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Abstract

Cellulose and hemicellulose (xylan) are the most common Non-Starch Polysaccharides (NSPs) present in plant
ingredients that exhibit anti-nutritional effect. Degradation of cellulose and xylan has been investigated under solid-
state fermentation (SSF) using oil-cakes, viz., groundnut oil-cake (GOC), mustard oil-cake (MOC), sunflower oil-
cake (SOC), sesame oil-cake (SeOC) and linseed oil-cake (LOC) as substrates. Finally LOC was considered in the
present study as it contained maximum amount of cellulose (17.51 ± 0.87 g 100 g-1) and xylan (13.02 ± 0.66 g 100
g-1). Bio-processing of LOC was carried out through SSF in two different combinations utilizing efficient cellulase-
and xylanase-producing strains, Bacillus pumilus KF640221 (Set-I) and Bacillus tequilensis KF640219 (Set-II),
isolated previously from the proximal intestines of rohu, Labeo rohita and silver carp, Hypophthalmichthys molitrix,
respectively. Analysis of the fermentation sets revealed that B. pumilus KF640221 in Set-I was most effective in
reducing the cellulose and xylan contents of LOC. Besides, SSF under optimized conditions caused considerable
increase in crude protein, crude lipid, total free amino acids and total free fatty acids along with reduction in the
contents of other anti-nutritional factors, e.g., crude fiber, tannins, phytic acid and trypsin inhibitor. High performance
liquid chromatography (HPLC) analysis of raw and fermented LOC of Set-I indicated that concentrations of
methionine, histidine, tryptophan, phenylalanine, threonine were increased considerably. Further research is
inevitable to explore the possibilities for utilization of SSF-processed LOC to set up a strategy for sustainable
utilization of low cost oil-cakes as animal feed ingredients.

Keywords: Cellulose; Xylan; Bacillus; Solid state fermentation;
Linseed oil-cake

Introduction
Oil-cakes are the by-products obtained after oil extraction from the

seeds. Being rich in protein, oil-cakes are frequently can be used as
animal feed ingredients, especially for ruminants and fish [1].
However, beside deficiencies in some of the essential amino acids, the
direct incorporation of oil-cakes in animal feed has been restrained by
the presence of antinutritional factors (ANFs), majority of which are
polyphenols, trypsin inhibitors, phytic acid and Non-Starch
Polysaccharides (NSPs) [2]. NSPs comprise up to 90% of the plant cell
wall [3], wherein cellulose, hemicellulose and pectin are the most
abundant [4]. Xylan is considered as the major structural component
of plant cell wall and the most abundant copious renewable
hemicellulose [5]. Generally dietary NSPs remain indigestible and
cannot be used as an energy source. Presence of β-glycosidic linkages
makes cellulose indigestible for monogastric animals due to lack of
cellulase in their gastrointestinal (GI) tract. Likewise, the other
enzymes for NSP degradation (e.g., β-glucanases, β-xylanases) are also
either sparse or absent in monogastric animals including fish [6].
Being incompletely soluble in water, NSPs enhance the viscosity of the
digesta that affects physiology and ecosystem of the GI tract exercising
anti-nutritive effects [4]. Therefore, removal of ANFs through
implementation of processing techniques has been suggested to
improve nutritive value of the crude oil-cakes and thereby
incorporation of the processed oil-cakes at higher levels in the animal
feeds satisfying to meet increasing demand to replace conventional

protein sources [7]. Studies advocated that processing of oil seed cakes
through physical (e.g., water soaking and heat treatment) or biological
(seed germination) [5] methods were not effectual in reducing the
contents of ANFs. In contrast, solid state fermentation (SSF) has been
evidenced with reduction in cellulose [8] and other ANFs [9] in the
plant ingredients. Bio-processing of crop residues through microbial
detoxification of agro-industrial wastes and enzyme production are the
most feasible applications of the SSF [10]. Following oil extraction,
recovery and reuse of nutrients in the oil-cakes by bioconversion
through SSF may sustain economic viability of the agro-based oil
producing industry. Correspondingly, effective use of the fermented
oil-cakes for partial substitution of conventional animal protein
sources (e.g., fishmeal) has been recommended in preceding studies
[9,11].

