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Abstract
Bone, being a key structural support of the body, undergoes dynamic micro structural remodelling all over life to 

control automatic stress and calcium requirement. Neurovascular, visual, renal complications added with osteopenia 
and osteoporosis are main unbearable problems in diabetes mellitus (DM). It is clear that hyperglycaemia in diabetes 
mellitus leads to glucose toxicity which directly suppresses adipogenic delineation of the osteoblast precursors 
which depreciate bone feature and strength which augment propensity to fracture. A number of risk factors including 
oxidative stress, apoptosis and abnormal intracellularCa2+ metabolism have been postulated to play a function in the 
inception and progress of osteoporosis within diabetes. This review determines to discuss the most recent findings of 
mechanisms concerned in the progression of osteoporosis in diabetes. We emphasize the role of signalling molecules 
in osteoclastogenesis as therapeutic targets in the prevention and treatment of diabetic osteolysis. Increasing 
validation during the last decade suggests that zinc as neutraceutical suppresses calcium/calcineurin pathway and 
many compounds are potent inhibitors of osteoclast synthesis by blocking RANKL pathway, an emerging concept 
that is gaining acceptance. The characteristic of impediment and management of DM-induced osteolysis should be an 
effective glycaemic control. Hence, we propose to accentuate that Zinc combined with suitable anti-diabetic drugs and 
inhibitors of osteoclastogenesis may represent a potential therapeutic target in Diabetes mellitus for the prevention, 
reduction of fracture risk and treatment of osteolysis by suppressing osteoclastogenesis via calcium, calcineurin and 
RANKL pathway.
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Introduction
Diabetes is a collection of metabolic diseases which arises due to 

defective insulin secretion, insulin resistance, or both and categorized 
by hyperglycaemia. The chronic hyperglycaemia of diabetes is related 
with long-term damage, dysfunction, and breakdown of different 
organs, particularly the eyes, kidneys, nerves, heart, and blood vessels 
[1]. International Diabetes Federation has estimated the number 
of diabetic subjects worldwide in 2015 was 415 million and with the 
present growth rate it is expected rise up to 642 million in 2040 [2]. 
Metabolic bone diseases, osteoporosis and low-impact fractures have 
been related with Diabetes. Frequent fall in geriatric subjects has also 
been reported [3,4]. Bone is an extremely active tissue that is subjected 
to constant remodeling, which is regulated by diverse factors, including 
cytokines/chemokines, hormones, and mechanical stimuli [5,6]. Bone 
homeostasis is regulated by Linking bone development by osteoblasts 
and bone resorption by osteoclasts [7]. Osteopenic disorders such as 
osteoporosis, rheumatoid arthritis, Paget's disease, and lytic bone 
metastases of malignancies occur due to imbalance in bone resorption 
by osteoclasts compared to bone construction by osteoblasts [6]. Most 
drugs used in the healing of osteoporosis are anti-resorptive in action. 
At present the key pharmacological approaches for management of 
bone loss are bisphosphonates, oestrogen, and calcitonin. However, 
there are various side effects from the long-term use of these drugs such 
as constipation, diarrhoea, tumorigenic, cardiovascular effects, and 
osteonecrosis of the jaw [8,9]. 

Literature Review
Tartrate-resistant acid phosphatase (TRAP)-positive 

multinucleated cells are produced from Osteoclast precursor cells of 
monocyte-macrophage lineage. The actin cytoskeleton is streamlined 
by the multinucleated osteoclasts to attach to the bone surface and to 
resorb the bone [10]. Macrophage colony- stimulating factor (M-CSF) 
and receptor activator of nuclear factor-kappa B ligand (RANKL) are 

