
Review  Article

Ying et al., J Plant Pathol Microbiol 2017, 8:9
DOI: 10.4172/2157-7471.1000422Journal of

Plant Pathology & MicrobiologyJo
ur

na
l o

f P
lan

t Pathology &Microbiology

ISSN: 2157-7471

Review Article Open Access

Volume 8 • Issue 9 • 1000422
J Plant Pathol Microbiol, an open access journal
ISSN: 2157-7471

Keywords: Huanglongbing; Disease detection; Host response;
Disease resistance; Transgenic approach; CRISPR 

Introduction 
Huanglongbing (HLB) is the most destructive disease of citrus. The 

typical symptoms are yellowing of the leaf  veins  and adjacent tissues, 
premature defoliation, dieback of twigs, ultimately leading to death of 
infected citrus trees [1]. The affected trees show retarded growth, off 
season flowering, bearing unattractive, smaller fruits that are bitter in 
taste. Recently, outbreak of HLB has been a major problem in citrus 
that resulted in declining fruit quality and quantity [2]. The causal 
agent is phloem-limited uncultured gram-negative bacterium [3,4]. All 
commercial citrus cultivars are susceptible to HLB regardless of its root 
stock.

HLB infected citrus worldwide, including Asia, Africa, and 
Americas. In USA, it was first reported in south Florida. The causal agent 
Candidatus Liberibacter asiaticus (CLas) spread rapidly to Louisiana, 
Georgia, Texas etc. HLB is transmitted and vectored by Asian citrus 
psyllid (ACP) [5]. Grafting can transmit HLB too [6]. Till now, there 
is no effective management for HLB. Normally, insecticide is used to 
control vector to suppress spreading of HLB [7]. To prevent the HLB 
spreading, the infected trees need be removed and destroyed. Heat 
treatment can reduce the symptoms of infected trees by elimination of 
CLas [8]. However, heat treatment can’t prevent the treated trees from 
secondary infection and it is impractical to treat big trees in field. The 
topics of how to detect the disease, responses of host plant to HLB, and 
the perspective of CRISPR in controlling HLB are discussed in this 
review.

Literature Review
Disease detection

HLB has long latent period, and it is difficult to distinguish HLB 
infected trees from zinc deficient trees due to similar appearance of 
leaves [9]. Therefore, it is necessary to confirm disease infection by 
molecular tools. Southern blot was used to detect bacterium from plant 
tissue at first [10]. Southern blot is time consuming and the sensitivity is 
lower as compared to polymerase chain reaction (PCR)-based methods. 
Due to the low titer and uneven distribution of Clas in citrus, PCR 
was used to detect and distinguish Candidatus Liberobacter asiaticum 
and Candidatus Liberobacter africanum combined with XbaI enzyme 
digestion [11]. Quantitative real-time PCR was used to detect pathogen 
based on 16S rDNA [12]. To increase the sensitivity, primers from nrdB 

which has five copies in genome were used to reduce Ct value of 1.68 
(SYBR Green PCR) and 1.77 (TaqMan PCR) [13]. Now, a rapid field test 
system has been developed to detect CLas from psyllid as well as plant 
[14]. PCR based methods are rapid and sensitive, but it is difficult to be 
used in screening at larger scale. Therefore, imaging techniques were 
developed for the purpose of large screening [15,16].

Citrus responses to HLB infection

Based on plant symptoms and ability to grow post infection with 
CLas, 30 different genotypes of citrus were divided into four classes: 1) 
sensitive, which showed severe chlorosis on leaves, growth was inhibited 
greatly, and the infected plants were dead, such as Valencia sweet 
orange, Ducan grapefruit etc.; 2) moderately tolerant, plants showed 
distinguished symptoms but grew normally, however died, such as 
Sour orange and Mexican lime etc.; 3) tolerant, which showed minimal 
symptoms such as Eureka lemon, Persian lime, Carrizo citrange, and 
Severinia buxifolia; 4) seven genotypes showed variable symptom. The 
titers of CLas were not related with the severity of the symptoms [17].