Apart from de-activation of the ANFs, increase in the nutrient level
through microbial synthesis of essential bio-molecules might be
expected during the SSF [7]. In contrast, possible inclusion of harmful
metabolites in the fermentation-product cannot be excluded during
the SSF process. Therefore, it seemed reasonable to utilize microbial
symbionts from fish gut in SSF-processing of the plant feedstuffs
considering prospective application of the bio-processed substrate as
fish feed ingredient [12,13]. Unlike the ruminants, fermentative
nutrition is less emphasized in aquatic animals [14]. Although, diverse
extracellular enzymes-producing gut microorganisms have been
described in fish and it has been believed that enzymes produced by
the gut associated symbiotic bacteria could assist in degradation and
assimilation of complex plant feedstuffs within the GI tract of fish [15].
Cellulose and xylans being the major NSPs in plant feedstuffs, the
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present study considered utilization of cellulase and xylanase-
producing fish gut bacteria for bio-processing of oil-cakes through SSF.
Several studies have reported occurrence of cellulase-producing
microorganisms within the GI tracts of diverse fish species [for review
see 15]. Production of cellulase in course of SSF has also been recorded
by the bacterial strains (e.g., B. subtilis CY5, B. circulans TP3) isolated
from fish gut [8,16]. In contrast, reports on xylanase production by fish
gut microorganisms are scarce [17,18]. Though, production of xylanase
by Bacillus licheniformis [19], Bacillus sp. AR-009 [20] and B. pumilus
[21] isolated from non-fish sources have been documented previously
under SSF.

In this perspective, the major objective of the presently reported
study was to recycle the NSP-rich oil-cakes into value added foodstuffs.
However, optimization of process parameters for scaling up cellulase
and xylanase production by the microorganisms seemed to be
imperative for efficient degradation of the NSPs under SSF. Therefore,
the present study was undertaken (1) to explore the possibility of
producing NSP-degrading enzymes (cellulase and xylanase) by the fish
gut bacteria utilizing NSP-rich Linseed (Linum usitatissimum) oil-cake
(LOC) as substrate, and finally (2) to appraise value addition of the
substrate for its likely use as animal feed ingredient.

Materials and Methods

Microorganism and maintenance of culture
The bacteria used in the present study, the Bacillus pumilus LRF1X

(KF640221) and Bacillus tequilensis HMF6X (KF640219) isolated
from the proximal intestines of rohu, Labeo rohita and silver carp,
Hypophthalmichthys molitrix, respectively, were described as efficient
NSP-degrading strains in a previous report [18]. Following isolation of
microbial strains from the gut of 6 freshwater carp species, potent
NSP-degrading strains were determined through cellulase and
xylanase producing abilities and identified by 16S rRNA partial gene
sequence analyses [18]. The culture was grown and maintained on
slants containing sterilized Nutrient Agar (NA) media. Inoculums of
both the strains were prepared from a freshly raised 5-d-old slant
culture in Nutrient Broth (37°C,48 h) and inoculums thus prepared
(6.5×107 cells mL-1) were used for inoculation of the solid substrate
medium.

Substrate selection
Dried and de-oiled groundnut oil-cake (GOC), mustard oil-cake

(MOC), sunflower oil-cake (SOC), sesame oil-cake (SeOC) and linseed
oil-cake (LOC) were collected from local market and used as solid
substrates. Each of the oil-cakes was oven dried (80°C, 48 h), finely
grounded in a laboratory mixer grinder and passed through a fine
mesh (400 µm in diameter) sieve to obtain uniform particle size. The
powdered samples were stored in a refrigerator (4°C) for use as
substrates in solid state fermentation (SSF). Prior to analysis of
cellulose and hemicellulose (xylan) contents, each solid substrate was
made moisture free by drying at 100 ± 5°C initially for 30 min and
further at 60°C until constant weight was obtained. Cellulose content
was estimated with anthrone reagent following the method described
by Updegraff [22]. Hemicellulose (xylan) was estimated after Goering
and Van Soest [23]. LOC was selected as the solid-substrate due to the
highest cellulose and xylan contents among the tested oil-cakes.

