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Abstract

It has recently been proposed that glycans, being the third alphabet of life, interact intricately with endogenous
biomolecules to modulate tolerance, immune and inflammatory responses. Specifically, food glycans could impact
health and be a source of inflammation and age-related diseases. These special carbohydrates are present as
glycoconjugates (glycoproteins or glycolipids) in and on the surface of all the cells (glycocalyx) of all organisms or
are found in free form in biological fluids. Recent advances in glycobiology and glycochemistry have shown how
glycans bind with naturally present human proteins (lectins), through protein-carbohydrate interactions (or PCI), but
also how oligosaccharides can interact with other glycans, present throughout the human body (through
carbohydrate-carbohydrate interactions, or CCI). Oligosaccharides present in food sources, which go beyond the
definition of normal fibers, once ingested are then either absorbed in the bloodstream, where they are recognized by
the immune system, or interact with the surface of GI epithelial cells, thus generating appropriate biochemical
cascades that induce a tolerance or immune/inflammatory response. Because the ABO epitopes have been
encountered on all human cells, not just erythrocytes and based on the different biotypology (A, AB, B, and O)
impose morphic changes in the distribution of the glycans on the glycocalyx (lipid rafts and clustered saccharide
patches), their CCI with food and microbe glycans will be different, thus, eliciting contrasting responses. This can
explain the epidemiological data for blood type diets (BTD). Through continuous consumption of the wrong types of
glycans, processes of chronic inflammation could be initiated and progress to accelerated aging. Four basic modes
of action have been identified showing how glycans can trigger inflamm-aging. Since glycobiology is a young
science, further studies with newer technologies are warranted for advancement in this field.
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Introduction
It is a well-established fact, now, that complex carbohydrates are

ubiquitous in nature [1]. Carbohydrates are also called glycans to
underline the functional diversity and complexity of their structural
composition [2]. For over a century, the areas of nucleic acids, proteins
and lipids have captured the attention of investigators worldwide [3].
On the other hand, carbohydrates, due to their inherent higher
complexity and non-genome origin, have only more recently received
increased attention through the expanding field of glycobiology [4-6].

Because of their unique chemical properties, glycans have
unsurpassed structural variability, and enormous changeability beyond
the simple sequence, as for proteins or nucleic acids [7]. The presence
of an anomeric carbon atom, the possibility of linkage formation
involving different acceptor sites and the ring size with frequent
occurrence of branching and site-specific modifications allows glycans
to display unique properties [8,9]. Hence, it can be stated that the
proteosome and the nucleosome are no match for the glycome, as the
coding capacity of the oligosaccharide language is simply orders of
magnitude higher [10]. Only recently these ubiquitous molecules have
been considered in nutrition and have been associated with many
factors linking food components to health or disease [11]. Given the
recent advances in glycobiology and glycochemistry, it is about time
that nutritional sciences incorporate such tiny sweet molecules as
fundamental constituents of the nutritional environment [12].

Literature Review
Although blood type diets (BTD) have been around for a couple of

decades, it has slowly gained momentum and widespread attention
[13]. Since it was launched in 1996, several physicians have
experimented (through empirical observations) with the diet and have
found strong evidence in favor [14-17]. Nevertheless, it is reported that
there’s a lack of evidence supporting the BTD hypothesis [18]. To date,
only one serious mechanistic explanation, apart from the lectin
hypothesis, has been put forward for BTD and involves the
intervention of glycans [11]. Their presence in food and their
particular biochemistry make them exceptionally prone to interact
with human biomolecules and elicit and modulate immune and/or
inflammatory responses [11,19-22]. Ultimately, these processes of
inflammation and immune tolerance could be regarded as possible
underlying initiators of aging and age-related diseases [23,24].
Inflamm-aging (aging from inflammation) is deemed the long-term
result of chronic stimulation of the innate immune system [25]. In
order to understand how glycans molecular biology and biochemistry
influence the process of aging and disease, a cursory overview of their
occurrence, antigenicity and immune signaling potential is required.

