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ABSTRACT 

 
Giant clams (Tridacnidae) are known to live in association with photosynthetic single cell dinoflagellate 

algae commonly called zooxanthellae. These algae which can be found in the mantle of the clams are 

capable of transferring part of their photosynthates which become an important source of energy to the 

host ( apart from filter feeding activity). In order to understand the basic biological processes of the 

giant clams , the contribution of zooxanthellae to the clam’s energy requirement need to be determined. 

This review describes how to calculate the contribution of zooxanthellae to the giant clam’s energy 

requirement for the  respiration process. 
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INTRODUCTION 
 

Giant clams (Family: Tridacnidae) are 

large bivalves that are commonly found in 

coral reef habitats especially in the Indo-

Pacific region. This family consists of two 

genera (Tridacna and Hippopus) and eight 

species: Tridacna gigas, T. derasa, T. 

squamosa, T. maxima, T. crocea, T. 

tevoroa, Hippopus hippopus, and H. 

porcellanus (Braley, 1992). As well as 

being prominent members of healthy coral 

reef ecosystems they are important to the 

people of South East Asia and the Pacific 

region as a source of food (meat) and 

building material (shells). These clams 

have recently become an important export 

commodity in several countries in this 

region (Tacconi and Tisdell, 1992; Tisdell 

et al., 1994). 

One of the important aspects of 

the biology of giant clams is the existence 

of zooxanthellae which occupy the mantle 

of the clams as endosymbiotic 

dinoflagellate algae (Lucas, 1988). These 

zooxanthellae have a significant role, 

especially in the energy requirements of 

giant clams, since they are capable of 

translocating part of their photosynthetic 

products to their host. This is why as a 

member of bivalves giant clams do not 

only supply their energy demand from 

filter feeding process, but also from the 

energy translocation from zooxanthellae 

(Klumpps et al., 1992). 

This review aims to describe how 

to calculate the contribution of 

zooxanthellae to the daily respiration 

energy requirements of giant clams. 
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Zooxanthellae-Giant Clams Association 

 

Zooxanthellae are 'yellow-brown' dino-

flagellate algae (Pyrrophyta) which live as 

endosymbionts in many marine 

invertebrate species (Brandt, 1881). Taylor 

(1974) listed four different species of 

zooxanthellae: (1) Gymnodinium (Symbio-

dinium) microadriaticum (Freudenthal, 

1962) which lives in protozoans, 

coelenterates, molluscs; (2) Amphidinium 

chattonii in some coelenterates; and (3) A. 

klebsii in platyhelminthes and (4) 

Amphidinium sp.  in some protozoans. 

Symbiodinium microadriaticum 

was originally isolated from the jellyfish 

Cassiopeia sp (Freudenthal, 1962). Later 

Taylor (1971) proposed that zooxanthellae 

be placed in the genus Gymnodinium  

because the free-living stage had great 

affinities to this genus. Loeblich and 

Sherley (1979) later suggested the use of 

Zooxanthella microadriatica when they 

found that the  zooxanthellae isolated from 

Cassiopea xamachana differed slightly 

from Zooxanthella nutricula from the 

order Zooxanthellales (Brandt, 1881). 

Schoenberg and Trench (1980b), however, 

argued that the latter name was 

inappropriate, because the pyrenoids of the 

algae described by Brandt (1881) are 

traversed by chloroplast thylakoids 

(Hollande and Carre, 1974), which is not 

the case in S. microadriaticum from 

Cassiopeia sp.  

Further work revealed that 

Symbiodinium microadriaticum are not 

monospecific. Morphological, physio-

logical, biochemical and genetic 

differences among S.  microadriaticum 

collected from different hosts are now 

more the norm than the converse 

(Schoenberg and Trench, 1980a,b; Blank 

and Trench, 1985 a,b). There are 

differences in the life cycle of 

zooxanthellae in symbiosis and in culture 

conditions. The coccoid, non-motile stage 

predominates in symbiosis, whilst in 

culture there is alternation between the 

motile and non-motile (coccoid) stage 

(Muscatine, 1980; Domotor and D'Elia, 

1986). Motile stages are reported to be 

phototactic and occur only for a short 

period of approximately 0.5 hour (Taylor, 

1969a; Domotor and D'Elia, 1986). Fitt et 

al. (1981) demonstrated different motility 

patterns of zooxanthellae collected from 

jellyfish (C. xamachana, C. frondosa), sea 

anemones (Aiptasia tagetes, A. pallida) 

and a giant clam (T. gigas) cultured in 

identical conditions. 