Optimization of SSF parameters for cellulase and xylanase
production

Ten grams of dried and finely grounded substrate (LOC) was taken
into each of the two sets of cotton plugged 250 mL Erlenmeyer flasks to
evaluate cellulase and xylanase production by B. pumilus LRF1X (Set-
I) and B. tequilensis HMF6X (Set-II). The moistening medium
containing (g l-1) K2HPO4 (0.15); MgSO4, 7H2O (0.3) and (NH4)2SO4
(2.0) was added as per required level to the substrate [24,25]. Flasks
were autoclaved (121°C, 15 lbs, 20 min) and after proper cooling,
sterilized substrates were inoculated (1 mL) separately with B. pumilus
LRF1X and B. tequilensis HMF6X under aseptic conditions. Flasks
were incubated (at 37°C for 72h, otherwise mentioned) in stationery
condition with mechanical agitation by sterilized glass-rods at 12 h
intervals. Each step of the assessment was carried out in triplicate. The
protocol adopted for optimization of different process parameters was
to assess the effect of an individual parameter and to incorporate it at
the optimized level before optimizing the next parameter.

The physicochemical parameters studied were: initial moisture
content (10%-90% moistening media, v/w), incubation temperature
(25°C-50°C), initial pH of the moistening media (pH 5-9), inoculumn
size (1-10% v/w, at an interval of 1% with 48h culture containing 6.5 ×
107 cells mL-1), and NaCl (1%-5% w/w). Further, different surfactants
(1% v/w), viz., Tween 20, Tween 40, Tween 80 and Dimethyl sulfoxide
(DMSO), carbon sources (1% w/w; glucose, sucrose, lactose, maltose,
fructose and starch) and inorganic or organic nitrogen sources (1%
w/w; ammonium sulfate, ammonium nitrate, ammonium chloride,
yeast extract, peptone and tyrosine) were also optimized. The selected
carbon and nitrogen sources were varied within a narrow range (1-5%)
to optimize collective production of both the enzymes. Following
optimization of various process parameters, a time course study was
carried out for 10 days (considering 24h as 1 day) with both SSF
batches incorporating all parameters at the optimized level. Cellulase
and xylanase production by the bacterial strains, and subsequent
degradation of cellulose and xylan in the substrate were evaluated at an
interval of 2 days [26,27].

Enzyme extraction
Extraction of the crude enzymes was carried out separately from the

fermented substrate for evaluation of cellulase and xylanase
production by the bacterial strains (B. pumilus LRF1X and B.
tequilensis HMF6X) during SSF. For cellulase assay, crude enzyme was
extracted following Pandit and Maheswari [26] with minor
modifications. The fermented material (5 g) was mixed thoroughly
with 50 mL of 1 M phosphate buffer (pH 6.5) (except in case of pH
optimization, where distilled water was used) and left on a shaker
incubator (Lab. companion, SL-300R) at 15°C for 1 h with continuous
shaking at 150 rpm. The fermented samples were then filtered through
muslin cloth as cellulase was strongly absorbed by the filter papers that
contain cellulose [27]. The filtrates were centrifuged at 4°C for 20 min
at 10,000 rpm in a refrigerated centrifuge and the cell free supernatant
thus obtained was collected as crude enzyme for cellulase assay.

Crude enzyme for xylanase assay was extracted following Banu and
Ingale [28] with minor modification. Sodium phosphate buffer (0.1 M,
pH 7.0) was added with the fermented solid substrate (5g) and kept on
a shaker incubator (15°C, 150 rpm, 1 h). The crude enzyme was then
separated by filtration through filter paper (Whatman No. 1). The
filtrate was centrifuged at 4°C for 20 min at 10,000 rpm in a
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refrigerated centrifuge and the cell free supernatant was collected as
crude enzyme for xylanase assay.

Cellulase and xylanase assay
Cellulase activity was measured according to the method of

Denison and Koehn [29]. The production of reducing sugar (glucose)
from the carboxymethylcellulose substrate was measured at 540 nm by
the di-nitro-salicylic acid (DNSA) method using glucose as the
standard. Unit activity (U) of cellulase was defined as the μg of glucose
liberated mL-1 enzyme extract min-1. Quantitative assay of xylanase
activity was measured after Bailey et al. [30] through DNSA method
using birch-wood xylan (1%) as the substrate. Unit activity (U) of
xylanase was expressed as mg of D-xylose liberated mL-1 enzyme
extract min-1.