Glycocalyx and signaling mechanism
The cell surface is literally coated with carbohydrates in the form of

glycoproteins, with oligosaccharides (sugar residues), proteoglycans,
with polysaccharides, and glycolipids (as glycoconjugates) [26,27]. This
layer is called the glycocalyx and is responsible for a vast number of
biological functions [28-30]. Some of the most important roles include:
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ion exchange, receptors, cellular recognition, cell adhesion and
development, regulation of myriad receptor: ligand interactions at the
cell surface, to protein folding and activity [31-33]. Others are more
related to immune regulation, such as modulation of signaling, or
direct immune regulation self or non-self-recognition and homeostasis
[34-37].

Moreover, the outer layer glycocalyx interacts with the extracellular
matrix (ECM). This can occur due to the closeness between the two
layers [38]. The ECM is composed primarily of glycosaminoglycans
(GAGs, such as heparan sulfates, chondroitin sulfates and hyaluronan)
and proteoglycans (PG, of two main families, syndecans and glypicans)
[39]. For further reference, authoritative and comprehensive reviews of
the biological roles of glycans and their impact on the immune system
are available [12,40,41]. It is undeniable that glycan-binding proteins
(GBPs), or lectins, play a pivotal role in many different aspects of the
physiology, including the immune defence [42].

There is evidence for a myriad of roles for lectin-carbohydrate
interactions, including intracellular signaling pathways that regulate
the immune response [43,44], and modulating roles in many different
biological processes [42,45]. This suggests that lectins and sugars
mediate their effects through non-redundant pathways [46]. Several of
such GBPs function as pattern recognition receptors (PRRs) [43].
PRRs are receptors that recognize a wide variety of external pathogen-
associated molecular patterns (PAMPs) [47]. PRR also react to
endogenous molecules like damage associated molecular patterns
(DAMPs), closely linked to inflammation [48]. Activation of
membrane-bound or intracellular PRRs by special exogenous and
internal determinants initiate signaling events linked to innate
immune responses [49]. C-type lectin (CTL) receptors (CLRs) are
among the most efficient PRRs and interact with glycan structures on
microorganisms leading to adaptative immune response [50].

Another phenomenon known as ‘lipid raft’, has a central role in this
signaling scenario [49,51]. Lipid rafts are essentially the
compartmentalization in time and space of lipid and protein cargo on
the plasma membrane of cells [52]. The cell membrane is starred also
with sphingolipids and glycosphingolipids (GSL) forming special
microdomains [53]. Both glycolipids, glycoproteins and GPI proteins
can reorganize (or self-associate) themselves spatially on the cell
surface in these microdomains [54]. The reorganization in lipid rafts
occurs through protein-carbohydrate interactions (PCI) or
carbohydrate-carbohydrate interactions (CCI) to form glycolipid-
enriched membrane microdomains of submicron length [31,55,56].
Many proteins with raft affinity, all heavily glycosylated have the ability
to laterally segregate in fluctuating nanoscale assemblies (membrane
sub compartmentalization) of sphingolipid, cholesterol, and proteins
[57,58]. Multivalent binding between carbohydrates and proteins
increases the avidity of cell signaling, molecular recognition and
inflammations [59].

Lipid rafts, consisting of clusters of structural proteins, enzymes,
and signaling receptors, regulate several biological functions, especially
signaling events [60]. This has been confirmed by other studies
suggesting that such rafts could play an important role in many cellular
processes including membrane trafficking, cytoskeletal organization,
and pathogen entry [61-63]. Moreover, galectin-4 or -8, can bind to
and cross-link multivalent glycoproteins and glycolipids of lipid rafts,
leading to formation of micro domains and lattices that initiate signal
specific pathways [64,65]. The formation of these lipid raft assemblies
are known to be responsible for initiating many signal transduction
pathways, including those for immune cell activation [36]. Finally, the

(epithelial) glycocalyx has emerged as an important participant in
modulating inflammation, infection and allergic processes [39].

Food glycans and antigens
Food antigens: Dietary antigens or allergens (substances present in

food) are known to elicit immunologic reactions generally defined
under the category of food hypersensitivity (FHS) [66]. Among the
many types of reactions to food components, dietary cross-reactive
antigen epitopes have often been associated with food allergies and
food intolerances [67]. In literature, epitopes are implicitly assumed to
exclusively consist of amino acids, but glycan epitopes and classical
haptens are important IgE-binding epitopes [68].