the basic cytokines which regulate Osteoclast differentiation. M-CSF 
is considered as a critical factor in charge for the endurance and rise 
of osteoclast progenitor cells. Receptor activator of NF-κ B (RANK) 
expression is also induced by M-CSF in osteoclast precursor cells to 
stimulate efficient reaction to the RANKL-RANK signaling pathways 
[11-14]. RANKL mediates natural consequence in bone through its 
exclusive receptor, RANK. The recruitment of tumour necrosis factor 
receptor-associated factor 6 (TRAF6) is the outcome of binding of 
RANKL to RANK receptor, which is implicated in the activation of 
downstream signalling pathways, such as NF-κ B, c-Jun N-terminal 
kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) 
pathways [6,15,16]. RANKL also activates different transcription 
factors such as NF-κ B, microphthalmia transcription factor (MITF), 
c-Fos, and nuclear factor-activated T cells c1 (NFATc1), which are 
in charge for osteoclast segregation. A number of osteoclast specific 
genes such as TRAP, cathepsin K, calcitonin receptor, and osteoclast-
associated receptor (OSCAR) are regulated by NFATc1, a master 
regulator of osteoclast differentiation, through mutual aid with MITF 
and c-Fos [16-19]. Hyperglycemia is due to impaired insulin secretion 
and Beta cell destruction in type1 diabetes mellitus (T1DM) and insulin 
resistance and inadequate expression of glucose transporter 2 in type2 
diabetes mellitus (T2DM) [20]. Hyper glycaemia also leads to enhanced 
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activation of the pro-inflammatory transcription factor, nuclear factor-
kappa B (NF-κ B), by protein kinase C in vitro [21]. The non-enzymatic 
reaction of glucose and increased fatty acid oxidation forms advanced 
glycation end products (AGEs). Intracellular hyperglycaemia is the 
principal initiating condition in the development of both intracellular 
and extracellular AGEs [22]. AGE binding to AGE receptors can 
induce the formation of reactive oxygen species, the activation of 
NF-κ B and the production of inflammatory cytokines such as tumour 
necrosis factor-alpha (TNF-α) [23]. Oxidative stress is fundamental to 
the progress of insulin resistance and diabetic complications [24,25]. 
Oxidative stress plays a significant part in diabetic complications. 
Hyperglycaemia leads to the over production of super oxides in 
mitochondria. NF-κ B, p38, MAPK and the JNK/SAPK pathway 
are susceptible to oxidative stress, which is connected to impaired 
insulin action and the development of the late diabetic complications 
[26]. As a result of cross-talk between adipose cells, macrophages, 
and other immune cells that infiltrate the expanding adipose tissue, 
a most important site, inflammatory mediators are produced [26]. 
Pro-inflammatory factors, such as tumour necrosis factor (TNF)-α, 
interleukin (IL)-1β, IL-6 and IL-18, are augmented in diabetes mellitus 
which contribute to insulin resistance by both JNK and the inhibitor of 
nuclear factor kappa-B kinase (IKKβ)/NF-κ B pathway [27]. Enhanced 
formation of inflammatory cytokines contributes to insulin resistance 
and the damage of beta cells in the pancreas and is a major aspect in the 
progress of diabetic complications [28,29].

Impact of Diabetes on Bone and Osteoclasts 
Clinical evidence indicates that bone quality is affected in patients 

with type 2 diabetes mellitus despite of normal or even high bone 
mineral density [30]. Dana et al. [30,31] have observed a considerably 
higher number of multi-nucleated and giant murine osteoclasts in db/
db-derived cultures compared to C57Bl/6 controls and also determined 
that analogous phenomenon occurred in human disease. Osteoclasts 
were derived from peripheral blood monocytes of individuals with and 
without T2DM. As an indicative of increased osteoclast activity human 

subjects with T2DM display increased circulating levels of tartrate-
resistant acid phosphatase in serum due to the diabetic polyol pathway 
[29,32,33]. Anxiety is the cause of prolonged inflammation in diabetes, 
which may lead to enhanced osteoclastogenesis. Diabetes increases 
osteoclast development in various conditions like periodontal disease, 
fracture healing and osteoporosis (Figure 1).