Analysis of proximate composition and antinutrients
Cellulose and hemicellulose (xylan) contents of raw and fermented

LOC were analyzed following the methods of Updegraff [22] and
Goering and Van Soest [23], respectively. Proximate composition of
raw and fermented LOC were analyzed following the standard
methods of AOAC [31]: crude protein (N% × 6.25) by micro Kjeldahl
digestion and distillation, lipid was determined by extracting the
residue with 50-60°C petroleum ether in a Soxhlet apparatus, crude
fiber was determined as loss on ignition of dried lipid free residue after
digestion with 1.25% H2SO4 and 1.25% NaOH. Ash content of the
sample was determined by ignition of samples at 550°C in a muffle
furnace to constant weight. Nitrogen-free extract (NFE) was computed
by taking the sum of values for crude protein, crude lipid, ash, crude
fibre and moisture and subtracting this from 100 [32]. Gross energy of
the raw and fermented samples was measured with a bomb calorimeter
(Lab-X, Kolkata, India). Total free amino acids and fatty acids were
measured according to Moore and Stein [33] and Cox and Pearson
[34], respectively. Among the antinutritional factors, tannin and phytic
acid were determined by biochemical methods described by Schanderi
[35] and Vaintraub and Lapteva [36], respectively. Trypsin inhibitor
activity was determined according to Smith et al. [37].

Analysis of amino acid composition of raw and fermented
linseed oil-cake
The amino acid profile of the raw and fermented substrates (Set-I)

were determined by a high performance liquid chromatography
(HPLC) system (Agilent Technologies-1260 Infinity) equipped with an
ion-exchange/reversed-phase column (Zorbax Eclipse XDB-C18,
Agilent Technologies). Samples were hydrolyzed with 6N HCl at 120°C
for 24 h [38], filtered through 0.45 μm filtration assembly and analyzed
after pre-column derivitization of amino acids with an autosampler.
The primary amino acids were derivitized with O-phthalaldehyde
(OPA) and the secondary amino acids were derivitized with
fluorenylmethyl chloroformate (FMOC) before injection [39]. Each
sample was run in triplicate. Chromatograms of the samples obtained
were matched for their retention time with those of the standard
amino acid mixture and quantification was achieved mathematically.

For tryptophan content, samples were hydrolyzed by heating at
about 110°C in 6 N NaOH (20 h) and determined
spectrophotometrically following the method described by Sastry and
Tammuru [40].

Statistical analysis
All experiments were performed in triplicate and the mean values

were reported along with standard error (mean ± SE, n=3). All the
statistical analyses [One-way ANOVA] of the data were performed
according to Zar [41] using SPSS Ver10 [42] software.

Results and Discussion
An attempt has been made in the present study for bio-processing of

nutrient rich oil-cakes through degradation of NSPs. SSF was carried
out in view of amelioration of nutritive value in LOC, as well as
cellulase and xylanase production utilizing LOC as the solid substrate.
SSF has been described as the most preferred way for microbial
cellulase production due to its lower capital investment and lower
operating cost [43]. Xylanase, another important industrial enzyme
may also be successfully produced though SSF [44], although very few
reports are available on the production of xylanases by bacterial
systems under SSF [19,20]. Abundance of cellulase-producing bacteria
has been documented in the GI tracts of grass carp, C. idella [16,45],
common carp, C. carpio and silver carp, H. molitrix [16], rohu, L.
rohita [46,47], catla, C. catla and mrigal, C. mrigala [47], and bata, L.
bata [48,49]. In contrast, reports on xylanase-producing fish gut
microorganisms are scanty [17,18]. In the present study, optimization
of the important physical, chemical and nutritional parameters were
performed that influenced cellulase and xylanase production as well as
bio-processing of the LOC by B. pumilus LRF1X and production B.
tequilensis HMF6X, which were autochthonous to fish. In vitro
processing by autochthonous microbiota has been suggested as an
effective strategy as the organism itself, and their metabolites would
not harm the fish providing the basis for mutual relationship [12].