A hypothesis that the carbohydrate structures are another potential
source of immunological cross‐reaction between different plant
allergens was proposed in the 1980s [69,70]. Since then, many food
glycans (as xeno-glycans) were isolated, identified and structurally
characterised [71,72], called cross-reactive carbohydrate determinants
(CCD) [73]. CCDs generally have vast structural variability consisting
of oligomannosidic hybrid or complex type structures [74,75]. These
CCDs have been shown to have immunomodulatory weak allergic
and/or non-allergenic immunogenic properties, either as free
(unlinked) glycans or on (glyco)protein allergens [70,76-78]. Some
may also cause false-positive allergologic tests [75]. Identifying the
number, structure, and function of glycans in cellular biology is a truly
daunting task [28]. Glycans are present on a myriad of nuclear and
cytoplasmic proteins [29]. Furthermore, they are endowed with diverse
and complicated structures, typical of oligosaccharides (chains of
monosaccharides between 3 and 20 sugar units in length) [76].
Dissimilarly to proteins or nucleic acids, which are linear, the
glycosidic linkage in oligosaccharides have multiple attach points on
the sugar ring, thus allowing both linear and branched structures
(called antennae) [7]. The majority of bi-, tri-, and tetra-antennary
glycans found in nature have diverse sugar residues linked to the
terminal N-acetylglucosamine (GlcNAc) giving rise to distinct glycan
determinants [79].

The main carbohydrates included in human diet are polysaccharides
in the form of starches, with variable chain length, monosaccharides
and disaccharides (sucrose and lactose) [80]. There are other non-
starchy carbohydrates, normally called dietary fibres, that do not
possess either α or α glycosidic bonds and are hence not hydolysable by
the human digestive enzymes [1,4,6,81]. Indeed, non-digestible plant
fibers can be divided into insoluble (cellulose, hemicellulose and
lignin) and soluble (gums and pectins) fibers [82]. These can be
metabolized only by the microbiota in the cecum and colon [83].
Further types of fibre include prebiotics, such as inulin and
oligofructose (also called fructooligosaccharides (FOS))
galactooligosaccharides (GOS), and the human milk oligosaccharides
(HMO) [84,85]. These special carbohydrates, too, can manifest
properties not unlike those displayed by the food glycans previously
discussed [11].

ABO epitopes: Most interestingly, many food antigens seem to be
carbohydrate moieties similar to the histo-blood group antigens
(HBGA). Human HBGA are glycan structures and carbohydrate
epitopes present on glycoproteins and glycolipids of human cells [86].
HBGAs are classified into four groups (type 1, 2, 3 and 4), depending
on the binding position (α or β) of sequential carbohydrate moieties
[87]. Several studies [72,88,89] have found HBGA like glycans on
glycoproteins and glycolipids in diverse food sources such as oysters,
clams, fruits and vegetables. Recently researchers have also found
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HBGA-like saccharides on the cell wall of lettuce [90]. ABO group
determinants were first discovered in the blood. The ABO blood group
is the most important blood group system in transfusion and
transplantation medicine [91]. The ABO blood system consists of four
blood types (A, B, AB and O) [92]. Three variant alleles (A, B, and O)
of a single gene on chromosome 9q34, the ABO gene, determine a
person's blood type by encoding two active glycosyltransferases (A and
B) with different substrate specificities [93]. The H or O antigen
encodes an inactive glycosyltransferase [92].

The ABO blood group is intimately linked to another blood group
of carbohydrate origin: the Lewis blood type [94]. Serologically, Lewis
status is defined by the expression of two main antigens: Lea and Leb
antigens [95]. Four possible Lewis phenotypes, although only three are
commonly encountered in adults : Le(a+b-), Le (a-b+), and Le(a-b-).
Lewis glycans are also important in the distinction of humans into two
categories based on secretor and non-secretor status [94]. The HBGA
and ABO moieties have a wide tissue distribution in human cells [96].
In addition to their expression on the surface of red blood cells, the
ABO and Lewis antigens are highly expressed on the surface of
epithelial cells of the gastrointestinal (GI), bronchopulmonary, and
urogenital tracts [88]. The expression of ABO antigens is also found on
lymphocytes, platelets, endothelial cells and most epithelial cells
[97,98]. Moreover, they are found in the saliva in several other
biological tissues, in human milk (also as free oligosaccharides), and in
general on the mucosal epithelium of the GI tract [76,89,99-103].

