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Abstract
Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer 

Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of 
the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for 
formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor 
cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported 
in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the 
origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic 
and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor 
preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. 
Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more 
resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral 
microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for 
cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.
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Introduction
Multicellular organisms require a poised homeostatic equilibrium 

between cellular proliferation and differentiation for development 
and growth of the individual. Disruption of this equilibrium causes 
the devastating consequences of malignancy. A recently proposed 
hierarchical model of tumorigenesis postulates that the uncontrolled 
expansion of many cancers is predominantly driven by a rare subset of 
cells within the tumor population known as Cancer Stem Cells (CSCs) 
[1,2]. Although similar to somatic stem cells, CSCs have an enhanced 
potential to self-renew, differentiate into non-stem cancer cells and 
promote intratumoral heterogeneity in order to sustain uncontrolled 
tumor growth. It has also been reported that CSCs have an innate 
ability to resist conventional multi-modality therapy and considered to 
be partly responsible for the high rate of disease recurrence and clinical 
relapse observed in many cancers [3,4]. Recent evidence suggests that 
therapeutic stress may also promote cellular plasticity, which mediates 
the conversion of normal cancer cells to a CSC-like state [5,6]. These 
newly converted stem-like cells possess enhanced tumor formation 
abilities and are more infiltrative than non-stem cancer cells in the 
animal model, adding to the attenuated therapeutic efficacy seen 
in clinical settings. The data argues against the unidirectional flow 
of cellular hierarchy, rather suggesting a bidirectional flow whose 
activation may be influenced by various factors within the tumor-
specific microenvironment or "niche" [7,8]. The dynamic equilibrium 
between CSCs and their lineage-committed non-stem counterparts is 
partly regulated by the rate of differentiation and the balance between 
asymmetric and symmetric cell division in the CSC compartment. 
Because the heterogeneous tumor population contains a small number 
of CSCs amid the larger number of non-stem differentiated tumor cells, 
it is essential to understand the regulation of such equilibrium. Any shift 
in the equilibrium state will critically influence the clinical outcomes 
and lead to a more CSC-rich tumor, which will be more aggressive 
and produce poorer prognoses in patients [9,10]. By elucidating the 
various mechanisms for the maintenance of this equilibrium state 
and the relationship between Cancer Stem Cells and their niche, one 
can improve the current standard of care as well as develop targeted 
strategies that will enhance the therapeutic efficacies of anti-cancer 

therapies. In this recent review, we will summarize the recent finding 
of the mechanisms of the intratumoral cell fate equilibrium and 
the consequence of its regulation in disease progression, as well as 
discussing the potential development of therapeutic modalities that 
target CSCs. 

The CSC Hypothesis and its Role in Disease Progression 
and Tumorigenesis

Whereas normal tissues display an ordered developmental 
structure underlying cellular heterogeneity, allowing various cell types 
to maintain the generation of stable differentiated progeny cells through 
epigenetic regulation, malignant tissues possess disorganized cellular 
programming that gives rise to heterogeneous cancer cell populations 
[11]. In attempt to explain the development of heterogeneous tumors, 
two competing theories have been proposed: the clonal evolution theory 
and the cancer stem cell theory. In 1976, Peter Nowell first proposed the 
clonal evolution model and introduced the idea that cancer was driven 
by the accumulation of somatic cell mutations [12,13]. This theory 
postulates that a single clone survives an oncogenic mutation that leads 
to a more aggressive phenotype, and upon proliferation, its daughter 
cells acquire additional somatic mutations that further promote 
survival fitness and aggressive behavior. The aggressive daughter cells 
continue to divide and eventually outnumber the non-aggressive 
populations because of their high fitness. In time, the clones acquire 
additional mutations, creating genetically diverse clonal populations. 
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These clones evolve through what resembles Darwinian selection of 
survival of the fittest, in which only those clonal populations that can 
survive the accumulation of many mutations will comprise the final 
heterogeneous tumor [14]. According to the clonal evolution model, 
each cell within the tumor is considered to possess an equal potential 
to promote tumorigenesis, leading to the devastating outcomes of 
human malignancy. This concept is the foundation of a majority of the 
currently available cancer therapies, which are designed to target and 
eliminate all the cancer cells within a tumor with higher proliferative 
capacity to achieve cures. However, in many human malignancies, 
especially solid cancers, ‘cures' remain relatively rare commodities and 
cancer-related death rates remain very high [15].