Accelerated bone loss, osteopenia and osteoporosis are in Diabetes 
mellitus (DM) due to increased osteoclast role and decreased osteoblast 
function. Macrophage colony stimulating factor (M-CSF), tumour 
necrosis factor (TNF-α) and receptor activator of nuclear factor-k B 
ligand (RANKL) are all Osteoblast-derived activators of osteoclast 
production and segregation where by Hyperglycaemia induces 
manufacture of these factors. Hyperglycemia decreases runt related 
transcription factor (Runx)-2, osteocalcin and osteopontin expressions 
as a consequence suppression of osteoblast proliferation and function 
occurs. As indicated by the overexpression of adipocyte differentiation 
markers, Adipogenic differentiation of mesenchymal stem cells is 
increased including peroxisome proliferator-activated receptor (PPAR) 
adipocyte fatty acid binding protein (AP2), adipsin and resistin [34].

Poor glycaemic control leads to increased bone resorption and 
bone loss in subjects with T1DM or T2DM [35]. The higher levels of IL-
1β, TNF-α and prostaglandin E2 in Diabetic animals with periodontitis 
induce and extend osteoclast mediated resorption [36]. Individuals 
with T1DM have increased levels of IL-17 and IL-23, which promote 
osteoclast formation through RANKL. Diabetic rats with periodontitis 
and T1DM have a 2 to 4-fold increase in the number of osteoclasts 
[37,38]. Compared to infected normoglycaemic control T2DM rats 
have a 2 to 4-fold rise in osteoclasts induced by periodontal infection 
[39]. Correspondingly, human subjects with T2DM and periodontitis 
have significantly increased levels of TNF-α, IL-1β and IL-6 connected 
with delayed inflammation and increased lipid peroxidation and 
dyslipidaemia [38,40,41]. Increased RANKL/OPG ratios and TNF-α 
levels that contribute to greater bone resorption are observed in diabetes. 
In human subjects, the ratio of RANKL/OPG and TNF-α levels are 
increased in inadequately controlled diabetics [42]. In diabetic’s fatty 
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Figure 1: Effects of diabetes mellitus on bone metabolism and bone quality.
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acid levels may also add to augmented osteoclastogenesis. Cathepsin 
K expression is elevated compared to control group, in streptozotocin-
induced T1DM rats, representing increased osteoclast activity [43]. 
In T2DM rats, osteoclastic bone resorption is enhanced compared to 
normo glycaemic controls [44]. In diabetic mice, macrophage-colony 
stimulating factor, vascular endothelial growth factor-A, TNF-α 
and receptor activator of nuclear factor kappa-B ligand (RANKL) 
are up regulated which can directly proceed osteoclast segregation 
and activation [45,46]. Mitochondrial ROS levels are elevated, in 
subjects with T2DM, which promote RANKL-mediated osteoclast 
differentiation and function [47]. Increased fatty acid levels in patients 
with diabetes mellitus can induce osteoclastogenesis by enhancing 
TNF-α [48]. Enhanced osteoclast development in reaction to M-CSF 
and RANKL was exhibited by T2DM mice [32]. AGEs might also 
enhance osteoclast activity [31,49,50] support the concept that AGEs 
contribute to osteoclast formation in subjects with diabetes and mice 
that lack the receptor for AGE, RAGE display increased bone mass and 
decreased osteoclast numbers compared to wild-type mice [49].

Impact of Diabetes on Osseointegration- is a Contrain-
dication in Orthopaedic Prosthesis

The reaction of parathyroid hormone that regulates the metabolism 
of phosphorus and calcium is altered by hyperglycaemia which inhibits 
osteoblast differentiation.

