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Abstract
With the increase in human activities in cold environments, the risk of an oil spill has become higher due to the 

necessity of using oils to generate energy. Several accidents have occurred in the Arctic and Antarctic involving 
severely contaminated areas and chronic levels of contamination. In the Antarctic, the main occupations are 
permanent scientific and military stations, most of which are active throughout the year. Several studies evaluating 
the potential for biodegradation were performed using Antarctic soils, and the results were promising; however, there 
are no studies on the bioremediation process in soils from the core of the continent, only from the shore regions. The 
Antarctic continent contains a diverse microbial community that can degrade oils even under extreme conditions. 
In this regard, bioremediation treatments are indicated to promote a sustainable, low-cost and efficient recovery 
process that must be performed as soon as possible after the spill to improve this efficiency. This paper provides an 
unprecedented review of the bioremediation process exclusive to Antarctic soils; provides the necessary knowledge 
for consolidating the bioremediation process in the Antarctic environment; and suggests strategies for applying these 
techniques. 
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Introduction
Bioremediation has been considered a method for promoting 

the recuperation of contaminated environments at both higher and 
lower temperatures for at least four decades [1,2]. Biodegradation by 
microorganisms appears to be the most efficient and economically 
viable method that poses the lowest risk to the environment compared 
with other approaches [3-5]. Biodegradation techniques focus 
on utilizing natural biological activity to decrease toxic pollutant 
concentrations [6]. 

The bioremediation of petroleum hydrocarbons has been widely 
studied in different environments to build knowledge regarding 
biodegradation and the possible consequences after an oil spill. 
Several studies in the literature have shown that after an oil spill, 
various important processes may occur, including sorption, the 
abiotic processing of volatilization (chemical or photochemical), 
bioaccumulation and absorption by soil particles and biotransformation 
[7]. The effect and efficiency of hydrocarbon degradation depends 
on several factors, including temperature, bioavailability, access to 
microbial cells, metabolic limitations, oxygen, alternate electron 
acceptors, nutrients and toxicity [3]. However, despite the accumulated 
knowledge about biodegradation, the study of bioremediation in an 
Antarctic environment is minimal because the challenging conditions 
found in this continent alter and promote the rearrangement of all of 
the important factors [3].

Because of the geographic isolation and difficult life conditions, 
the Antarctic continent remained without human intervention until 
the XX century [8]. Even today, the continent is used primarily as a 
research resource, and many research stations have thus been built in 
different regions to host researchers from various research areas (Figure 
1). This occupation began in 1958 due to the International Geophysical 
Year; since then, fifty-five research stations have been built and are now 
occupied by more than five thousand people [8]. 

The annual human activities on the continent demand basic 
conditions such as energy generation, and oils of fossil origin are 
frequently used to supply this energy. Both exploration and the 
transport and storage of fuel oil promote increased accident risks [9]. 

Fuel oil spills are among the main sources of contamination caused 
directly by humans in the Antarctic environment [8]. The fuels and 
oils consist of alkanes and polyaromatic hydrocarbons (HPA) that 
are persistent in the environment [10,11] and have mutagenic, toxic 
and carcinogenic effects [12]. However, the main oil blends used in 
the Antarctic, which are, consequently, the most present in chronic 
contaminations across the continent, consist primarily of C9-C14 
aliphatic hydrocarbons [13,14]. According to previous research, the 
cold environment can be more severely affected by contaminants than 
other environments, even at the same contamination level, because the 
necessary cold adaptions make these environments more sensitive [15].

There are many chronically contaminated sites near research 
stations [16], and some studies have already reported high 
contamination levels near McMurdo Station (USA Antarctic station)
[17,18]. These high levels of contamination probably occurred when 
there was no regulation of the treatment of generated waste [19], and 
the difficult environmental conditions combined with low evaporation, 
photo-oxidation, low humidity and nutritional limitations led to the 
persistence of those compounds for decades after the spill [16,20,21]. 
Now, all research stations built in the Antarctic should treat their waste 
and take care to avoid environmental contamination in accordance 
with the Antarctic treaty [22]. However, there are still no overall 
guidelines in the case of future contamination in Antarctica [23].

Over the last few years, the bioremediation applied and studied 
in the Antarctic has been linked to Arctic bioremediation due to the 
low temperatures in both climates. However, we realize that there are 
many special features that require additional analysis, and additional 
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considerations must be accounted for to help improve the knowledge 
of bioremediation in the Antarctic environment. To date, knowledge 
regarding emergency procedures in the Antarctic continent is scarce, 
and there is no strategy to be followed after accidental spills [3].

Environmental Factors and Bioremediation Techniques 
Applied 

The Antarctic continent is defined as all landmass, ice shelves and 
sea in the area below 60°S [23]. The continent can be divided into two 
large areas based on climatic and biotic features. The first comprises 
the Antarctic Maritime, including South Sandwich island, Bouvetoya 
island, South Orkney island, South Shetland island and the area east 
of the Antarctic Peninsula. The second comprises the Continental 
Antarctic, including the area west of the Antarctic Peninsula and the 
rest of the continent [24]. In these regions, environmental conditions 
are driven by topology, altitude and sea proximity. For example, the 
soil pH can vary dramatically depending on the origin material [25]. 

One of the harshest Antarctic environments is a region called the 
McMurdo Dry Valleys. This region is located between the Polar Plateau 
and the Ross Sea in Southern Victoria Land [26] and is characterized by 
a large temperature variation. The annual means are between -15° and 
-30°C, but the surface soil temperature can exceed 0°C in the summer 
[27]. Mineral soil is present in ice-free areas, and this region exhibits the 
most ‘’dry’’ environment in relation to nutrients, water and energy [26]. 
Because of these difficult conditions, research in this area is rare and occurs 
primarily in tents; consequently, the impacts generated are lower, but 
great care is needed in the future because the environmental conditions 
make the recovery process through biodegradation very difficult. 