The more recently proposed hierarchical model of tumorigenesis 
claims that only a rare subset of cells, known as Cancer Stem Cells 
(CSCs), is responsible for the uninhibited tumorigenic capacity of 
malignant cancers. Although similar to normal stem cells, CSCs have 
an enhanced potential to self-renew, differentiate into non-stem cancer 
cells, and initiate new tumor formation by giving rise to heterogeneous 
cell populations [4,16,17]. In contrast to the clonal evolution model, 
multipotent characteristics of CSCs are considered to be responsible 
for intratumoral heterogeneity through their aberrant differentiation 
capacity [18]. The cells with the most tumorigenic potential exist at 
the top of a hierarchical organization that once closely resembled the 
ordered of developmental structure for normal tissues but has since 
become disordered [19]. These cells have also been shown to resist 
primary multi-modality therapies in some cancers, which contribute 
to the dismal prognoses in patients, with inevitable disease relapses 
[20,21]. According to the CSC model, the only way to prevent disease 
relapse and achieve durable therapeutic response is to eliminate the 
CSC population. While differentiated cancer cells do not have the 
ability to self-renew indefinitely and cannot produce cells of different 
origins, the enriched properties of CSCs allow the formation of diverse, 
heterogeneous tumor populations [22,23].

Melanoma is widely considered to strongly support the CSC model 
[24]. Initially, melanomas form flat lesions that can be removed by 
gross resection [25]. However, melanomas quickly progress to contain 
heterogeneous subpopulations that express different genes [26]. This 
property makes metastatic melanomas extremely difficult to treat 
because of their ability to mimic vasculature, a property that suggests 
the presence of non-differentiated cells in the tumor population [27]. 
Furthermore, malignant melanomas that exhibit higher expression of 
stem cell markers correlate with poor prognoses [28] and resistance to 
the cytotoxic agent doxorubicin [29]. These therapies eradicate most 
of the tumor growth, but populations of resistant cells remains, which 
give rise to novel tumors that are chemoresistant and immunoevasive 
[30]. Because melanomas lack homogeneous clones with similar 
genomic profiles and instead exhibit a hierarchical structure of mature 
and progenitor cells, melanoma supports the CSC model. On the other 
hand, some malignant tumors in other tissues seemingly contradict the 
CSC theory. Retinoblastoma can occur after only two mutations [31], 
a property that supports the clonal evolution theory. Examination of 
the karyotypes of retinoblastoma cells showed that non-disjunction in 
chromosome 13 was to blame for this malignancy, further supporting 
the idea that sequential mutations in identical cells drive tumor 
development and progression [32]. As these cases exemplify, it is highly 
unlikely that one model of tumorigenesis is completely correct, but 
rather it is more likely that tumor development exhibits characteristics 
from both [33,34]. The two models can be used in conjunction to 

explain more effectively the basis of tumor heterogeneity, disease 
progression and recurrence. 

Human cancers frequently display substantial heterogeneity with 
many phenotypic features such as cellular morphology, gene expression 
(including cell surface markers, growth factors, and hormonal 
receptors), metabolism, and angiogenic, immunogenic, and metastatic 
potentials [35]. The CSC model proposes that while every cell in the 
cancer population is genetically equal, individual subsets within the 
tumor possess internal clonal heterogeneity [34]. This model puts the 
most tumorigenic cells at the top of its proposed hierarchy. These cells 
can go through the asymmetric cellular division, which results in one 
differentiated less-tumorigenic or non-tumorigenic cancer cells, as well 
as inducing self-renewal of CSC daughter cells. It is these small CSC 
subpopulations that are believed to drive the initiation and expansion 
of the entire tumor, while non-CSCs, which constitute the majority of 
the tumor, contribute much less to tumorigenesis and growth, instead 
influencing the overall traits of established tumors (Figure 1) [34]. 