In vitro studies by He et al. support that chronic hyperglycaemia is 
a stimulus for bone resorption which affects different tissue structures 
and produces an inflammatory effect. In addition, it produces a 
harmful consequence on the bone matrix and its system and also 
affects adherence, growth and amassing of extra-cellular matrix [50]. 
Mineral homeostasis and production of osteoid has been shown to 
be evidently diminished in diverse experimental models of diabetes 
[51]. Diabetes is at present a virtual contraindication for implant 
management. The investigation of the effect of diabetes on implants 
has exposed an alteration in bone remodelling processes and deficient 
mineralization, leading to less bone absorption. The amount of bone 
formed is analogous when comparing diabetes-induced animals with 
controls but there is a decline in the bone-implant contact in diabetics 
[52,53]. The decrease in the levels of bone-implant success in diabetics 
confirms that diabetes reduces bone integration. This situation may 
be reversed by treating the Failure of orthopaedic hyperglycaemia and 
maintaining near-normal glucose levels [54]. There is an advanced risk 
of implant failure in diabetic patients; Ana Mellado et al. have shown 
that the optimization of glycaemic control improves the degree of 
osseointegration in the implants [55].

Molecular Targets in the Treatment of Osteolysis
At present osteoporosis treatment is based on two drug groups, 

antiresorptive and anabolic agents (Table 1).

The first to be introduced were antiresorptive agents that inhibit 
bone resorption and generate increased bone mineral density (BMD). 
Healing with bisphosphonates (BPs), which accelerate the apoptosis 
of osteoclasts and have shown their efficacy in reducing vertebral and 
non -vertebral fractures, is the gold standard therapy. Paget's disease 
of bone, osteolytic bone metastases, and hypercalcemia are also treated 
with BPs. The chronic use of BPs may be outcome in both osseous 
and non -osseous adverse effects, and this has led to the search for 
alternatives [56]. Bisphosphonates inhibit farnesyl pyrophosphate 
synthase, an important enzyme required for synthesis of isoprenyl and 
geranylgeranyl, and inhibit prenylation and geranylgeranylation of 

small G-proteins such as Rac and Rho. This leads to defective actin ring 
formation at the sealed zone, a subcellular structure essential for bone 
resorption, and a decrease in bone resorption [57]. The bisphosphonate 
alendronate reduces the risk of hip, vertebral, and wrist fractures by 
35%-39%. Zoledronate reduces the risk of hip fractures by 38% and of 
vertebral fractures by 62% [58]. Gold nanoparticles (GNPs) have been 
reported to influence the restoration of bone tissue in recent years. 
GNPs-ALD (Gold nanoparticles and alendronate) has the highest 
inhibitory effects towards osteoclast differentiation of bone marrow-
derived macrophage [59]. Odanacatib, is a cathepsin K inhibitor, offers 
theoretical advantages over bisphosphonates. Since it does not reduce 
the number of osteoclasts and does not alter their function due the 
mechanism of action which different from that of other anti resorptive 
agents [60]. Receptor activator of NF-κ B ligand (RANKL)-induced 
formation of multinucleated osteoclasts is inhibited by Phloretin. It 
also diminished bone resorption area produced during the osteoclast 
differentiation process. The expression and secretion of cathepsin K 
elevated by RANKL was reported to diminish by Sub micro molar 
quantity of phloretin, being synchronized with inhibition of TRAF6 
induction and NF-κ B activation. Phloretin also suppressed RANKL-
induced activation of nuclear factor of activated T cells c1 (NFATc1) 
and microphthalmia-associated transcription factor [61]. Zinc inhibits 
osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 
signaling pathway. Zinc is a significant inhibitory modulator throughout 
osteoclast differentiation that acts on the Ca2+-Calcineurin-NFATc1 
signaling pathway. Silibinin is a component Silymarin-rich milk thistle 
extracts (MTE) which is reported to have enhanced alkaline phosphatase 
activity of osteoblasts but reduced tartrate-resistant acid phosphatase 
(TRAP) activity of osteoclasts. Silibinin inhibited femoral bone loss 
induced by ovariectomy and suppressed femoral TRAP activity and 
cathepsin K induction accountable for bone resorption [62,63]. Fisetin, 
a flavonol found naturally in many fruits and vegetables, suppressed 
osteoclastogenesis by disturbing receptor activator of nuclear factor 
(NF)-κ B ligand (RANKL)-mediated signalling pathway and demoting 
osteoclastogenic protein orientation. When fisetin was added to 
RANKL-exposed macrophages the formation of tartrate-resistance 
acid phosphatase-positive multinucleated osteoclasts was suppressed 
[64,65]. Carfilzomib inhibits PTH-induced RANKL expression and 
its oblique effect on osteoclast genesis by blocking NF-κB activity in 
osteoclasts [66]. Salicortin inhibited RANKL-induced c-Jun N-terminal 
kinase and NF-κ B activation, simultaneous with retarded IκBα 
phosphorylation and inhibition of p65 nuclear translocation, leading 