The best region for successful bioremediation in the Antarctic is 
the Maritime Antarctic. In this region, temperatures above 0°C are 
common in the summer, as at King George island. However, in the 
Antarctic, the pH ranges from 6 on the island to 9 on the shore [16], and 
soils with pH levels over 8.8 have been shown to exhibit more efficient 
hydrocarbon biodegradation [10,28]. This difference in the pH range is 
due to the proximity to the sea, which results in an increased influence 
of the sea currents from the tropics [29]. Many research stations are 
in this region, and a considerable ship flux crosses it, carrying food, 
vehicles, tourists and fuel [30]. 

Temperature is among the most important factors in determining 
the success of biodegradation for many reasons. Microorganisms need 
an ideal temperature, normally from 15 to 30°C in aerobic conditions 
and 25 to 35°C for anaerobic processes [31], to metabolize their 
substrates and thus promote their elimination. Low temperatures make 
this process difficult because the microbial metabolism decreases at 
lower temperature, and the biodegradation taxa consequently decrease 
as well [32]. Additionally, low temperatures increase oil viscosity, reduce 
evaporation and increase water solubility, delaying the biodegradation 
process [33,34]. Because of these cited factors, bioremediation 
treatments are indicated in summertime, when the temperatures are 
higher, the soils are unfrozen and water is available [20]. However, in 
the case of spills, low temperatures can be used positively because snow 
can contain the contamination as a containment boom and slow the 
penetration of the spilled oil by acting as an absorbent material [3]. 

Bioremediation treatment under aerobic conditions is more efficient 
than under anaerobic conditions because the major degradation 
pathways involved in the aerobic hydrocarbon degradation process 
generate more energy and consequently occur faster [3]. Nearly 0.3 g 
of oxygen is necessary for each gram of oil oxidized [35]. Therefore, 

oxygen limitation could be among the main causes of bioremediation 
failure. The Antarctic continent is generally well aerated throughout 
the year by strong winds [27], and the soil has high granulometry 
[26], which facilitates aeration. The microbial community, which can 
promote biodegradation through aerobiosis, should also be able to 
internalize the substrate once the general biodegradation of chemicals 
occurs inside the cell [3]. 

This contact and capacity of microbial cells to internalize a substrate 
is called bioavailability, and it is crucial for the biodegradation process. 
In environments with temperatures lower than the freezing point, the 
channels across the cell membrane may close, and the cytoplasmic 
matrix can freeze, thus halting the cell functionality [36]. The aqueous 
solubility of a contaminant correlates inversely with adsorption, which 
is another factor that can disturb the bioavailability [37], because 
when the contaminant is absorbed by organic soils, its bioavailability 
decreases, and biodegradation tends to stop. In that situation, previous 
research has suggested that cold-active solubilizing agents could be 
a good option to solve this problem [33], such as the bioemulsifiers 
produced from the bacterial strains [38,39]. In the Antarctic continent, 
some of the organic soils are called ornithogenic soils; they are 
important for the presence of penguins and have special characteristics 
such as acidic pH and higher nutrient levels [16].

In the bioremediation process, nutrients and organic compounds 
are important as carbon sources or electron donors, and inorganic 
nutrients such as cations, nitrates and phosphates are also needed [3]. 
When a spill occurs, the carbon:nitrogen:phosphate (C:N:P) ratio in 
the soil tends to become unbalanced, and a rapid depletion of nitrogen 
and phosphorus often occurs, making these two compounds limiting 
factors [40]. However, Antarctic soils are generally poor in nutrients 
[16,41], which can halt degradation. In that case, the addition of 
fertilizer could solve the problem and supply the necessary nutrients 
to promote the process. In Antarctic environments, the freeze-thaw 
cycles are frequent every year and should be considered when adding 
fertilizer to the soil because the unfrozen water flux tends to disturb the 
nutrient distribution and unbalance the C:N:P ratio again. Fertilizer 
supplementation should be performed with care because excessive 
nitrogen levels may result in an inhibition of microbial activity [42]. 
Large amounts of contaminants can also inhibit biodegradation 
when the concentration is above the toxic threshold [37]; in this case, 
bioremediation should not be implemented without the prior use of 
physical removal methods.

Application 
Bioremediation treatments can be classified into two categories: in 

situ and ex situ. In situ treatments are characterized by avoiding the 
removal of contaminated material from the site where the recovery 
is performed. In ex situ treatments, the contaminated material is 
removed, treated, decontaminated, and subsequently returned to the 
site where the contamination occurred. Due to the inability to transport 
contaminated Antarctic soil, in situ treatments are more indicated. 
Among such treatments, biostimulation and bioaugmentation are the 
two techniques most cited in the literature [6,43,44]. 