One key factor that drives the regulation of tumor growth and 
heterogeneity is genetic instability, which results from an increased 
rate of cell proliferation in addition to mutations and epigenetic 
alterations [11]. If the cell cycle checkpoint fails to repair an error 
(i.e. additional or insufficient number of chromosomes or mutations) 
during replication, the cell will progress to the next step in the cycle, 
wreaking further havoc on genomic stability [36]. Both normal 
cells and cancer cells show spontaneous mutations and are usually 
targeted by DNA checkpoint and repair mechanisms to prevent the 
accumulation of aberrant cells. However, some mutations alter gene 
function in the DNA repair pathway and push cells to respond to the 
internal and external pressures from Darwinian selection [11]. The cells 
that thrive despite these genetic changes can evade DNA checkpoints 
and immunosurveillance to survive longer and eventually give rise to 
descendant cells hosting the same or added genomic abnormalities.

Cellular Plasticity
The proper development of a multicellular organism depends on the 

balanced equilibrium between differentiated cells committed to tissue 
lineages and cells with stem-like characteristics. The concept that CSCs 
and their more differentiated progeny exist in a dynamic equilibrium 
state has been recently proposed by many labs, including our own. 
These reports not only showed that CSCs can differentiate to possess a 
committed fate, but that non-stem-like cells can also acquire CSC-like 
state [6,9,19,37,38], which results in a dynamic relationship between 
the two populations. To maintain this intrinsic homeostatic state, a 
stable balance between the rates of CSC self-renewal, differentiation, 
and asymmetric division and the rates of interconversion between 
non-CSCs to CSCs must be maintained within the individual tumor 
[39]. One critical aspect of normal stem cell function and identity is 
asymmetric division, in which the cell creates descendants that retain 
the parental stemness characteristics as well as give rise to progeny 
cells that are committed to differentiation into multiple lineages [40]. 
The symmetrical division is also a fundamental feature of the tissue 
generation of normal adult stem cells in which two daughter cells 
preserve their stemness. These tightly controlled processes of cellular 
division are required to maintain dynamic balance and diversity among 
cell types and contribute to the global size of the tissue or organism 
(Figure 2). Any disruption of this process throws off the equilibrium 
ratio of number of stem cells to non-stem cells. The dedifferentiation 
of non-CSCs into CSCs has been attributed to cellular reprogramming 
during oncogenic transformations and initiates subsequent 
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this equilibrium process, next we will discuss various factors that can 
influence the intratumoral cell fate state.

The CSC Niche and Microenvironment in Disease 
Progression

Niches are pockets of distinct microenvironment with specific 
functional characteristics that form the habitat of certain cells with 
specific fates. Such microenvironmental pockets are regulated by 
a variety of factors and cell types, including immune cells, cancer-
associated fibroblasts, extracellular matrix components, hypoxia, 
and pH [8,43-45]. Cells found in the CSC niche are capable of 
maintaining or even acquiring stem-like characteristics to promote 
the fitness of each tumor [18,46,47]. A critical unanswered question 
is whether any cell that encounters this niche is capable of initiating 
the cellular reprogramming process to acquire a stem-like state or if 
only the cells with stem or progenitor cell state/lineage are capable 
of such reprogramming. In light of recent discoveries about cellular 
reprogramming both in the developmental as well as pathological 
context, it is conceivable that any cell in the presence of appropriate 

development of aggressive cancers [3,6,9,40,41]. These unprecedented 
rates of plasticity allow normal cancer cells to acquire stem-like states 
and in this way increase the intratumoral CSC frequency.

Normal developmental processes allow for the differentiation of 
progenitor cells, and because of cellular plasticity, these cells can adopt 
new and differentiated fates. Cellular plasticity is defined as the ability 
of adult tissue cells to undergo a dedifferentiation or differentiation 
process to adopt new phenotypic and functional identities [34,42,43]. 
During normal development, the change from stem cell to lineage-
committed cell is a gradual process with phases that cause the cell 
to lose developmental potential until it reaches its final committed, 
differentiated state. At this point, we can see that stem cells exist in 
a dynamic equilibrium with their differentiated counterparts in a 
stable balance that is tightly regulated by various signaling pathways 
associated with microenvironments and external stimuli. When this 
balance is disturbed by transcriptional, epigenetic, or environmental 
changes, non-CSCs can undergo a dedifferentiation process to acquire 
stem-like characteristics and be reprogrammed towards a more 
aggressive tumorigenic fate [43]. Given the possible significance of 

Figure 1: Hierarchy leading to heterogeneity. The CSC theory claims that CSCs arise from normal stem cells within the population and that only these CSCs drive 
tumorgenesis. These CSCS can either self renew or divide into differentiated progeny. Since the cells in a tumor come from different CSCs, the tumor is heterogenic.