S. 
No Anti resorptive agents Molecular targets Studies supporting the 

targeting compounds
1 PLA NF-κ B, MAPK [68]
2 Melatonin NF-κ B, NFATc1 [69]

3
GNPs-ALD (Gold 
nanoparticles and 

alendronate)

Farnesyl 
pyrophosphate 

synthase
[61]

4 Carfilzomib NF-κ B [66]

5 Salicortin
c-Jun N-terminal 
kinase, NF-κ B, 

NFATc1
[67]

6 Fisetin TRAP [65]
7 Silibinin TRAP and Cathepsin K [64]
8 Zinc Ca2+ -Calcineurin [72]

9 Phloretin
RANKL,Cathepsin 
K, TRAF6, NF-κ B, 

NFATc1.
[63]

10 Odanacatib Cathepsin K [62]

Table 1: Molecular targets to enhance bone health.
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to impaired transcription of nuclear factor of activated T cells c1 
(NFATc1) and expression of osteoclast-specific genes [67]. Palmitoleic 
acid (PLA) inhibits RANKL-induced formation of osteoclasts and 
interfered with the expression of osteoclast-specific genes in vitro. PLA 
inhibited the activation of the NF k B and MAPK pathways, offering a 
possible mechanism of action for its anti-osteoclastogenic effects. PLA 
further stimulated apoptosis in mature osteoclasts [68]. Melatonin 
directly suppressed osteoclast delineation through down regulation of 
NF k B pathway and following NFATc1 transcription factor induction. 
Notably, the anti-osteoclastogenic effect of melatonin was supposed 
to independent of plasma membrane melatonin receptors MT1/MT2. 
Since melatonin also has been known to increase osteoblast genesis 
and bone maturation, it might be beneficial for the use of melatonin in 
bone-resorption associated diseases [69,70].

Discussion and Conclusion
Hyperglycaemia in diabetic individuals, inhibit osteoblastic activity 

decreases collagen growth, induces apoptosis in lining cells of bone 
and increases osteoclastic activity due to continuous inflammatory 
response. Bisphosphonates are commonly used to decrease bone 
resorption by inhibiting the activity of osteoclasts. This inhibition is due 
to many effects such as cytoskeletal disturbance, changing intracellular 
protein traffic, blocking intracellular signal transduction pathways, 
and induction of osteoclast apoptosis. By doing this, bisphosphona 
tes suppress bone-resorption. Amongst bisphosphonates, 4-amino-l-
hydroxybutylidene-l, l-bisphosphonate (alendronate, ALD), has been 
widely used to reduce bone fracture and to cause a continued increase 
in bone mineral density in postmenopausal osteoporotic subjects. 
Problems such as suppression of bone formation and jaw necrosis 
may occur due to excessive inhibition of bone resorption. This is due 
to difficulty with repairing small bone damage as the bone conversion 
is inhibited. This is especially prevalent with alveolar bone, which has 
a ratio of bone conversion 3-10 times higher than other bone tissue in 
the body. The oral mucosa, which is weaker and thinner than mucosa 
of other regions, can be negatively affected by the drugs. To avoid these 
effects, it is necessary to have a drug-delivery system using a carrier to 
target specific sites. Since no side effects have been reported the efficacy 
of products like PLA, melatonin, fisetin, silibinin, phloretin, salicortin, 
cafilzomib and odanacatib with zinc supplementation seem to have a 
promising role on bone restoration in diabetic osteolysis.
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