Biostimulation consists of adding nutrients to the soil and to 
maximize the biodegradation by balancing the C:N:P ratio, which is 
very important for achieving an ideal nutrient concentration and 
consequently efficient remediation with less cost [45]. This technique 
also aims to adjust the pH and correct the moisture and aeration 
[46], thus promoting and increasing the ability of indigenous 
microorganisms to degrade the pollutant [47]. This technique is among 
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Stations located at Brans�eld Strait:

Comandante Ferraz Antarctic Station

Machu Picchu Research Station

Henryk Arctowski Antarctic Station

Jubany

King Sejong Station

Artigas Base

Great Wall Station

Frei, Escudero , Arturo and O'Higgins

Bellingshausen Station

Juan Carlos I and Gabriel de Castilla

Ohridski Base

Maldonado and Vicente Base

Figure 1: Map of the Antarctic Continent showing the locations of permanent and semi-permanent Antarctic Stations of each country (red circles) and of in 
situ bioremediation treatments conducted (green circles). Map adapted from http://lima.usgs.gov and station locations provided by the COMNAP Antarctic 
Facilities Map (HYPERLINK “http://www.comnap.aq” \t “_blank” www.comnap.aq).

the most strongly indicated to promote soil recovery in the Antarctic 
because we know that microbial communities exist in Antarctic soils 
and are able to degrade hydrocarbons [21,48]. The application of 
biostimulation to Antarctic soil has been described for some time, 
and the mineralization of alkanes has already been shown, using the 
addition of nitrogen to the soil in the forms of nitrate and ammonium 
[10]. Biostimulation was successfully performed in sub-Antarctic 
regions, and the soil properties had a great influence on the process 
[49]. According to this study, biostimulation presented better results 
when applied in mineral soil than in organic soil for both types of oil 
used (crude oil and diesel oil). Furthermore, the temperature was also 
important, as the degradation levels ranged from 76% to 96% at soil 
temperatures of 4 and 20°C, respectively.  

In the case of low abundance or low metabolic activity of 
indigenous hydrocarbon-degrading microorganisms (e.g., due to lower 
temperature), the addition of microorganisms that were previously 
isolated in the laboratory and are known to be able to degrade 
the compound of interest can be used to improve biodegradation 
[42,50,51]. This technique, called bioaugmentation, aims to maintain 
a high microbial biomass [44]. In this regard, native and non-native 
species could be used, but indigenous species are preferred to reduce 
the environmental impact [52]. In accordance with the Antarctic 
treaty norms, the introduction of strange biological material is 
not permitted. During bioaugmentation, the possibility of total 
mineralization increases when a microbial consortium is used instead 
of only one organism r [53,54]. This increase is because normally, the 
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alkanes with chain lengths from C6 to C20, known as persistent 
fractions in Antarctic soils [10], as well as aromatic compounds [70]. 
Despite their slow growth, these bacteria have good substrate affinity 
and persistence in the environment [69], which suggests that they 
may be successfully used in the Antarctic bioremediation process. 
Although they can adapt to sub-zero temperatures, their ideal growth 
temperature is above 15°C [71]. Similar Rhodococcus strains seem to 
be found in different types of contaminated Antarctic soils, suggesting 
that their presence is linked to the presence of contamination and not 
to the type of soil [57,71]. 

The Acinetobacter genus has been reported as another important 
hydrocarbon degrader in Antarctic soil [16,72]. The strain Acinetobacter 
B-2-2 was used together with a Rhodococcus ADH strain in a 
microcosm experiment [57] and was able to degrade 81.1% of the oil 
in a pristine soil contaminated for the experiment, compared with the 
75% degradation obtained by the strain Acinetobacter B-2-2 used alone 
in a previous study [42]. When the Rhodococcus ADH strain was used 
alone, a decline occurred in the number of bacteria, but this decline did 
not occur when both strains were used together. These data suggest that 
the decline could be caused by an incompletely oxidized compound 
with toxic effects [73], but when both strains were used together, they 
could use different catabolic pathways and thus generate a synergistic 
cooperation whereby the toxic compounds produced by one strain 
were consumed by the other [57]. In this regard, the authors suggest 
that when a spill occurs in pristine Antarctic soil, a bioaugmentation 
process might be adequate to promote fast degradation. In chronically 
contaminated soils, however, the bacterial flora has been enhanced by 
long-term exposure to the pollutant, and thus it is not necessary to add 
new organisms for degradation.

Bacteria from the Pseudomonas genus are known as one of the 
major hydrocarbon-degrading groups [74]. They are recognized as 
highly efficient hydrocarbon-degrading, cold-adapted bacteria [75], 
and many studies have found this bacterial group in contaminated 
Antarctic soil [9,76,77]. Although many studies have shown that 
degradation is unfavorable at oil concentrations over 1.5% [78,79] 
and that high oil concentrations can be toxic to microorganisms [74], 
Pseudomonas sp. J3 isolated from the Antarctic Peninsula showed 
great cellular growth after 6 days in the presence of 3.5% diesel oil (v/v). 
The temperature used ranged from 10-15°C, and the pH was 7 [74]. In 
another study aimed at identifying native Antarctic soil bacterial strains 
that are capable of degrading oil at low temperatures, Pseudomonas 
ST41 strain, isolated from a pristine soil and grown on a wide range of 
hydrocarbons (aliphatic and aromatic), showed a better degradation 
level at 4°C. In this study, the Pseudomonas group was dominant in 
both biostimulation and bioaugmentation microcosms.

Another bacterial group isolated from Antarctic environments that 
has been shown to be capable of using hydrocarbons as a unique carbon 
source is Sphingomonas [16,77]. The strain Ant 17, isolated from Scott 
Base-Antarctic, was able to degrade the aromatic fraction of several 
different crude oils at a low temperatures ranging from 1 to 35°C, but 
the best condition was pH 6.4 at 22°C. Additionally, Sphingomonas 
Ant 17 displayed tolerance to UV irradiation and freeze-thaw cycles 
[80], which is very useful in Antarctic environments that are subjected 
to these conditions frequently. The presence of genes responsible for 
the degradation ability of Sphingomonas has been reported in both 
plasmid and chromosomal locations [81], but because strain Ant 17 
seems to have no plasmids, its aromatic degradation ability must be 
linked to a chromosomal gene. This genetic structure is a positive 

contaminant has several fractions, and each microorganism is able to 
degrade a specific fraction [55]. However, it is necessary to perform 
tests to evaluate environmental conditions, soil features, predation 
and competitive effects that cannot be inferred in advance [56]. For 
this purpose, successful degradation by a microbial consortium in a 
microcosm experiment using contaminated soil from a site near the 
fuel tanks located close to the Argentine Antarctic research station 
(King George island) has already been reported [42]. 

