins (Figure 2). Dogs in each of the three groups received 
their specific treatment after the infarction was induced. We injected 
normal saline (in control group), chitosan, and chitosan plus GLP-
1, directly into infarcted area of left myocardium (Figure 1).The 
thoracotomy incisions were closed using the Air and Water Tight 
procedure. Chitosan as a solution is combined with 1% Acetic acid and 
the pH increased to 6.5. After combination with GLP-1 and increasing 
its pH to 7.5, it will be ready as hydrogel for final use.

Every four weeks after the induction of infarction, troponin-I 
serum levels and regional wall motion abnormality (RWMA), which is 
demonstrated by echocardiography, were compared among the three 
groups. One dog from each group was also euthanized at four-week 
intervals. A Solution, consist of Sodium pentobarbital , 390 mg plus 
sodium phenytoin, 50 mg/ml by the dose of 0.22 ml/kg as IV injection 
(~ 86 mg/kg pentobarbital) used for all euthanasia. Before this step, 
ketamine (30 mg/kg, IM) used to induce anaesthesia then heart was 
harvested and the thicknesses of normal and infarcted cardiac tissue 
were grossly measured. Sizes of the infarcted areas were also compared 
quantitatively using JImage software version 2 (Figure 3). After 
tissues were fixed in 10% buffered formalin, pathologic studies of the 
angiogenesis after infarction were evaluated by hematoxylin and eosin 
(H and E) and anti-CD34 staining (Figure 4-6). One of the canines in 
the case group died on week 14 and was excluded from this study. The 
pathologist was blinded to the control and experimental groups.

All procedures were performed in accordance with the “Guide for 
the Care and Use of Laboratory Animals” arranged by the Institute of 
Laboratory Animal Resources and with prior approval by the Animal 
Experimentation Committee of the Faculty of Medicine, Tehran 
University of Medical Sciences (TUMS).

All data analyses were blinded. Data were presented with mean and 
standard deviation (SD), and cardiac variables were compared among 
treatment groups using the Kruskal-Wallis test. Statistical analyses 
were performed via SPSS version 19 (SPSS Inc., Chicago, Illinois).

Results
There were three dogs in the GLP-1+chitosan case group, four in 

the chitosan group, and four in the control group. Three of this study’s 

Figure1: Injection of GLP-1 with chitosan based scaffold into the infarcted 
zone.

Figure2: Ligation of left anterior descending (LAD) artery for inducing 
myocardial infarction (MI).

Figure 3: Preparation of infarcted cardiac tissue for Image J software.

Figure 4: Cardiac tissue fixed in 10% buffered formalin.
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six variables were not significantly different among the groups. These 
included troponin-I serum level, size of the infarcted region calculated 
by JImage software, and thickness of the normal area calculated by 
calipers (p value=0.17, 0.70 and 0.14 respectively).

We used a scoring system for comparing RWMA (from 0 to 6). 
As shown in Table 1, the scores of case group canines were 1, 1 and 2. 
The mean ± SD RWMA score of the chitosan and control groups were 
3.00 ± 0.00 and 2.75 ± 0.50, respectively. As shown in Table 2, post-MI 
RWMA scores were significantly lower in the GLP-1+chitosan group 
(p value=0.02).

A four-scale scoring system was used to make angiogenesis 
a quantitative variable. Our case group scored 3 on average in both 
HandE and CD34 staining for angiogenesis, which is significantly 
higher than the scores of the chitosan and control groups (p value= 
0.02 for both H and E and CD34) (Table 2).

The thickness of infarcted parts, calculated by calliper, was 
significantly higher in canines of the case group compared with the 
others (p value=0.023).

 
 

 
 

Troponin I (ng/
ml)

CD34
 

RWMA
 

Image J
 

Normal thickness 
(cm) 

Infarction thickness 
(cm)

Angiogenesis (H and E)

1.4
Control week 4 300 1 3 0.342 0.6 1
 week 8 350 2 3 0.071 1.2 0.7 2
 week 12 200 1 2 0.148 1.4 0.6 1
 week 16 250 1 3 0.116 1 0.5 1
Chitosan week 4 250 1 3 0.354 1.1 0.6 1
 week 8 200 1 3 0.059 1.5 0.8 1
 week 12 300 2 3 0.146 1.5 1 2
 week 16 370 2 3 0.084 1.3 0.8 2
GLP-1+Chitosan week 4 400 3 1 0.073 1.3 1.1 3
 week 8 300 3 1 0.15 1.4 1.1 3
 week 12 700 3 2 0.587 1.4 1 3
 week 16 _ _ _ _ _ _ _

Table 1: Change in cardiac variables in four weeks periods.

 n Mean SD p value
Troponin I
 
 
 

control 4 275.00 ± 64.55

        0.17

chitosan 4 280.00 ± 72.57
GLP-1+chitosan 3 466.67 ± 208.16
Total 11 329.09 ± 138.95

CD34
 
 
 

control 4 1.25 ± 5.00

          0.02

chitosan 4 1.50 ± 0.57
GLP-1+chitosan 3 3.00 ± 0.00
Total 11 1.82 ± 874

RWMA control 4 2.75 ± 0.50

0.02

 chitosan 4 3.00 ± 0.00
 GLP-1+chitosan 3 1.33 ± 0.57
 Total 11 2.45 ± 0.82

Image J
 
 
 

control 4 0.16 ± 0.11

0.7

chitosan 4 0.16 ± 0.13
GLP-1+chitosan 3 0.27 ± 0.27
Total 11 0.19 ± 0.16

Normal thickness (cm)
 