The other two carbohydrate antigen systems closely linked to both
ABH and Lewis are Li and the globo series (P antigens), often found
on glycolipids [41]. ABH antigens on red blood cells can modulate
cellular interactions without being a direct ligand themselves, but by
stabilizing other carbohydrates on the fluid cell surface in clusters
(called “clustered saccharide patches”) [104]. Depending on the ABO
blood type, the ABH antigens could interact through CCI or PCI with
other glycans making them more (or less) accessible to relevant GBPs.
The clustering of these closely spaced oligosaccharides, forced into an
uncommon conformation, favors a high-affinity recognition needed
for correct GBP binding to the glycans [105]. The stabilizing effect of
these clusters demonstrated that the HBGAs can effectively modulate
CCI involving other glycans (α2-3-linked Sias and α2-6-linked Sias),
without being directly involved or being the primary target of GBPs
[106]. Hence, glycan diversity together with special spatial
conformation (unique clustered saccharide patches facilitated by ABH
antigens) can be differentially recognized by GBPs, showing binding
specificity [107].

Glycan Reactions
Lectins: Glycans, as highly structurally variable biomolecules can be

selectively and with high affinity bound to special proteins, called
lectins, present ubiquitously and abundantly in all phyla [7,108].
Although lectins (GBPs) recognize glycans with high affinity,
nonetheless glycans display also multivalency as a feature by which
their density and spatial organization can modulate the binding [109].
This effect, known as glycoside cluster effect, provides a mechanism for
enhancing the overall affinity and selectivity of glycan recognition by
lectin [110].

Several GBP (or carbohydrate-binding proteins, CBP, namely
lectins) are present in nature and have been recovered in diverse food
sources, being widely distributed among plants and animals [111].
Lectins are known to be anti-nutritional factors and to cause intestinal
disorders [112]. The original mechanism to explain the workings of

BTD was based on the presence of lectins in foods [113]. These CBPs
are generally very resistant to heat and digestion, and have been
recovered in active form throughout the colon and in the faeces
[114,115]. CBPs are so selective that they are capable of recognizing
just one to four monosaccharides organized in a special arrangement,
called motif [116]. Lectins also showed polyvalent behaviour
displaying the ability to bind to various glycoforms [117].

The binding of lectins is inhibited by most high-density polyvalent
oligosaccharides-containing glycoproteins and their cryptoforms,
masked by similar sugar residues such as blood group determinants or
sialic acids [117]. Dietary lectins act as PRRs which bind to specific
epitopes on surface glycoproteins (or glycolipids) on the glycocalyx of
several cell types [118]. Quite a few hundred plant lectins have been
identified so far, with various classification systems being proposed
[119]. Some toxic effect of lectins can be attributed to the partial
resistance to proteolysis in vivo [113]. But this explanation may not be
only valid for local (GI) effects, but also for systemic effects as lectins
can induce IgE-mediated and IgG-mediated reactions [112]. Although
some lectins are known to resist degradation in the alimentary canal
and crossover to the circulatory system, they are normally not
expected, as proteins, to be absorbed as is [120]. Anyhow, there is a
lack of depth of the mechanistic complexity needed to entertain the
many biochemical and biological phenomena (inflammatory and
immunologic reaction) that result from food consumption.

Glycans: An innovative mechanism is required as both central and
supplementary to the already existing one. Food glycans (like all
glycans) have special biochemical properties that allow them to
manifest molecular mimicry (structurally similar though with
chemically different features) with HBGA [108]. Molecular mimicry is
the phenomenon in which glycans with various structures and
different moieties can appear to be identical or nearly identical to those
found on their host cell surfaces [12]. The mechanism considers
molecular mimicry as a fundamental property of glycans. Nevertheless,
the following mechanism for generation of immune and inflammatory
responses is an incomplete summary of all the possible interactions of
food glycans with the human biochemical network. Four principal
modes of action (MOA) have been identified.