A previous study demonstrated the efficiency of bioremediation 
in a microcosm experiment at 4°C, using pristine soil from Signy 
Island with experimental contamination. In this study, the addition of 
nutrients enhanced the hydrocarbon biodegradation process faster than 
hydration treatment alone, but the stronger degradation rate slowed 
after seven days. However, biostimulation plus bioaugmentation 
treatment resulted in a faster degradation rate than all of the other 
treatments separately [60] due to an increase in the proportion of 
microbial organisms that could degrade the substrate in the initial 
stages [61]. This difference led to a rapid degradation a few weeks 
after the beginning of the experiment, although both biostimulation 
treatments reached 100% degradation after 18 weeks [60]. Based on 
the obtained results, the authors suggest bioaugmentation with native 
microbiota to increase the rate of degradation during the period 
immediately following oil spills.

Despite the common knowledge of the presence of microorganisms 
able to degrade hydrocarbons in soils and thus promote natural 
attenuation [52,62,63], old fuel spill areas near Casey Station were 
analyzed, and the results demonstrated that although large amounts of 
the contaminant were eliminated by evaporation, natural attenuation 
is not sufficient to prevent the contaminant migration to areas that are 
more sensitive. Thus, this technique is not suitable for the management 
of fuel spills in the Antarctic region [64].

Although many studies have reported the efficiency of fertilizer 
addition in Antarctic soils, it is worth noting that the concentration 
of nutrients should be considered based on the contamination level. 
Along these lines, a recent study demonstrated that for soils with 
lower contamination, the ideal fertilizer concentration to promote the 
highest degradation levels was 125 mg N kg-1 of soil, whereas in more 
contaminated soil, the concentration that promoted the best result 
ranged from 200–500 mg N kg-1 [65]. This result reinforces the need to 
study the area to be treated and thus apply the appropriate treatment.

Isolation and Cultivation
Microorganisms able to degrade petroleum hydrocarbons are 

widely distributed in Antarctic soils [16]. In places where the addition 
of a microbial consortium is needed to increase the microbial biomass 
and improve degradation rates, prior isolation and characterization 
of the organisms to be used is required. Furthermore, it is important 
to know all possible information about the microbial communities 
that are present at the studied site. Therefore, conventional tools, 
including isolation and characterization, are very important. Despite 
the limitations imposed by cultivation [66,67], several strains are 
being isolated from the Antarctic soil with a great capacity to degrade 
hydrocarbons [57,60].

Main Groups Found
Among the bacterial strains that have been isolated from the 

Antarctic continent, Rhodococcus is among the most highly reported 
as a significant part of the soil communities and is recognized for its 
great metabolic potential [69]. This bacterial genus was able to degrade 
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aspect of this strain, as the chromosomal location provides greater 
genetic stability [80]. 

Bacterial strains of the Rhodococcus, Sphingomonas, Pseudomonas 
and Acinetobacter genera were indicated as the main hydrocarbon-
degrading groups present in Antarctic soil [9,82]. These bacterial 
groups have been used in different studies in Antarctic environments, 
ranging from isolation and classification to in situ application 
experiments (Table 1). However, recent data on the potential 
hydrocarbon-degrading bacterial consortium from Antarctic soils 
indicated that the Pseudomonas genus was the most frequent, followed 
by Stenotrophomonas and two low-abundance genera, Pedobacter and 
Brevundimonas [13].

Quantification of Hydrocarbon - Degrading 
Microorganisms

Quantification of microbial cell using Most Probable Number 
(MPN) and Colony forming Unit (CFU) techniques have been used 
to estimate the number of total heterotrophics and total hydrocarbon-
degrading microorganisms [60-70]. Utilizing MPN Cury and colleagues 
[30] found great amount of total heterotrophic aerobic bacteria (HAB) 
in soils with higher and lower oil concentration (≥ 1.1.108 cells g-1) but 
there was no relationship between oils concentration and number of 
hydrocarbon-degrading bacteria (HDB), once the values varied to all 
samples. The same happened to another MNP experiment using total 
heterotrophic cells when after four years since application of fertilizer, 
in higher and lower oil concentrations, the results were very variable 
and did show significance [77]. 

Differently, the number of HDB increased after addition of both 
crude and diesel oil even after 330 experimental days [66] and also after 
51 experiment assay using contaminated soil plus bioaugmentation 
when HDB number increased [88]. Lastly, Ruberto and colleagues [10] 
reported increased in HDB and HAB number, as well as to HDB/HAB 
ratio in microcosms experiment with contaminated soil plus nutrients 
or bacterial strains. In the end of experiment time, the authors reported 
a diminution in level of HDB, HAB, HDB/HAB rate and also in the 
total hydrocarbon concentration, suggesting the initial steps of soil 
recovery process.

Molecular Tools
The Most Probable Number (MPN) and Colony Forming Unit 

(CFU) techniques for the quantification of microbial cells have been used 
to estimate the number of total heterotrophics and total hydrocarbon-
degrading microorganisms [42,57,65,83,84]. Utilizing MPN, a previous 
study found a great amount of total heterotrophic aerobic bacteria 
(HAB) in soils with higher and lower oil concentrations (≥ 1.1.108 cells 
g-1), but there was no relationship between the oil concentration and 
the number of hydrocarbon-degrading bacteria (HDB) because the 
values varied for all samples [65]. Similar results were obtained from 
another MPN experiment using total heterotrophic cells, where the 
researchers evaluated the application of fertilizer under higher and 
lower oil concentrations for four years; the results were highly variable 
but did not show significance [83]. 