Schoenberg and Trench (1980a,b) 

reported differences in isoenzyme patterns, 

soluble protein, size, and the structure of 

the cell wall of zooxanthellae collected 

from different hosts. Using 

electrophoresis, Schoenberg and Trench 

(1980a) investigated 40 cultures from 17 

host species representing 12 strains and 

found a unique combination of four 

isoenzyme patterns in each strain. Later 

Chang et al. (1983) found differences in 

the photoadaptive mechanisms of three 

strains of zooxanthellae collected from a 

clam (T. maxima), an anemone (A. 

pulchella) and a coral (Montipora 

verrucosa). Similarly, Blank and Trench 

(1985a,b) showed several differences in 

the number of chromosomes, chloroplasts, 

pyrenoid stalks, mitochondria, 

chromosome volumes, nuclear volumes 

and thylakoid arrangements of 

zooxanthellae isolated from jellyfish 

(Cassiopeia xamachana and C. frondosa), 

anemone (Heteractis lucida) and coral (M. 

verrucosa). These zooxanthellae were 

reported to maintain their differences 

when cultured in similar conditions. 

The existence of these variations 

among zooxanthellae collected from 

different hosts suggests that zooxanthellae 

represent dozens, perhaps even hundreds 

of species. By investigating the 

biochemical, physiological, 

morphological, and behavioural 
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differences, Trench and Blank (1987) 

introduced three new species into the 

genus Symbiodinium. These are S. goreauii 

, S. kawagutii and S. pilosum  isolated 

from the Caribbean sea anemone Ragactis 

lucida, stony coral Montipora verrucosa 

and the Caribbean zoanthid Zoanthus 

sociatus  respectively. Rowan and Powers 

(1991, 1992) found 6 distinct differences 

in small subunit RNA (ssRNA) genes of 

zooxanthellae collected from 16 cnidarians 

using the polymerase chain reaction (PCR) 

method. They could not distinguish any 

differences in the symbionts from 

individual corals of the same species, but 

they found that different species of corals 

have algae with unique sRNA sequences. 

However, multiple populations of 

zooxanthellae have been reported from 

individual coral, Montrastea annularis, M. 

faveolata, and M. Franksi (Rowan and 

Knowlton 1995). 

In more recent papers Baker and 

Rowan (1997) reported genetic differences 

among zooxanthellae isolated from various 

corals species collected from the 

Caribbean and Eastern Pacific. They found 

three different clades among those 

zooxanthellae which were  then   termed as 

clade A, B, and C.  

 

Zooxanthellae-Giant Clam Relationship 

 

Giant clams are known to live in 

association with symbiotic zooxanthellae 

(the term symbiosis being used throughout 

this paper is to describe the mutualistic 

interaction between zooxanthellae and the 

host). In giant clams these zooxanthellae 

are extracellular, unlike  hermatypic corals 

where zooxanthellae are located 

intracellularly.  Initially it was agreed that 

zooxanthellae in giant clams are located 

freely in the haemal sinuses of the 

siphonal tissue which expand along the 

dorsal surface of the clams (Yonge, 1953; 

Frankboner, 1971; Trench et al., 1981). 

Norton et al,. (1992), however, found the 

existence of a tubular system associated 

with zooxanthellae within giant clams, 

previously reported by Mansour (1946). 

Norton et al. (1992) concluded that 

zooxanthellae in clams are located in a 

branched tubular structure, with a single 

layer of thin cells separating zooxanthellae 

and haemolymph (Rees et al., 1993). 

There are two mechanisms by 

which zooxanthellae appear in the next 

generation of their symbiotic host. 

Zooxanthellae can be acquired by direct 

parental transmission via their egg, or by 

direct acquisition from the environment. In 

giant clams, however, zooxanthellae are 

not being passed to the larvae (LaBarbera, 

1975; Jameson, 1976; Fitt et al., 1984; 

1986). This is proved by the fact that 

zooxanthellae are not found in the 

trochophore stage (Fitt and Trench, 1981). 

Giant clams larvae acquire zooxanthellae 

de novo from the environment, soon after 

metamorphosis (Jameson, 1976; Fitt et al., 

1984). In the hatchery, zooxanthellae 

isolated from adult clams are introduced to 

veliger stages in order to promote a rapid 

transition to the new stage (Gwyther and 

Munro, 1981; Fitt et al., 1984; Trinidad-

Roa, 1988). 