The starting point is the ingestion of oligosaccharides with food. The
oligomeric sugar moieties present unbound or bound on the
glycoconjugates of the various food items are not degraded during
digestion [69,84]. Once the undigested carbohydrates arrive intact at
the level of the intestinal mucosae, they can either

1) Interact with the human lectins, such as galectin-4 or -8, present
in the GI tract [121,122], or

2) React with glycans of glycoconjugates of various types on the cell
membranes of the enterocytes [117], or

3) Be processed differentially by the gut microflora resulting in (a)
Production of useful short-chain fatty acids (SCFA), which have
beneficial effects [123]. (b) Variation of the composition of the gut
microbiota (positively or negatively], which will consequently
influence inflammation [124].

4) Be absorbed into the internal milieu by diffusion or pinocytosis
where they (a) Are presented to the APCs (antigen-presenting cells),
such as dendritic cells, which will present the glycan for the generation
of specific anti-glycan antibodies (AGA) [34,125]. (b) Interact with the
complement proteins through the lectin pathway.
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Either one of these distinct MOA (1, 2, 3 and 4) will elicit or
modulate an immune, tolerance or inflammatory response [35,44,126].
It is also likely that all of these MOA can occur at the same time and
for each glycan (depending on the concentration and food kinetics).

Moreover, all of these MOA are modulated by HBGAs, as the
principal glycoform ubiquitously present in humans. The HBGAs can
interfere in the binding of endogenous lectins to antigens, so that ABO
blood group can differentiate individuals and their reactivity towards
any glycan or lectin [104,106]. The presence of a particular blood
group glycan can modify the glycan reactivity of cell surface
glycoconjugates towards human GBPs (PRRs) or towards GBPs of
animal, vegetable (food) or microbial origin [107]. Therefore, the
HBGA epitopes of glycans on glycoproteins/glycolipids generate
specific recognition epitopes [106]. The formation of multivalent
interactions between glycoproteins/glycolipids and clustered surface
glycans is favored in lipid rafts [36]. This contributes to special plasma
membrane architecture and peculiar cellular properties, typical of each
ABO phenotype [127].

These ABO-mediated changes in membrane topology can explain
the several pathophysiologic differences between various blood groups
[128]. ABO blood type has been linked to a number of diseases,
including cancer and musculoskeletal diseases [92]. For example,
blood group A was confirmed by several studies to be associated with
elevated risk of gastric cancer, while blood group O with lower risk of
pancreatic cancer [129]. These differences may be due to the presence
of different ABO glycans. As a consequence, specific PCI or CCI with
ABO glycotopes are primarily responsible for mechanisms of self or
non-self-discrimination of our innate and adaptive immune system
[130]. Xeno-determinants can finally be recognised as self or non-self-
depending fundamentally on the resemblance to ABO glycoforms.

The MOA 1 and 2, involving the interaction between food glycans
and human lectins and glycoconjugates, can occur also on other cells
once they are passing the intestinal barrier. As glycoconjugates are
abundant in food items, the density and concentration of these glycans
reaches a considerable amount. There is increasing evidence that even
low concentrations of these glycans are enough to reach signaling
threshold and initiate numerous biological processes [29].

MOA 1: The undigested oligoglycans (for example HBGA-like
moieties found in food, xenoantigens) form high affinity PCI with
soluble (galectins) or membrane-bound human lectins (PRRs)
[90,131]. The interaction will impose morphodynamic changes to the
transmembrane proteins in the lipid rafts and evoke a biochemical
response [132]. Food glycans can interact with mono-, di- or
polyvalent human lectins, such as ABO specific GBPs, through PCI,
which may be multivalent to further increase the affinity by several
orders of magnitude or CCI [7,114,133]. Galectin-4 or -8, may bind to
and cross-link multivalent glycoproteins and glycolipids on the cell
surface in appropriately formed lipid rafts, leading to formation of
microdomains and lattices that initiate signal specific pathways
[64,134]. High affinity ligands to selectins, antibodies, and other types
of GBPs [105,135,136], are favored by the presence uncommon
conformations of glycans in HBGA enhanced clustered saccharide
patches. Such GBPs (siglecs and galectins) play critical roles in diverse
cellular functions such as cell adhesion, signal transduction and
immune response [137]. Galectins for example have been established
as important regulators of innate and cell-mediated immune
homeostasis, inflammation, malignancy, and autoimmune disease
[138].