Since CLas is restricted in phloem all over the infected plant, 
different parts of sweet orange were observed under microscope to 
detect the cellular structural change due to HLB infection. HLB infected 
sweet orange leaves showed phloem damage and plugging of sieve pores 
[18]. The HLB infected stem exhibited cell wall thickness and collapse 
were observed in phloem, and the symptoms were more severe in stem 
than in root [19]. The phloem was damaged in HLB tolerant rough 
lemon and susceptible sweet orange at the similar level, but phloem 
transportation was maintained much better in rough lemon [20]. The 
damage of cell wall and cell membrane in phloem by CLas was caused 
by movement of pathogen between cells [21]. 
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Comparative metabolomics between HLB infected, zinc-deficient, 
and healthy ‘Valencia’, showed difference among the different samples 
[22]. In the HLB infected leaves, proline accumulated at the highest 
level. Beta-elemene, (-) trans- caryophyllene, and alpha-humulene 
exclusively accumulated at lower level in HLB infected leaves. But, 
the concentrations of proline and arginine were lower in Las positive 
fruit than in healthy fruit of ‘Valencia’ [23]. Metabolomic changes 
were found in HLB infected Hamlin as well [24]. Phenylaninine, 
tryptophan, lysine and asparagine accumulated more in phloem sap of 
HLB tolerant varieties than in HLB sensitive varieties [25,26]. Volatile 
organic compounds (VOC) that protect plants from attack of insect and 
pathogen were analyzed among HLB sensitive varieties and tolerant 
varieties. 

Microarray and RNA-Seq were employed to analysis the differences 
between health citrus and HLB infected citrus to figure out the 
mechanisms of disease development. Gene differential expression at 
transcriptional level upon HLB infection in leaf, stem and root of sweet 
orange was analyzed from microarray analysis [18,19]. RNA-Seq was 
employed to compare gene transcriptional profiling of leaf and fruit or 
fruit upon HLB infection [27,28]. Microarray study revealed that the 
numbers of significantly regulated genes in leaf, stem, and root were 624, 
885 and 111, respectively [18,19]. Among the differentially expressed 
genes, the numbers of upregulated genes were 307, 551 and 56 in leaf, 
stem, and root, respectively. The differentially expressed genes covered 
many aspects of cellular functions, including response to disease, cell 
wall biogenesis, signal transduction, carbohydrate metabolism, protein 
degradation, phytohormones, metal transportation etc. Due to the 
advantages of RNA-Seq over microarray [29], RNA-Seq was performed 
to determine the disease mechanisms of HLB [27,28]. Source-
sink disruption and weak plant immunity response were the main 
mechanisms of disease. But, it showed that HLB symptom development 
depended on host response rather than on carbohydrate starvation 
from the microarray data by comparing fruits from HLB infected sweet 
orange and girdled fruit [30]. 

Transcriptional responses to CLas infection between HLB susceptible 
and tolerant citrus were analyzed to study the mechanisms of disease 
tolerance. It could be hypothesized that tolerance in Rough lemon to 
HLB may be from the minimized influence in phloem transportation 
and fast response to CLas by comparing transcriptional profiling with 
susceptible sweet orange at 5, 17 and 27 WAI (weeks after inoculation) 
[20]. Another microarray study showed that the HLB tolerant US-897 
had more genes involved in pathogen defense expression at higher level 
without CLas infection compared to susceptible ‘Cleopatra mandarin’. 
Constitutive disease resistance protein (CDR1), 2-oxoglutarate (2OG) 
and Fe (II)-dependent oxygenase may contribute to tolerance of US-
897 to HLB [31]. The citrus cultivars in the above two studies had 
different genetic background. It is difficult to draw a conclusion on the 
mechanisms of tolerance to HLB. Recently, RNA-Seq was conducted 
using two genetically close related cultivars HLB tolerant “Jackson” 
grapefruit hybrid and HLB susceptible “Marsh” grapefruit. The results 
showed that basal defense played an important role in resistance to HLB 
[32]. Because small RNAs participate in disease resistance [33], small 
RNA profiling was determined in HLB infected sweet orange. MiR399 
was upregulated by HLB infection and resulted in phosphorus deficiency 
of infected plant [34].

The genes differentially expressed at translational level were much 
less than at transcriptional level in ‘Madam Vinous’ sweet orange [35]. 
Only 10 and 20 proteins were differentially expressed in non-HLB 
symptomatic sample and HLB symptomatic sample when compared 
with mock-inoculated controls. Among the 20 differentially expressed 