All strains of Symbiodinium sp. 

are ingested by clams. Only a specific 

strain, however, will eventually dominate a 

particular host (Fitt and Trench, 1981; Fitt, 

1985b; Fitt et al., 1986). Strain selection 

by the clams entirely depends on how a 

particular strain can grow, survive and 

compete with other strains within the host 

tissue (Fitt et al., 1986). 

 

Contribution of Zooxan-Thellae to 

Giant Clams Respiration 
 

Zooxanthellae have been found in the 

stomach, digestive gland (Morton, 1978; 

Frankboner and Reid, 1981; Heslinga and 

Fitt, 1987) and faeces of clams (Trench et 

al., 1981; Fitt et al., 1986). Since they 

were morphologically intact, photo-
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synthetically functional and viable, Trench 

et al. (1981) suggested that the 

zooxanthellae cannot be digested by clams 

as was previously thought (Frankboner, 

1971; Frankboner and Reid, 1981). 

Zooxanthellae are capable of 

transferring part of their photosynthetic 

products to the host (Muscatine, 1967; 

Goreau et al., 1973; Taylor, 1974; 

Streamer et al., 1988; Fitt, 1993). Their 

contribution depends primarily on the light 

intensity (via photosynthesis) and on clam 

size, both of which affect the proportion of 

zooxanthellae reached by the light 

(Heslinga and Fitt, 1987).  

Several approaches to the study of 

the photosynthetic contribution of 

zooxanthellae have been used. Muscatine 

et al. (1981) outlined CZAR (the 

Contribution of Zooxanthellae to Animal 

Respiration). CZAR can be calculated as 

follows: 

      
                 

                 [PZ net (24 h)] (%Tr) 

  CZAR = ------------------------- 

                          R a (24 h)  

 
 

where: 

PZ net  (24 h) = net carbon  assimilated  by 

                          zooxanthellae during  pho-    

                          tosynthesis over 24 h 

% Tr              =  the percentage of  the pho- 

tosynthates translocated 

by zooxanthellae to the 

host 

Ra (24h)        =  carbon respired  by animal  

                          over 24 h 
 

CZAR is based on the 

measurement of the production (photo-

synthesis) and  consumption (respiration) 

of oxygen which are then converted into 

units of organic carbon (Muscatine, 1980a; 

Muscatine et al., 1981). Respiration is the 

sum of the respiration of the host and 

zooxanthellae. Although the respiration 

rate under total darkness can be easily 

measured, respiration in the light is 

currently difficult, if not impossible to 

measure accurately (Muscatine et al., 

1981). Therefore, the first assumption that 

has to be made is that  respiration in the 

dark and in the light are the same. In 

addition, zooxanthellae respiration must be 

distinguished from animal respiration. 

Zooxanthellae respiration can be measured 

directly in vitro, but may not represent the 

real respiration rate of zooxanthellae 

within the host (Hoegh-Guldberg and 

Hinde, 1986; Muscatine, 1990). 

Morphological and physiological changes 

in zooxanthellae occur soon after they are 

isolated from their host (Trench, 1979). 

The second assumption proposed by 

Muscatine et al. (1981), is that the ratio of 

zooxanthellae and host respiration is 

proportional to their respective biomass. 

Although this method has been used for a 

large number of studies it should be noted 

that the assumption that the host and 

symbiont have similar metabolic 

intensities (that is, respiration at the same 

rate per gram of tissue) has not been 

directly tested (Hinde, 1989). 

In order to calculate the value of 

CZAR for a symbiosis, several parameters 

have to be measured. These include the 

zooxanthellae specific growth rate, 

zooxanthellae carbon content, 

zooxanthellae and host protein content, 

daily carbon fixation by zooxanthellae and 

carbon respired by zooxanthellae and the 

host. 

Zooxanthellae specific growth rate 

can be calculated by first isolating 

zooxanthellae from the host and 

determining the mitotic index of the algae 

(the ratio of dividing cells in 1000 cells at 

the time when the sample is taken). This 

index then can be converted to specific 

growth rate using the following equation, 

for phased mitotic indices (Wilkerson et 

al., 1981; Muscatine et al., 1984): 
 

 
    

     µ = 1/td  ln(1+f)  
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where:  
 

µ = specific growth rate 

td = duration of paired cell stage in hour 

f = the maximum value of mitotic index 
  

td  is difficult to measure directly from 

symbiotic algal populations. A range of 

studies, however, have estimated that td 

lies somewhere around 0.46 d (Wilkerson 

et al., 1983; Hoegh-Guldberg et al., 1986). 

It can also be shown that CZAR is 

relatively insensitive to quite large 

variation in td (Muscatine et al., 1981). 