Selection of substrate
Five oil-cakes were primarily evaluated for cellulose and

hemicellulose (xylan) contents. The results are presented in table 1. It
was evident that cellulose content was the highest in LOC (17.51%, dry
weight), which was followed by SOC (16.98%). Xylan is the most
common hemicellulose as well as the major non-cellulosic cell wall
polysaccharide of angiosperms, grasses, cereals and seeds, where they
exist in diverse compositions and structures [50]. In comparison to the
oil-cakes tested, hemicellulose (xylan) content was also found to be the
maximum (13.02%) in LOC. Consequently, LOC was used as solid
substrate in subsequent studies.

Oil-cakes* Cellulose Hemicellulose (Xylan)

GOC 15.13 ± 0.71b 12.98 ± 0.58b

MOC 11.32 ± 0.48a 10.11 ± 0.44a

SOC 16.98 ± 0.73c 12.49 ± 0.55b

LOC 17.51 ± 0.87c 13.02 ± 0.66b

SeOC 15.55 ± 0.66bc 11.12 ± 0.49a

Table 1: Contents of cellulose and hemicellulose (xylan) in different
oil-cakes (on % dry matter basis). Values are means ± SE of three
determinations. Values with the same superscript in the same row are
not significantly different (P<0.05) from each other.*GOC, groundnut
oil-cake; MOC, mustard oil-cake; SOC, sunflower oil-cake; LOC,
linseed oil-cake; SeOC, sesame oil-cake
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Effect of initial moisture content
Moisture content of the substrate is one of the critical factors

influencing the outcome of SSF as the microorganisms grow near the
surface of the solid substrate particles associated with low moisture
content [51]. There was gradual increase in production of both the

enzymes by both the bacteria with increase in the moisture content up
to certain level when incubated at 37°C for 72 h. The maximum
cellulase (65.27 ± 1.06 U g-1) and xylanase (25.93 ± 0.87 U g-1)
production by B. pumilus LRF1X was obtained at 60% moisture level
(Figure 1 A).

Figure 1: Effect of (A) moisture (%), (B) temperature (°C), (C) pH, (D) inoculum size (%) and (E) surfactants (1.0% v/w) on cellulase and
xylanase production by Bacillus pumilus LRF1X (KF640221). Effect of (F) carbon sources, (G) varying levels of the selected carbon source, (H)
nitrogen sources, (I) varying levels of the selected nitrogen sources and (J) varying levels of the sodium chloride on cellulase and xylanase
production by Bacillus pumilus LRF1X (KF640221).

The strain B. tequilensis HMF6X also produced the highest cellulase
(51.36 ± 0.97 U g-1) and xylanase (24.37 ± 0.85 U g-1) with 60%
moisture in the SSF media (Figure 2A). Above this, production of both
the enzymes was found to decrease. This could be due to reduced
porosity and oxygen deprivation in the substrate with increased
moisture content leading to lesser biomass and enzyme production
[52]. One-way ANOVA revealed that variation in the production of
both the enzymes at different initial moisture levels were statistically
significant (P< 0.05).

Effect of Different Temperature
The incubation temperature is another vital factor regulating the

enzyme synthesis [53]. Incubation temperature also influences the
transport of enzymes across the membrane, thereby affecting the
enzyme yield [21,54]. The optimum temperature for production of
cellulase and xylanase by both, B. pumilus LRF1X (Figure 1B) and B.
tequilensis HMF6X (Figure 2B) were observed to be 35°C. The
maximum cellulase and xylanase yield at optimum temperature during