Figure 2: Asymmetric division of CSCs. (A) Asymmetric cellular division yields one undifferentiated CSC and one differentiated cell. Under normal conditions, this 
is the second most common division, but during TMZ treatment this type of division occurs least. (B) Symmetric cell renewal produces two daughter CSCs that are 
identical to the mother CSC. Under normal conditions, this is the least observed division, but becomes the most prevalent when the population is treated with TMZ. 
This largely contributes to the resistance and reoccurrence of tumors. (C) Symmetric differentiation yields two differentiated progeny. Under normal conditions, this 
division occurs most frequently. However, during TMZ treatment, this division is seen second most often.
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for a more aggressive tumor phenotype [3,21]. During disease 
progression, the tumor-specific niche creates a dynamic equilibrium 
between the CSCs and their fate committed counterparts [2,9,53]. 
Any shift in this equilibrium state is regulated by the intratumoral 
microenvironment and can potentially influence the clinical outcomes 
of tumors since CSCs possess the intrinsic ability to resist conventional 
therapies (Figure 3). For the majority of solid cancers, the molecular 
mechanism of how this equilibrium is maintained with respect to a 
tumor-specific CSC niche continues to be poorly understood.

One proposed explanation for the maintenance of the CSC 
population is the Epithelial-to-Mesenchymal Transition (EMT) [54]. 
While this process is a key step in metastatic progression, it is also 
essential in development [55]. Recently, embryonic transcription 
factors have been shown to drive classic cancer traits, including 
apoptosis resistance [56] invasiveness [57] and motility [58]. The basal-
like mammary cells in breast cancer have the ability to dedifferentiate 
spontaneously into a stem-like state post oncogenic transformation via 
EMT [10]. In GBM, CD95 has been shown to assist in the maintenance 
of EMT programming and to provide stem cell properties to glioma 
cells [59,60]. Overexpression of the transcription factor Twist, which 
is known to promote EMT, resulted in increased invasive potential 
and therapeutic resistance in two PDX glioma lines [61]. Notably, in 
GBM Twist did not induce the E-cadherin to N-cadherin switch that 
is observed in EMT in other tissues [61], suggesting that this factor 
promotes maintenance of stem cells in the brain rather than driving 
classical EMT. 

In addition to tumor population hijacking properties that induce 
EMT in development to maintain CSC populations, the tumor 
microenvironment also promote the maintenance of CSCs. Because 
of their inability to access oxygen-containing vasculatures, tumors are 
more hypoxic than the surrounding healthy tissues [18]. It has been 
reported that hypoxia and intratumoral pH can promote a stemness 
niche by enriching an environment that supports the self-renewal 
capacity of stem cells through activation of various stemness associated 
genes and initiates dedifferentiation of non-CSCs [43,44,62,63]. 
Cellular response to hypoxia is commonly regulated by hypoxia 
inducible factors (HIFs), which are key transcriptional factors that 
are upregulated upon exposure to low-oxygenated conditions [64]. It 

signals is capable of initiating the cellular reprogramming process to 
acquire the stem-like state. The example of fate reprogramming is also 
reported in the normal developmental setting, as certain progenitor 
populations demonstrate the ability to dedifferentiate to acquire stem-
like characteristics. In Drosophila testes, a cluster of stromal cells known 
as spematogonial can dedifferentiate into germline stem cells to replace 
stem cell populations in the aging tissue [48]. This dedifferentiation 
process is also observed in the mouse testes [49]. In the hematopoietic 
system, PAX5 has been shown to be crucial in the differentiation 
process of lymphoid progenitor cells to mature B-cells [50]. A report 
showed that the deletion of PAX5 led to the dedifferentiation of a 
mature B-cell into a T-cell [51]. Thus, the elimination of cellular 
identity through a strong master regulator such as PAX5 can achieve 
reprogramming. The process of fate reprograming is also supported 
by landmark study published by the Yamanaka's lab in 2006, where 
they showed that reprogramming committed cells back to an induced 
pluripotent state required the stimulation of four transcription factors: 
Sox2, Oct4, Klf4, and c-Myc [15]. Authors showed that cells resting 
in a quiescent developmental state could be reprogrammed to become 
pluripotent progenitor cells by introduction of these factors. These 
four factors are involved in a poorly understood network comprised 
of other transcription factors, histone modification enzymes, and poly-
comb group complexes that collectively capable of reprograming of 
differentiated cells [52]. 