MOA 2: After the first putative multivalent CCI was hypothesized,
several studies demonstrated the existence, ubiquity, polyvalent self-
interaction/recognition and strength through multimerization or
glycoside cluster effect of such interactions [31,61,101,134,139-148]. In
this MOA, the binding occurs with a high-affinity PCI and with low
affinity CCI [149]. Once PCI or CCI between glycans and surface
receptors are established, the formation of special cross-linking
between GBPs and glycoproteins, called lattices, may be favored or
impeded depending on the particular functional and spatial
conformation of the membrane lipid rafts [60].

Lipid rafts are glycolipid enriched domains that function as a
signaling compartment in the plasma membrane [63]. Several
glycoproteins in these lipid micro domains display clear signal
modulated interaction (glycosylation dependent signal transduction)
by the glycans of glycolipids, via ultralow affinity but multivalent CCI
[31,53,61,150]. The nanoscale heterogeneity of the lipid rafts is
functionalized to larger levels by lipid- and/or protein-mediated
activation events (e.g., multivalent ligand binding of glycans between
glycolipids and glycoproteins) [33]. The discrimination between self
and nonself (on the basis of glycan determinants) can be accomplished
by AGAs and GBPs of the innate immune system [79]. But this
depends on what is recognized as self therefore essentially on what
resembles the ubiquitous HBGA [11].

MOA 3: This MOA has been amply documented and reviewed
elsewhere and will be just briskly discussed [11,124]. The importance
of the intestinal microflora in health cannot be overstated [151]. As it
is known that dietary fibers allows for a more diversified gut
microbiota which is beneficial for the host, glycans are hardly ever
deemed important or spelled out. Of course, they could not have been
considered as they were practically unknown to the nutritional
community [152].

MOA 3a: Briefly, the structural and chemical variability of glycans is
so great that a vast gene pool is required to encode for enzymes
capable of degrading the diverse glycans. SFCAs have been linked to a
vast array of beneficial effects. An association between cellular
metabolism (a major energy source for intestinal cells), SCFAs, and
transcriptional regulation (with consequential immune modulation)
has recently been established [153].

MOA 3b: Microbes are known to adhere to biological surfaces,
including the surface of human cells, through PCI and CCI [154].
Since the main glycan structure in the human body is the HBGA
glycoform, microbes have high affinity to each individual’s ABO
glycophenotype. Indeed, recent findings strongly suggest HBGA are an
important factor modulating the intestinal microbial composition
[11,94]. There is hence an alignment between the host ABO phenotype
and the HBGA expressing bacteria (microbiome) [155]. Actually,
human gut microbiota degrades both dietary and host glycans with the
use of carbohydrate active enzymes (CAZymes) [156]. Those that are
better suited to attach to a particular ABO phenotype will have the
advantage to better feed on host glycans for carbon and energy
[94,157].

Diet (in the form of the types of glycans present in foods) shapes gut
microbes and affects their composition and function, impacting host-
microbe interactions [11,158]. The ingestion of the wrong glycans may
favour pathogens, or incorrectly ABO-aligned microorganisms, thus
resulting in dysbiosis (with deleterious effects) [159]. Dysbiosis will
negatively affect health.
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MOA 4a: Although there is a myriad of AGA present in human
serum, their generation and function are not well understood [125].
Normally, healthy humans harbor sets of AGA to blood group-, xeno-
(heterophil), and infection-related glycotopes [160]. If, after
presentation by the appropriate APC, an AGA recognizes a presented
food glycan to be molecularly similar to a non-self (xeno) antigen, the
AGA will react and elicit an immune response. CCDs have been
observed between environmental and food allergens through high
levels of IgE AGA [161]. For example, there are circulating AGA in
healthy humans against N-glycolylneuraminic acid (Neu5Gc) and
galactose alpha-1,3-galactose (α-gal), glycans present in dairy products
and red meats [162].