In contrast, the number of HDB increased after the addition of 
both crude and diesel oil, even after 330 experimental days [84], and 
after 51 days of an experimental assay using contaminated soil plus 
bioaugmentation, the HDB number increased significantly [57]. 
Finally, an increase in HDB and HAB numbers was reported in 
addition to an increased HDB/HAB ratio in a microcosm experiment 

with contaminated soil plus nutrients or bacterial strains. At the end 
of the experiment, the authors reported a diminution in the levels 
of HDB and HAB, the HDB/HAB ratio and the total hydrocarbon 
concentration, thus suggesting the initial steps of the soil recovery 
process.

Molecular detection, fingerprint and sequencing

The Deinococcus–Thermus and Gemmatimonadetes clades are 
common in the Dry Valley based on clone library studies, whereas in 
other surface soils, they have no representation [26]. This difference 
could be directly related to the fact that Deinococcus–Thermus is 
known for its ability to resist high levels of ultraviolet (UV) radiation 
[91], which is very useful in the Dry Valley because that region has 
a high incidence of solar radiation with an elevated ultraviolet (UV) 
light component [92, 93]. Gemmatimonadetes is a rarely cultivated 
microorganism, and its characteristics are not yet well clarified [94]. 
As cited previously, Pseudomonas, Acinetobacter, Sphingomonas 
(Proteobacteria phylum) and Rhodococcus (Actinobacteria phylum) 
are among the main hydrocarbon-degrading bacteria groups reported 
in the literature, but due to the great difference between the microbial 
profiles of the Dry Valley and the Antarctic Peninsula, the microbial 
dynamics involved in the biodegradation process at Dry Valley may be 
completely different.

The 16S rRNA gene was analyzed using a T-RFLP technique to 
elucidate the profile changes in a microcosm experiment, and a rapid 
response from the bacterial community to the treatment applied was 
observed [19]. These results revealed the ability of the bacteria to rapidly 
respond in previously contaminated Antarctic soil and to metabolize 
nutrients added to the soil when aeration and a carbon source are 
available [19]. In this study, biostimulation and bioaugmentation were 
tested, but the microbial consortium used was not able to survive for the 
entire experiment, which likely contributed to the lack of a significant 
difference between the treatments. After 60 days of experimentation in 
a microcosm, DGGE analyses revealed different clusters between soils 
with higher and lower hydrocarbon concentrations. Additionally, the 
results demonstrated the effects of different concentrations of fertilizer 
on the prokaryotic community [65].

A biopile experiment was assembled at Carlini Argentinean 
Scientific Station, and a 16S rRNA PCR-DGGE technique showed 
no difference between the biostimulation treatment (FM) and the 
control (CC) in the first 5 days, but on the 50th day of experimentation, 
the difference in the profile was dramatic [58]. The difference in the 
response time might be related to the experimental dimensions and 
consequently to the availability of oxygen, water and nutrients. The 
DGGE bands extracted revealed that 53% of the bacteria belonged to 
the Proteobacteria phylum. At the 50th day, 20% of the sequenced 
bands belonged to the Actinobacteria phylum and were only present in 
the biostimulation treatment condition (FM) [58]. The same technique 
was used to demonstrate the high-diversity bacterial fingerprint in 
disturbed and non-disturbed soils around the Japanese Antarctic 
Station at East Ongul Island [95]. This study identified the sequences 
from the dominant bands as belonging to the Sphingomonas, 
Porphyrobacter, and Methylobacter groups. DGGE and T-RFLP were 
also used to demonstrate the presence of a hydrocarbon-degrading 
bacterial consortium at the end of the experiment [13]. 

Soil samples from hydrocarbon-polluted and pristine soils from 
King George island were analyzed using DGGE and RFLP techniques, 
with the alkane monooxygenase alkB gene as a target, and the generated 
fingerprints showed the formation of clusters in contaminated vs. 
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uncontaminated soil [96]. Furthermore, different cluster formation 
appeared in each type of contaminated and uncontaminated soil. 
These data suggest that the soil characteristics and different levels of 
hydrocarbon contamination affect the distribution of alkane-degrading 
bacteria [96]. In that study, 85% of the excised bands were identified 
as belonging to the Actinobacteria group, whereas the Gamma- and 
Alphaproteobacteria groups were found in 15% of the sequenced 
bands. Due to the important ecological role of this gene group and 

its sensitivity to contamination, the alkB gene is recommended as a 
biomarker in this environment [97]. 

Twenty-eight bacterial strains from Antarctic oil-contaminated 
soil were studied, and conventional PCR was used to analyze the 
occurrence, distribution and expression of the biodegradative genes 
(alkB, ISPα, ndoB, C23DO and todC1/bphA1) [98]. The results showed 
that the naphthalene dioxygenase gene (ndoB) was commonly found 
in Pseudomonas sp. The gene ndoB presents evidence of horizontal 

Strain Culture medium Incubation (temp/
period)

Substrates degraded Substrate 
concentration

Isolation place References

Acinetobacter B-2-2  Soil avarege 2.5°C/51 
days

gas-oil 1.5% Jubany scientifc station (62◦14'S; 
58◦40'W)

[84]

Sphingomonas Ant17 Mineral medium (MM) 10°C/4-8 weeks Crude oil 1.5% Scott Base-Ross Island –N/A [26]
Sphingomonas 43/17 Bushenell Has (BH) 15°C/3 weeks Phenanthrene 1.5% Scott Base-Ross Island –N/A