In the pathological condition, recent evidence widely supports the 
theory describing spontaneous and therapy-induced reprogramming 
of differentiated cancer cells to cancer stem-like cells. Iliopoulos et al. 
showed that IL6 was one of the key factors that mediated the conversion 
of non-CSCs to CSCs in breast cancer and prostate cancer [9]. They 
used a chemotherapy-induced model of oncogenesis to indicate that 
both non-CSCs and CSCs exist in a dynamic equilibrium in which, 
over many generations, the proportion of these two cell subpopulations 
remain continuous. A similar shift in the cell fate equilibrium is also 
present in Glioblastoma Multiforme (GBM), as differentiated glioma 
cells converted to glioma stem-like cells after exposure to clinically 
relevant doses of primary chemotherapy [6]. It is shown that this 
chemotherapy-induced cellular plasticity can enhance the Glioma Stem 
Cells (GSC) subpopulation in recurrent tumors and may be responsible 

Figure 3: CSC, microenvironment and intratumoral equilibrium. When a tumor is exposed to hypoxia, low pH, chemotherapy or radiation, a microenvironment that 
favors CSCs is created. Because of this, some mature cells in the tumor dedifferentiate and stemness in the present CSCs is maintained. This plasticity of the tumor 
leads to drug resistance and disease reoccurrence.
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has long been known that anti-cancer therapy can change the tumor 
microenvironment and induce therapeutic resistance in cells residing 
within this region [7,8]. We reported that anti-cancer therapy can 
induce these hypoxia-like responses to dedifferentiate non-CSCs to their 
stem-like state, and newly converted CSCs overexpressed both HIF1α 
and HIF2α [6]. Anti-glioma chemotherapy significantly enhances the 
number of intratumoral hypoxic foci in an orthotopic xenograft model 
and shifts the stemness equilibrium towards a more stem-like state. 
Thus, it is conceivable that hypoxia induced CSC niche may shift the 
intratumoral balance between CSCs and non-CSCs towards a more 
stem-like state, which in turn contributes to therapeutic resistance. The 
precise mechanism of hypoxia-induced CSC niche and its contribution 
to promoting therapeutic resistance still requires further investigation.

Hypoxic conditions also stimulate angiogenesis by inducing the 
release of angiogenic factors, including vascular endothelial growth 
factor (VEGF). Although HIF1α is often considered the master 
regulator of angiogenesis in hypoxia, HIF2α drives angiogenesis by 
regulating VEGF. VEGF has become one of the most well-known 
endothelial cytokines modulated by hypoxia, and its contribution to 
angiogenesis and tumor malignancy has been studied in various tumor 
models [65-67]. Angiogenesis and the production of a vascular network 
are essential for tumor and disease progression, and Stockmann et al. 
showed that VEGF was crucial for the formation of this vasculature. 
The perivascular niche that promotes maintenance of CSCs has been 
well documented. In the PDGFR-induced glioma model, nitric oxide-
mediated expression of Nestin, Notch, and NO leads to stem-like 
characteristics in glioma cells, which enhance tumorigenic capacities 
in vivo [68]. The perivascular niche also induced VEGF expression, and 
a recent study has demonstrated that autocrine signaling of VEGF-
VEGFR2 can promote GSC viability and tumor growth [69]. In a 
mouse model of skin cancer, efficient blocking of VEGFR2-neuropilin 
signaling can effectively deplete the CSC population [70]. Collectively, 
these studies point towards a notion that targeting the perivascular 
niche of CSCs by blocking VEGF-VEGFR2 signaling might be an 
effective CSC targeting strategy. Inhibition of VEGF function by using 
Bevacizumab, a humanized monoclonal antibody against VEGFA, has 
received accelerated approval to target tumor angiogenesis in glioma 
patients [71]. However, despite improving the quality of the patients' 
lives, nearly all patients with GBM progress, and Bevacizumab has 
been shown to enhance the dissemination characteristic in GBM [72]. 
Schnegg et al. recently demonstrated that VEGF-A inhibitors promote 
HIF1α-mediated expansion of the CSC population in melanoma, 
elegantly highlighting the role of therapy adaptive resistance 
mechanisms driven by the therapeutic stress induced selection pressure 
[73]. 