 
 

control 4 1.00 ± 0.00

0.14

chitosan 4 1.50 ± 0.57
GLP-1+chitosan 3 1.00 ± 0.00
total 11 1.18 ± 0.40

Infarction thickness (cm)
 
 
 

control 4 0.60 ± 0.08

0.02

chitosan 4 0.80 ± 0.16
GLP-1+chitosan 3 1.06 ± 0.05
Total 11 0.80 ± 0.21

Angiogenesis (H and E)
 
 
 

control 4 1.25 ± 0.5

0.02

chitosan 4 1.50 ± 0.57
GLP-1+chitosan 3 3.00 ± 0.00
Total 11 1.82 ± 0.87

Table 2: Comparing cardiac variables by different treatments.
GLP-1: Glucagon-Like Peptide 1; H and E: Hematoxylin and Eosin; RWMA: Regional Wall Motion Abnormality
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Discussion
Type 2 diabetes mellitus increases the risk of cardiovascular disease 

not only because of hyperglycemia, but also because of comorbidities 
like dyslipidemia, hypertension, and obesity [9,10]. Recently, incretin-
based antidiabetes treatment has been recommended, as it reduces 
glycemia without the risk of hypoglycemia or weight gain seen with 
most antidiabetes agents [11,12]. Vasodilation and anti-inflammatory 
effects of native GLP-1 in the vascular endothelium and myocardium 
make GLP-1 one of the preferred treatments for type 2 diabetes 
mellitus [13-15]. DPPIV makes the half-life of native GLP-1 extremely 
short, because it inactivates GLP-1 even before it leaves the gut [16]. 
In addition to using GLP-1 analogues like exenatide, which are not 
subject to native GLP-1 rapid inactivation, scaffolds like chitosan can 
be used in conjunction with GLP-1. A chitosan scaffold prolongs the 
duration of GLP-1 release. In this animal-based study, we compared 
the cardiac effects after MI of GLP-1 plus chitosan with chitosan only 
and placebo treatment.

The cardioprotective effect of GLP-1 has been successfully 
demonstrated in recent studies. Sokos et al. demonstrated that adding 
a 5-week infusion of GLP-1 (2.5 pmol/kg/min) to standard therapy in 
patients with New York Heart Association class III/IV heart failure 
significantly improved left ventricular ejection fraction, maximum 
myocardial ventilation oxygen consumption, 6 minute walk distance, 
and Minnesota Living with Heart Failure Quality of Life score [17]. 
Nikolaidis and his colleagues revealed that 72 hr infusion of GLP-1 
in patients with left ventricular dysfunction leads to improvement in 
global and regional wall motion scores [18]. The amelioration of left 
ventricular function by GLP-1 infusion after percutaneous coronary 
intervention or stress-induced ischemia in patients with coronary 
artery disease has also been investigated [19,20]. In this study, we used a 
chitosan scaffold for GLP-1 instead of infusion, and the post-MI canine 
hearts treated with this new method had significant lower RWMA than 
those of chitosan-only and placebo-treated groups (Table 2).

Neovascularization through angiogenesis can re-establish the 
perfusion of ischemic heart regions after MI and result in improved 
prognosis. It can reduce the ischemic injury of myocardium specifically 
in unsuccessful revascularization [21-23]. An in-vitro study has shown 
that GLP-1 can promote angiogenesis through the PI3K/Akt, PKA, and 
Src pathways. This is a dose-dependent response, with the maximal 
effect detected at 500 nmol/L [24]. In this investigation, angiogenesis 
was examined using H and E and CD34 staining. As demonstrated in 
table 2, after MI, angiogenesis was significantly increased in the case 
group (treated with GLP-1+chitosan) compared with the other two 
groups, in both staining methods.

Although cardiac pseudoaneurysms are rare, it is very important to 
consider the risk of rupture. Surgical or percutaneous closure is used in 
most cases to reduce the risk of pseudoaneurysm expansion or rupture. 
Higher wall thickness reduces the risk of pseudoaneurysm by reducing 
wall stress, according to Laplace’s law [wall stress = (pressure/2) × 
(radius/wall thickness)] [25]. As demonstrated in table 2, the thickness 
of the infarcted areas was significantly higher in our case group than in 
the other groups. This means that treatment with GLP-1 and chitosan 
after MI can decrease the risk of cardiac pseudoaneurysm. 

As our limitation, common comorbidities like hypertension, 
dyslipidemia, and diabetes might influence the cardioprotective 
influences of GLP-1; this is not evaluated in this study.

Conclusion 
This investigation revealed that there is a new way for consuming 

native GLP-1 other than using GLP-1 analogues like exenatide, GLP-1 
infusion, or DPPIV inhibitors. This new method is putting GLP-1 on 
a chitosan scaffold to repel rapid intact GLP-1 inactivation. This novel 
compound (GLP-1+chitosan) has cardioprotective effects after MI. It 
significantly lowers RWMA and the risk of cardiac pseudoaneurysm 
and increases angiogenesis in post-MI canines.
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Figure 5: Hematoxylin and eosin (H and E) staining of cardiac tissue.

Figure 6: Chitosan penetration into myocardium.
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