(S77° 50'53.90''; E166°45'40.70'')
[86]

Sphingomonas Ant 17 Bushenell Has (BH) 16°C/up to 1 month JP-8; m-xylene; 1-methyl 
naphthalene; 2-methyl 
naphthalene;phenantrene; 
fluorene; heptane;
undecane; dodecane

vapour Scott Base –N/A [20]

Rhodococcus 4/38 Bushenell Has (BH) 16°C/7 days C6, C8, C11, C12, C13, C16, 
C20, C12-1, Pristane

0.5% Scott Base –N/A [27]

Rhodococcus 8/1 Bushenell Has (BH) 16°C/7 days C6, C8, C11, C12, C13, C16, 
C20, C12-1, Pristane

0.5% Scott Base –N/A [27]

Rhodococcus 8/5 Bushenell Has (BH) 16°C/7 days C6, C8, C11, C12, C13, C16, 
C20, C12-1, Pristane

0.5% Scott Base –N/A [27]

Rhodococcus ADH Soil avarege 2.5°C/51 
days

Diesel oil 0.5% Jubany scientifc station (62◦14'S; 
58◦40'W)

[81]

Rhodococcus 43/2 Bushenell Has (BH; 
Difco)

15°C/3 weeks C12-dodecane,C16-
hexadecane, Pristane, JP5 
jet fuel

0.5% Scott Base-Ross Island (S77° 
50'53.90''; E166° 45'40.70'')

[86]

Pseudomonas ST41 Mineral Medium (MM) 4°C/up to 2 months Polar Blend marine gas oil 0.2% + vapour South Orkney Islands (60°45'S, 
45°36'W)

[95]

Pseudomonas J3 basalt salt media 10°C/10 days Diesel soil 0.5% Jubany Station (61.5°S 54.55° W) [87]
Pseudomonas 5B N-deficient (NDS) 22°C/10 days JP-8 jet fuel vapour Marble Point –N/A [45]
Pseudomonas 44/47 Bushenell Has (BH) 15°C/3 weeks C12,C16, Pristane, Toluene, 

JP5 jet fuel
0.5% Scott Base-Ross Island (S77° 

50'53.90''; E166° 45'40.70'')
[86]

Pseudomonas Ant 9 Bushenell Has (BH) 16°C/up to 1 month JP-8; p-xylene; 1,2,4-trimethyl 
benzene; naphthalene; 
2-methyl naphthalene

vapour Scott Base –N/A [19]

Pseudomonas Ant 30 Bushenell Has (BH) 16°C/up to 1 month JP-8; toluene; m-xylene; 
p-xylene; 1,2,4-trimethyl 
benzene; heptane; undecane

vapour Scott Base –N/A [19]

Pseudomonas Ant 7/22 Bushenell Has (BH) 16°C/up to 1 month JP-8; toluene; m-xylene; 
p-xylene; 1,2,4-trimethyl 
benzene

vapour Scott Base –N/A [19]

Pseudomonas DRYJ7 Basal médium 10°C/4 days acrylamide 0.1% Casey Station (66.17°S110.32°E) [87]
Pseudomonas LCY12 
and LCY16

Mineral medium (MM) 4-40°C/N/A naphthalene and 
phenanthrene

0.15% Great Wall station 
(65°12′59′′S/58°57′05′′W)

[65]

Pseudomonas sp. 
FG-15

SBM 15°C/15 days Pyrene; Toluene; Octane; 
Dodecane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Pseudomonas sp. 
FG-4a

SBM 15°C/15 days Pyrene; Naphthalene; 
Toluene; Octane; Dodecane; 
Hexane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Pseudomonas sp. 
FG-4d

SBM 15°C/15 days Pyrene; Naphthalene; 
Toluene; Octane; Dodecane; 
Hexane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Pseudomonas sp. 
FG-13a

SBM 15°C/15 days Naphthalene; Octane; 
Dodecane; Hexane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Stenotrophomonas sp. 
FG-3b2

SBM 15°C/15 days Pyrene; Naphthalene; 
Toluene; Octane; Dodecane; 
Hexane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Pedobacter sp. FG-22b SBM 15°C/15 days Pyrene; Naphthalene; 
Toluene; Octane; Dodecane; 
Hexane

0.1-1% Marambio (64°14'S, 56°37'W) [100]

Table 1: Examples of known hydrocarbon-degrading bacteria from Antarctic soils and information about their hydrocarbon substrates and cultivation.
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transfer in the Pseudomonas bacterial group and might be originally 
transferred from outside Antarctica [99]. Of the 28 tested strains, 
22 were positive for at least one region of the C23DO gene. Not all 
microorganisms presented amplification of the alkB gene using a single 
set of primers, but most of the Rhodococcal isolates inhibited the 
amplification of a variation of this gene (alkB2). The authors suggested 
that the differential distribution of these genes in Rhodococcus is 
related to the types of alkanes present in the soil [98]. The diversity of 
the alkB gene is far from being completely understood, and many recent 
studies have revealed high levels of diversity and novel alkB-encoding 
genes [100–102]. Only two strains showed positive amplification of the 
bphA1 gene (Coryneform 31/1 and Sphingomonas 35/1), and no strain 
was positive for amplification of the todC1 gene [98]. 