proteins, 13 were up-regulated and 7 were down-regulated. The down-
regulated proteins were annotated as unknown function. Seven proteins 
involved in stress/defense response were induced in the two LAS+ 
samples, including chitinase, four miraculin-like proteins, lipoxygenase, 
and Cu/Zn superoxide dismutase. ATPase alpha subunit was only 
induced in leaves with HLB symptoms. HLB infected grapefruit showed 
the similar results regarding to the up-regulated proteins [36]. There 
were 69 proteins that showed differential expression in Las positive 
leaves compared with healthy leaves. Among them, 13 proteins were 
up-regulated. Besides chitinase, miraculin-like proteins and Cu/Zn 
superoxide dismutase were induced in sweet orange, and lectin-related 
proteins, peroxiredoxins, CAP 160 and granule-bound starch synthase 
were induced in grapefruit. The 56 down-regulated proteins were 
associated with protein synthesis, protein folding and photosynthesis. 
On the contrary, the defense-related proteins were down-regulated in 
lemon that is tolerant to HLB, such as lectin-related proteins, chitinase, 
and miraculin-like proteins [37]. Upon HLB infection, chaperones 
HSP 70 and an isoflavone reductase-related protein were up-regulated 
in lemon. Proteins associated with photosynthesis and starch synthesis 
were similar to grapefruit and sweet orange [37]. The differences 
in responses between HLB susceptible and tolerant cultivars were 
determined by proteomes between Navel orange (susceptible) and 
Volkameriana (moderately tolerant) [38]. This study highlighted the 
detoxification pathways in Volkameriana contributing tolerance to 
HLB infection. Since heat treatment can reduce HLB symptoms [8], 
proteomics analysis was conducted between four grapefruit samples 
-Las-heat, -Las+heat, +Las-heat, and +Las+heat to elucidate the mechanism 
of thermotherapy. Compared with -Las-heat sample, only Las infection 
caused 23 proteins down-regulated and 31 proteins up-regulated in +Las-

heat sample. Heat treatment resulted in induction of 74 proteins and 
suppression of 9 proteins. Combined heat treatment and Las infection 
together, 83 proteins were up-regulated and 10 proteins were down-
regulated. Two proteins that belong to chaperones, a HSP70-like protein 
and a RuBisCO-binding 60 KDa chaperonin, were down-regulated in Las 
infected samples, but they were highly up-regulated by heat treatment. 
Las infection could repress photosynthesis. But, heat treatment could 
increase photosynthesis by chlorophy II up regulation. Four proteins, a 
ferritin-like protein, a putative lipoxygenase protein, glucosidase II beta 
subunit-like protein, and a glutathione S-transferase that are related 
to disease resistance were up regulated with heat treatment but down 
regulated in HLB infected sample without heat treatment. Proteins 
related with redox homeostasis were down regulated in +Las-heat 
plants, but all identified differentially expressed proteins associated with 
redox homeostasis were induced in +Las+heat plants [39]. Therefore, 
heat treatment reversed the expression pattern of proteins suppressed 
by CLas infection, the proteins are related to disease resistant protein, 
photosynthesis protein, redox homeostasis to contribute plant resistance 
to HLB.

Transgenic approach is the only way to confer citrus HLB 
resistance at present

Plants resistance to bacterial disease can be divided into two 
categories: PTI (pathogen-associated molecular patterns triggered 
immunity) and ETI (effector-triggered immunity). Plant transmembrane 
pattern recognition receptors (PRRs) recognize conserved microbial- or 
pathogen-associated molecular patterns (MAMPS or PAMPs) to trigger 
plant disease resistant response. ETI is triggered by interaction of plant R 
protein and pathogen Avr protein directly or indirectly, typical reaction is 
HR (hypersensitive response) [40]. PTI can confer plant broad spectrum 
disease resistance. But, the PTI immunity may be subverted by pathogen 
effectors and the extent of PTI varies from one species to another species 
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contain foreign DNA, so the edited plant can be released to market 
as commercial production for human consumption [68]. Due to the 
vague virulence mechanisms of HLB, CRISPR can’t achieve the goal 
of conferring citrus HLB resistance at present, however, CRISPR is a 
powerful tool with great potential in breeding HLB resistant citrus after 
discovery HLB susceptible gene from citrus.

Conclusion
HLB is the biggest threat to citrus industry. Many efforts have been 

put into understanding the mechanisms on how CLas causes disease 
symptoms. But, there are large gaps in understanding the disease 
development. The time causes study did not give clue on how disease 
symptoms developed with time. It needs more time points to draw the 
fine map of gene regulation. Moreover, no specific phloem cell type 
transcriptome is available to understand how phloem response to CLas 
infection. Hence, the susceptible gene of HLB is not identified yet. 
Therefore, CRISPR is only a promising tool to control HLB at present. 
CRISPR requires identification of susceptible genes. It needs more works 
to identify pathogen effectors and elucidate the virulence mechanisms. 
Regarding to citrus HLB resistance, it mainly depends on plant basal 
defense. Heat treatment reducing HLB symptoms may be due to the 
activation of PTI at higher temperature [69]. To enhance citrus HLB 
resistance, more genes can be transformed into plant based on different 
strategies [70]. A system from Arabidopsis, uORF-mediated translation 
was used to express AtNPR1 without fitness costs of rice [51], may 
benefit transgenic approach for citrus HLB resistance. Genes which 
can enhance PTI will help plant fight HLB as well as more powerful 
AMPs. It needs more research on HLB from different disciplines and 
integration efforts from scientists, growers, and governments to win the 
battle against HLB.
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