Angiogenesis can also be a result of a microenvironment with low 
pH, which has also been reported to contribute to the maintenance 
of the CSC niche [44]. For many cancers, extracellular pH levels are 
significantly more acidic than in normal tissues and are indirectly 
correlated to tumor size [44,74,75]. A shift to an acidic pH within the 
intratumoral microenvironment increases the expression of cancer stem 
cell markers and promotes the equilibrium to move towards stemness. 
CSCs exposed to an enriched therapy-induced stem cell niche will 
further increase cell proliferation, angiogenesis, immunosuppression, 
and chemoresistance [44,74-77], which contribute to the poor 
prognoses of many cancers. Such plasticity-mediated adaptability may 
be critical for cancer cells to overcome targeted anti-cancer therapies 
and promote therapeutic resistance. Elucidating the molecular 
mechanisms that govern cellular plasticity will allow the development 
of effective targeting strategies to eliminate newly developed CSCs.

Clinical Implications of Cancer Stem Cells 
One of the most difficult endeavors in the cancer stem cell field 

is to understand their contribution in the clinical setting. It is known 
that CSCs appear to be more resistant to conventional therapies such 
as radiation and chemotherapy than normal cancer cells because 
of their quiescence, or dormancy [78,79]. Tumor quiescence is a 
state of remission in which cancer cells are resting and undetectable 
for a period. This resting phase is commonly seen in patients who 
have endured constant multi-modal therapies such as radiation and 
chemotherapy [48,80,81], which contributes to the poor outcomes 
in the clinical setting (Figure 3). Here, we summarize the published 
results in attempt to understand the contribution of CSCs in the clinical 
setting and postulate how to exploit some unique CSC characteristics 
to develop novel anti-cancer therapies. 

Therapy-resistant CSCs in Disease Relapse
Disease relapse and tumor metastases are some of the major 

causes behind the unfortunate survival rates in cancer patients who, 
after a certain point during their course of treatment, fail to respond 
to conventional therapy. Enhanced therapeutic resistance has been 
attributed to CSCs [80,82-87], which subsequently leads to increased 
tumor growth, invasion, and relapse. A common contributor to 
therapeutic resistance is enhanced DNA damage response. Radiation, 
in addition to many current chemotherapy drugs (such as Cisplatin, 
Temozolomide, Methotrexate, and Doxorubicin), induces cell death by 
disrupting and damaging DNA. Because DNA is the genetic makeup 
of every cell in the human body, the inability to repair this damage is 
fatal to the cells [88,89]. The most lethal effect that these previously 
mentioned forms of therapy have on DNA is produced by double 
strand breaks. Double strand breaks are typically repaired through 
either homologous recombination or non-homologous end joining 
[85,90,91]. For a more detailed summary on homologous and non-
homologous DNA double strand break repair, refer to Cojoc et al. [85].

One particularly interesting DNA repair gene that has been 
associated with cancer in the context of therapeutic resistance is 
Rad51 [49,92,93]. During double strand break repair, a template 
strand will replace the missing base pairs by invading the paired 
strands of homologous DNA. Rad51 catalyzes the search for and 
the invasion of the homologous DNA strand as well as the repair 
initiation and the annealing of the double strand break [94]. Recent 
data has shown that Rad51 is overexpressed in CSCs and that this 
increase in expression may be responsible for the therapeutic resistance 
observed post-radiation and after primary chemotherapy [49,95-98]. 
Furthermore, the inhibition of Rad51 promoted the resensitization of 
these previously resistant cells to anti-cancer therapy [99-101], which 
suggests that enhanced DNA repair activity in CSCs promotes their 
ability to overcome any double strand breaks during therapy.