Soils with higher and lower contaminations of hydrocarbons were 
used to evaluate the effects of different hydrocarbon concentrations in 
bacterial, archaeal and microeukaryotic communities [65]. Through 
sequencing, conventional PCR and fingerprint techniques, the authors 
found a higher level of diversity in bacterial and microeukaryotic 
groups in soils with lower concentrations of hydrocarbons (LC) 
than in more highly concentrated soils (HC), whereas the archaea 
group did not exhibit a significant difference between such soils. In 
the bacterial domain, the analyses revealed the relative abundance of 

Proteobacteria, Actinobacteria and Bacteroidetes in HC and LC soils, 
but sequences related to the Nitrospira, Verrucomicrobia, Chloroflexi, 
Planctomycetes, and Acidobacteria phyla were only detected in LC soil. 
At the genus bacterial level, the OUT that presented the highest relative 
abundance from the HC soil was affiliated with an uncultured bacterium 
from candidate division TM7. This bacterial group is frequently 
described using molecular methods [103], but its possible function in 
hydrocarbon degradation remains unknown [65]. For the eukaryotic 
group, ten phyla were found in LC soil, and only four were found in HC 
soil. Additionally, more than 50% of the relative abundance observed 
in HC soil represented fungi, whereas fungi represented 20.85% of the 
diversity found in LC soil.

Gene quantifications and abundance

In an in situ bioremediation experiment, a previous study showed 
the effect of the biostimulation treatment on the copy numbers of the 
alkB and rpoB genes over four years using the qPCR technique [83]. 
The study revealed a relationship between the amounts of alkanes 
present in the soil and the number of copies of the alkB gene. The 
addition of fertilizer increased the copy numbers, and the alkane 
concentration decreased significantly in the first year. Moreover, 
treatment with less fertilizer was the most effective in the first year and 
led to a drastic increase in the alkB copy number, but treatment with 

Molecular Techniques Target region and primers/probes used References
T-RFLP 16S rRNA (27f-1389r) [99,100]
RFLP AlkB (alkH1F2/alkH3R) [56]
Dot-Blot nahH (nahH-F/nahH-R; C23OeF/C23OeR) nahAc (nahAc-F/nahAc-RP/nahAc-RR ;Ac114-F/Ac114-R) alkB (alkB-F/alkB-R) [99,100]
Southern-blot nahH (nahH-F/nahH-R; C23OeF/C23OeR) nahAc (nahAc-F/nahAc-RP/nahAc-RR ;Ac114-F/Ac114-R) alkB (alkB-F/alkB-R) [100]
RISA ITS (1387f/23Sr) [100]
DGGE 16S rRNA (341F-GC/520R) [69]
DGGE 16S rRNA (357F-GC/518R) [100]
DGGE 16S rRNA (341-F-GC/907-R) [43]
DGGE 16S rRNA (357F-CG/907R) [95]
DGGE AlkB (alkH1F2-CG/alkH3R) [56]
DGGE 16S rRNA (907R-341F) [76]
DGGE Bacterial SSU rRNA (BAC27Fa/BAC518R); Archaeal SSU rRNA (Arch21f/Arch958r; Arch344fa/Arch519r) Microeukaryotic 

SSU rRNA (EK7F-EK516R) 
[39]

DGGE PAH-RHDαGP (PAH-RHDαGP-F ; PAH-RHDαGP-R) [39]
Clone libraries 16S rRNA (341-F/907-R) [42]
Clone libraries 16S rRNA (519f-1392r) [76]
Clone libraries alkB (alk-H1F ; alk-H3R) [39]
Clone libraries PAH-RHDα(PAH-RHDαGP-F/PAH-RHDαGP-R); PAH-RHDα[GN] (PAH-RHDαGN-F/PAH-RHDαGN-R) [55]
Clone libraries 16S rRNA (27F/1492R) [50]
Clone libraries PAH-RHDαGP (PAH-RHDαGP-F ; PAH-RHDαGP-R); xylE (xylE-F/xylE-R) [69]
Real time PCR 16S rRNA (341F/534R); phoA ( phoA F/phoA R) [50]
Real time PCR alkB (alkBFd-alkBRd) [77]
Real time PCR 16S rRNA gene (968F-1401R) ; PAH-RHDα (GPF-GPR/GNF-GNR) [69]
Sequencing alkB (alkH3R) [56]
Conventional PCR alkB (alk-H1F/alk-H3R); PAH-RHDα(PAH-RHDαGP-F/PAH-RHDαGP-R); PAH-RHDαGN (PAH-RHDαGN-F/PAH-

RHDαGN-R); bamA (BamSP9F/BamASP1R); assA/bssA (ass/bssF/ass/bssR) 
[39]

Conventional PCR PAH-RHDα (GPF/GPR; GNF/GNR); xylE (xylE-F/xylE-R) bph (bphC-F/bphC-R) [69]
Conventional PCR alk (L-alkB/R-alkB; L-alkB870G/R-alkB870G; L-TS2S/L-TS2Smod/L-TS2Smod2; R-deg1RE/R-deg1RE2; RH L-alkB1/RH 

R-alkB1; RH L-alkB2/RH R-alkB2; RH L-alkB194/RH R-alkB194; (Ac) alkM-F/(Ac) alkM-R); ndoB (L-ndoB/R-ndoB); C23DO 
(L-cat238/R-cat238; xylEb-F/xylEb-R; cat2,3 1a-F/cat2,3 6a-R); tod (todC1-F/todC1-R); bph (bphA1-F/bphA1-R)

[72]

Competitive PCR cndoB (L-ndoB/R-cndoB) [72]
RT-PCR alkB2 (RH L-alkB2/RH R-alkB2); C23DO (cat2,3 1a-F/cat2,3 6a-R); ndoB (L-ndoB/R-ndoB) [72]
Operational Protein 
Families (ORFs) analysis 

PAH-RHDα(PAH-RHDαGP-F/PAH-RHDαGP-R); PAH-RHDα[GN] (PAH-RHDαGN-F/PAH-RHDαGN-R) [55]

Table 2: Molecular techniques and primers or probes used in bioremediation of Antarctic soil studies.
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a high concentration of fertilizer resulted in the highest degradation 
level. Four years later, the copy number of the alkB gene increased only 
in the control treatment (chronically contaminated), which was likely 
due to the remaining contamination [83], and the bioremediation 
process continued to have an effect when the alkane level was driven 
to almost zero. 