The carbon content of the 

zooxanthellae can be determined based on 

the cell diameter and volume using the 

following equation (Strathmann, 1967): 
 

 
     

    log C = - 0.314 + 0.712 log V 

 
 

 

where:    

C =  carbon 

V =   volume 
 

The carbon content of 

zooxanthellae can then be used to convert 

information about the number of cells 

produced each day into a measure of the 

carbon retained by zooxanthellae. 

Algal protein content can be 

measured by analysing the protein content 

of a known number of zooxanthellae 

isolated from the host. The total protein 

content of the host is usually analysed 

using the Lowry method (1951). 

The daily net carbon fixation of 

zooxanthellae can be calculated from the 

photosynthetic rates of the algae and the 

daily irradiance. The oxygen produced by 

photosynthesis then can be converted to 

carbon multiplying the weight of oxygen 

produced with 0.375 per PQ (photo-

synthetic quotient; Muscatine et al., 1981). 

CZAR in the coral Pocillopora 

damicornis can be as high as 86.8%, by 

assuming 40% translocation from algae to 

the hosts (Muscatine and Porter, 1977). 

Muscatine (1980, review) found that with 

a mean translocation of 63% in P. 

damicornis and of 69% in Fungia scutaria 

with different values of photosynthetic and 

respiration quotients and respiration ratios 

of algae, coral and animal, CZAR could 

range from 41% - 136% and 36% - 180% 

respectively. Hoegh-Guldberg et al. (1986) 

reported potential seasonal differences in 

the contribution of zooxanthellae to the 

host, Pteraeolidia ianthina (Nudibranchia) 

and found that high densities of symbionts 

contributed 79%, 121% and 173% to the 

host in winter, spring and summer 

respectively. Muscatine et al. (1984) 

reported a higher CZAR in light-adapted 

Stylophora pistillata (143%) compared 

with shaded colonies (58%). Similarly, 

McCloskey and Muscatine (1984) showed 

that CZAR in S. pistillata was 78% at 35 

m and 157% at 3 m depth. 

The CZAR for zooxanthellae in 

giant clams also depends on the percentage 

translocation by zooxanthellae. Using the 

value of 40% and 95% translocation, the 

mean values of CZAR of Tridacna gigas 

were 83% and 197%, respectively (Fisher 

et al., 1985). Moreover, CZAR values in 

Hippopus hippopus were reported to vary  

between 7% and 137% depending on the 

photosynthetic and respiratory rates and 

the percentage translocation (assumed to 

be 40% and 98%, respectively; Fitt et al., 

1985). When the percentage translocation 

value of 95% is used, the CZAR values are 

likely above 100%  for T. gigas (Fisher et 

al., 1985; Mingoa, 1988; Klumpp et al., 

1992), and T. derasa and T. tevoroa 

(Klumpp and Lucas, 1994). 

Trench et al. (1981) showed that 

the zooxanthellae from Tridacna maxima 

can contribute more than 50% of the 

clam’s respiratory carbon requirements, 

which range from 62% up to 84% 

(assuming 40% translocation) on cloudy 

versus sunny days respectively. The 

importance of the availability of light was 
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also reported by Mingoa (1988) who found 

that the CZAR value of shade-reared 

juveniles of T. gigas (mean value of 

91.9%) was significantly higher than the 

CZAR from unshaded clams (mean value 

of 72.9%). The lower value of CZAR from 

unshaded clams can be explained by the 

lower  PR ratio, indicating less fixed 

carbon produced and available to the host.  

Mingoa (1988) also found that the value of 

photosynthetic efficiency (a) and 

maximum photosynthetic rate (Pmax) from 

shade-reared clams were significantly 

lower than those of unshaded clams. 

The phototrophic and 

heterotrophic contributions, through the 

translocation of photosynthate by 

zooxanthellae and filter feeding, 

respectively, to the nutrition of giant clams 

have been investigated by Klumpp et al., 

(1992), Klumpp and Griffiths (1994) and 

Klumpp and Lucas (1994). These 

contributions are size- and species-

dependent. Filter feeding becomes less 

important with increasing size of the 

clams. For example, filter feeding provides 

65 %  and 35 % of total carbon needed by 

small and large Tridacna gigas 

respectively (Klumpp et al., 1992). In all 

species the value of CZAR increases with 

increasing the size of the clams (Klumpp 

and Griffiths, 1994). These authors 

concluded that phototrophy is an important 

source of energy to the host for any size 

and species of giant clams. 
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