Targeting the CSC Niche for Anti-cancer Therapy
Conventional chemotherapy, which includes any combination 

consisting of surgery, radiation, and chemotherapy, is currently the 
main form of treatment for cancer patients. However, there are a number 
of cancers that quickly become drug resistant and cause disease relapse 
or tumor metastases. Because CSCs have been shown to have a higher 
potential to resist conventional therapy and also possesses inherent 
self-renewal properties, it is crucial to develop strategies that will target 
these aggressive populations. The intratumoral microenvironment 
retains the ability to enrich and initiate stemness in cancer cells, so 
by preventing cellular plasticity through stem niche factors, the CSC 
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phenotype can also be diminished. As previously mentioned, one 
tumor microenvironmental factor that has been intensively studied is 
hypoxia. Targeting hypoxia can manipulate the CSC niche, and both 
HIF1α and HIF2α have been shown to be promising therapeutic targets 
in glioma [18,102,103]. Anti-angiogenic therapy can also diminish the 
tumor vasculature as well as inhibit the self-renewing capacities of 
CSCs [46,104]. Inhibiting angiogenic factors will lead to the starvation 
of tumors, further inhibiting tumor growth and proliferation of CSCs. 
However, a pre-clinical study by Schnegg et al. indicated a possible 
cellular plasticity mediated enrichment of CSCs post anti-VEGF 
therapy and thus may require further optimization of such therapeutic 
approaches [73].

Also, to targeting the stem cell niche, increased expression of 
Rad51 in cells with CSC-like phenotypes has been associated with 
chemoresistance [49,95]. The enhanced ability of CSCs to repair 
double-strand breaks in their DNA allows them to overcome damage 
made post-radiation and/or chemotherapy. Recent publications show 
that inhibiting Rad51 expression, specifically in the CSC subpopulation, 
causes once-resistant tumors to become re-sensitized to therapy [99-
101]. There has also been an increase in the search for new drugs that 
can directly target and kill CSCs by inducing toxicity, inhibiting self-
renewal, or sensitizing them to future therapy [64,105-108]. However, 
being able to target CSCs has been an incredibly difficult hurdle to 
overcome due to the inherent plastic nature of tumor cells to become 
CSC-like. A promising strategy includes the differentiation of these 
CSCs to adopt a more benign, lineage-committed fate so they will 
have a more therapy-sensitive, less aggressive and invasive phenotype. 
By constantly inducing the differentiation of CSCs, they can be 
targeted without the challenge of cells reverting to their stem-like 
state. It is known that bone morphogenetic proteins (BMPs) initiate 
differentiation of stem cells and can result in decreases in proliferation, 
tumor growth and initiation [109-115]. BMP administration has been 
combined with currently existing chemotherapy [116-121], and by 
doing so, the dynamic conversion of non-CSCs to cells possessing a 
therapy resistance CSC-like phenotype can be targeted to enhance 
therapeutic sensitivity as well as efficacy (Table 1).

Conclusion
A recent model of tumorigenesis states that a small subset of 

cells within the cancer population, known as Cancer Stem Cells, is 
responsible for the initiation and expansion of tumors. Cells with 
this stem-like phenotype possess a higher potential for self-renewal 
and tumor formation and have also been shown to be more resistant 
to conventional therapies. CSCs exist in a dynamic equilibrium with 
non-CSCs, and any shift in this balance will potentiate the negative 
effects of cancer. Although it is known that CSCs can differentiate 
to have lineage-committed fates, it has now been postulated that 

these differentiated cells can dedifferentiated and adopt CSC-like 
phenotypes. Conventional therapies can further enhance the frequency 
of plasticity as the tumor microenvironment continues to change and 
pressure the equilibrium to shift, favoring the survival of CSCs. To 
prevent the aggressive, invasive, and resistant nature of the CSCs, it is 
crucial to better understand both CSC biology and their niche within 
tumors. It is not clear if the current stem cell model can account for 
such reversible intraconvertibility. If the frequency of such conversion 
is low, it may possible to distinguish the newly converted CSCs and 
incorporate their biological effects in the current model. However, 
in light of recent reports that demonstrate that such conversion is 
significantly accelerated post oncogenic transformation and during 
anti-cancer therapies, the current CSC model may be unfit for this 
condition. New models may be required to describe the plastic behavior 
of human cancer [5,6,10]. Elucidating the mechanisms that drive 
cellular plasticity and exploring how intratumoral microenvironmental 
changes affect plastic behavior of cancer cells can further enhance 
clinical efficacy of current therapies to benefit the many patients and 
families affected by human malignancies.
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