Hydrocarbon gene quantification through qPCR also revealed 
the presence of PAH dioxygenase (PAH-RHDα) near Syowa station 
[95]. The evaluated soil showed evidence of additional effects from 
human activities compared with other pristine soils analyzed in the 
same study, in which copies of those genes were not found. The same 
result was found in another study [104] that analyzed soil samples from 
King George island that were contaminated and non-contaminated by 
hydrocarbons. Thus, PAH-RHDα-encoding genes appear to be related 
to the levels of anthropogenic and oil contamination impact [83,104]. 
Furthermore, NidA3-like sequences from Mycobacterium species were 
the most abundant ORFs found in the PAH-RHDα [GP] libraries [104]. 
NidA3 from Mycobacterium has been shown to be responsible for the 
transformation of several aromatic hydrocarbon compounds [105]. 

In a microcosm experiment using soil from the Cape Burks area, 
the effect of nutrient and diesel oil addition was demonstrated based 
on copy numbers of the phoA gene and the 16S rRNA gene [106]. The 
results showed that the 16S rRNA copy number nearly doubled for all 
treatments after 30 days at 4°C, but the major increase was observed 
with nutritional input. The greatest increase in the phoA gene occurred 
in soils without diesel oil addition, which suggested that diesel addition 
was toxic to the microbial community [106]. Bacterial phylogenetic 
groups belonging to Actinobacteria, Proteobacteria, Verrucomicrobia, 
Firmicutes, Chloroflexi, Planctomycetes, Bacteroidetes, and 
Gemmatimonadetes were found in intact, nutritionally supplemented, 
and diesel-contaminated soil. Libraries from intact Antarctic soil 
demonstrated the predominance of the Actinobacteria phylum (74.7%) 
(composed mostly of Pseudonocardia species), whereas nutritional 
addition resulted in a shift towards the Actinobacteria phylum (95.6%) 
(composed mostly of Arthrobacter species). In diesel-contaminated 
soils, the Proteobacteria phylum (37.5%) (mostly Alphaproteobacteria 
and Phyllobacterium species) was predominant [106].

Conclusions and Perspectives
The Antarctic continent is known for its pristine condition and 

extreme life conditions. For these reasons, the continent has drawn 
much military, political and scientific interest from various nations. 
Currently, the main reason for human activities in Antarctica is the 
development of research, and for this purpose, the installation of 
research stations and human presence in the continent is indispensable. 
The humans on the continent demand few necessities, but energy 
generation is one of them. In addition, fishing and tourist ships add to 
the number of ways that humans gain access to the region. 

Thus, the risks involved in the manipulation, transport and storage 
of fuel oil used in energy generation are always present. Several 
accidental spills have occurred in the Antarctic continent, but to date, 
there has been no strategy that can be rapidly implemented to promote 
efficient environmental recovery. Generally, the accidents occurring 
in the continent were treated as minor issues, and the contamination 
has become chronic. Despite several publications on this topic, 
bioremediation in a cold environment is generally considered a 
difficult task, but many scientific studies from this region have shown 
that is possible to perform bioremediation in the Antarctic continent. 
It is generally agreed that the bioremediation process should be applied 

following physical cleanup methods to achieve a more efficient cleanup.

As in another contaminated areas, the bioremediation process 
performed in Antarctic soil is site- and contaminant-specific and 
occurs with greater efficiency under aerobic conditions. The necessary 
prior studies of contaminated sites can be performed ex situ through 
soil analysis, molecular screening and microbial isolation, as well as 
preliminary studies involving microcosms. However, subsequent 
analyses involving mesocosms and macrocosms are better performed 
in situ, once the environmental conditions have stabilized, to ensure 
the accuracy of the results. Due to geographic issues and difficult 
access to the continent, bioremediation application on a large scale 
should be performed in situ, unless there is a nearby structure at the 
contaminated site that allows the transport of the contaminated soil 
to an ex situ treatment site. In that case, treatment ex situ is indicated 
due to the improved possibilities for controlling physical factors (e.g., 
temperature).

The studies conducted to date reveal that despite our knowledge of 
the microbial strains that can degrade hydrocarbons in Antarctic soils, 
studies regarding isolation and characterization have become rare in 
the last few years. Moreover, there are no studies on the bioremediation 
process in soils from the core of the continent, only from the shore 
regions. This difference is likely due to the great number of research 
stations present in the island and shore regions (Figure 1), but the 
increasing number of human activities in the middle of the Antarctic 
continent will likely result in more risks in this region. 

Based on the knowledge acquired to date, it is possible to suggest 
certain procedures for Antarctic activities that involve the utilization 
of oils. Maintenance activities such as refueling, the cleanup of oil 
tanks and the transport of oils could be performed in or near the 
winter period (with snow on the ground) because the snow can serve 
as a physical barrier by containing the contaminant and thus blocking 
oil penetration into the soil, acting as an absorbent. In contrast, 
bioremediation application could be preferentially performed in the 
summer, due to the higher temperature, but before the thaw period, 
when the unfrozen ice can spread the oil to more sensitive regions 
and the nutrients can be disturbed. Thus, bioremediation processes in 
Antarctic soils are very promising but should be performed properly, 
considering the environmental seasons and recuperative actions that 
must be performed as soon as possible after the spill. Furthermore, it 
is urgently necessary to create guidelines for research station activities 
that involve the management of oils and procedures in future accidents. 
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