MOA 4b: A further intriguing possibility not mentioned before is
the interaction with the complement proteins (thus, directly with the
innate immune system). The complement is a complex network of
plasma proteins, present in the blood, but also in other body fluids,
and is an integral part of the innate immune system [163]. The lectin
pathway is one of the three modes of activation of the complement and
proceeds through pattern recognition of glycans by serine protease
lectins [164]. The lectin pathway uses mannose-binding lectin (MBL),
ficolins (ficolin-1, -2 and -3) as well as collectin-10 and -11 (all lectins),
as initiator molecules to recognize glycan DAMPs and PAMPs [165].
Fucolins and collectins act as PRRs forming complexes with MBL-
associated serine proteases (MASPs) to initiate complement activation
and display different and diverse specificities in their binding to ligand
(glycans) [166]. Given that diverse glycan can exhibit molecular
mimicry to resemble host glycans, it is chemically feasible that these
can also resemble PAMPs or DAMPs thus triggering complement
initiation. Unwarranted activation of complement system and tissue
deposition of complement activation products can lead to systemic
inflammation [164]. Since inflammation is the hallmark of aging,
continuous absorption of such deleterious glycans can maintain high
levels of inflammation [167].

All MOAs: Notwithstanding any of the four MOA, the result is the
same: food ingredients can interact with the human GI mucosae
and/or cross the intestine barrier into the blood stream. Specifically,
glycans can be absorbed by cells and circulate in the body [9]. Several
studies demonstrated AGA are found in the blood of non-allergic
donors, confirming food glycans can cross the barrier [168]. From
here, how the immune system perceives these glycans, self or non-self,
dictates how it will react: immune/inflammatory or tolerance response.
Notably, an association between the increased inflammatory and
immune responses and aging has already been made [169]. While over
nutrition is known to drive chronic metabolic inflammation, also
dysbiosis with the increased release of inflammatory products
contribute to inflamm-aging [25]. Ultimately, chronic low-grade
inflammation and immune response lead to accelerated aging
processes [170]. This glycan interaction explanation for immune and
inflammatory processes is not meant to substitute the previously
confirmed ABO-food interaction (food lectins binding to human
glycoconjugates) but to be supplementary to it.

Discussion and Conclusion
The BTD was first proposed by PJ D’Adamo in 1996 [171]. The

scientific community has been healthily skeptical towards these claims
for lack of a controlled, randomized trial, but also for lack of a coherent
mechanism [15,172,173]. What has been concisely and incompletely
expounded is a complex network of interactions (between endogenous
and xeno glycans, microbiota and human GBPs), that influence health

and may trigger immune and inflammatory processes [11]. The actions
of GBPs have been well studied and verified in the context of
carbohydrate recognition for or a wide range of biological activities,
This overview takes into account the number, structure, and function
of glycans in cellular biology in sum it encompasses the multifaceted
reality of glycan chemistry and the glycome [28,174,175].

Nearly every disease process (mostly involving disordered
inflammation and immunity), that affects humans and other animals,
pertain to glycans [29]. Science is homing into the definition of the
exact mechanism for several food hypersensitivities and, slowly, it will
be possible to isolate the specific food glycan structures responsible for
inflammatory and immunogenic responses [43,44]. It has been shown
that food glycans can cause inflammation or immune-mediated
responses based on ABO typology, as recommended by the BTD
[34,59]. Given the multifaceted biochemical activities of the ubiquitous
glycans, their chemistry and biology, following BTD may help reduce
the sources of inflammation [11,176]. As a consequence of continuous
ingestion of non ABO aligned glycans, chronic inflammation could
develop by any of the mentioned MOA and persist leading to
accelerated aging [169].

Because of the various specificities between lectins and the myriad
different glycans (interactions between proteins and glycolipid
complexes glycolipids and glycolipids, and glycolipids and other
carbohydrate complexes), it is not astonishing that the role of food
glycans has been missed until now [135,144]. The dearth of
information concerning glycans and their presence in food is due
essentially to the lack of access to glycans, the poor throughput of
traditional assays and the challenges of profiling of AGA [125]. Studies
in this field are poised to accelerate greatly due to the availability of
high throughput and high-content technologies such as the multiplex
glycan bead array (MGBA) [137]. As we progress through technical
advances (biophysical approaches), we will be able to create new
methods to distinguish subtle differences of microdomains and thus
find new PCI and CCI between glycosyl epitopes on glycoproteins and
glycolipids [61].
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