SSF of LOC were 68.39 ± 1.12 U g-1 and 26.74 ± 0.91 U g-1,
respectively, by B. pumilus LRF1X. Whereas, in case of B. tequilensis
HMF6X the highest cellulase and xylanase produced at optimum
temperature were 53.67 ± 0.95 U g-1 and 26.42 ± 0.88 U g, respectively.
The result indicated that cellulase was highly sensitive towards
temperature as cellulase yield by B. pumilus LRF1X was reduced to
28.18 ± 0.89 U g-1 at 50°C. Most of the biological processes are
operated in relatively narrow range of temperature [55]. Temperature
plays important role in obtaining a good cellular viability, best
enzymatic production and extracellular protein synthesis [56]. A
fungal strain, Alternaria alternate was accounted for maximum
cellulase production at 35°C under SSF [57], which was consistent with
our observation. Although, Maurya et al. [58] and Bhaumik et al. [59]
reported 30°C as optimum for maximum cellulase production under
SSF by Trichoderma reesei and Trametes hirsute, respectively.
Whereas, thermophilic B. licheniformes gave the best result for
cellulase production at 50°C under submerged fermentation
conditions.
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Figure 2: Effect of (A) moisture (%), (B) temperature (°C), (C) pH, (D) inoculum size (%) and (E) surfactants (1.0% v/w) on cellulase and
xylanase production Bacillus tequilensis HMF6X (KF640219). Effect of (F) carbon sources, (G) varying levels of the selected carbon source,
(H) nitrogen sources, (I) varying levels of the selected nitrogen sources and (J) varying levels of the sodium chloride on cellulase and xylanase
production by Bacillus tequilensis HMF6X (KF640219).

Previous study with B. subtilis BS04 resulted in the highest xylanase
production at 35°C under submerged fermentation. The optimum
temperature for maximum xylanase production by B. subtilis ASH in
SSF was found to be 37°C [60], which was in close agreement with our
observation. The similar optimum temperature ranges for xylanase
production in SSF were reported by Beg et al. [61] and Battan et al. [5].
In contrast, the highest xylanase production by thermophilic B.
licheniformis A99 was observed at 50°C [19].

Effect of Different pH
Optimization of the initial pH of the medium seemed to be essential

in SSF as extracellular enzymes are stable only at a particular pH and
there may be quick denaturation at lower or higher values [58,60]. The
effect of pH of the moistening media on production of both the
enzymes by B. pumilus LRF1X and B. tequilensis HMF6X have been
depicted in figure 1C and figure 2C, respectively. It was revealed that
pH 6.5 was optimum for cellulase production (70.95 ± 1.31 U g-1) by B.
pumilus LRF1X, which was followed by pH 7.0 (68.58 ± 1.28 U g-1).
While, pH 7.0 was noticed as optimum for xylanase production (28.53
± 0.84 U g-1) by the strain B. pumilus LRF1X. Considering this, the
moistening agent with pH 7.0 was used for SSF of the LOC. Within the
tested pH range, pH 7.0 was optimum for both cellulase (58.14 ± 0.88
U g-1) and xylanase (26.95 ± 0.71 U g-1) production by B. tequilensis

HMF6X. In addition, both the bacterial strains could produce
considerable enzymes up to pH 7.5.

Production of cellulases by diverse bacterial species was reported in
the pH range of 4.0 to 9.0, with maximum activity around pH 7.0 [62].
Maximum xylanase production by B. pumilus AB-1 under SSF was
observed at pH 7.0, which was in accordance with our finding [28]. In
contrary, optimum production of cellulase and xylanase in acidic pH

(3.7-5) has been recorded by diverse Bacilli under SSF [63].
Furthermore, optimum cellulase and xylanase production
accomplished in the present study around the initial pH 7 might be due
to the fact that the bacterial symbionts used in the SSF were isolated
from the gut of agastric carps (rohu, Labeo rohita and silver carp,
Hypophthalmichthys molitrix), and the bacteria were adapted to the
neutral or slightly alkaline pH therein [18].

Effect of inoculum size
The initial inoculum level in the media is a vital factor in

fermentation process [64] Both the enzyme activities gradually
increased with increase in inoculum size for B. pumilus LRF1X up to
6.0% (v/w), and thereafter declined. Cellulase (76.17 ± 1.08 U g-1) and
xylanase (30.27 ± 0.95 U g-1) production was highest at inoculum size
6.0% (v/w) (Figure 1 D). For B. tequilensis HMF6X, the maximum
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yield of cellulase (63.25 ± 0.76 U g-1) was achieved with 5.0% (v/w)
inoculums, whereas 6.0% inoculums size (v/w) also resulted in
considerable cellulase (60.89 ± 0.68 U g-1) and maximum xylanase
(28.34 ± 0.65 U g-1) production (Figure 2 D). Considering these facts,
6.0% (v/w) inoculum size of B. tequilensis HMF6X was used during
SSF-processing of LOC. An inoculum size varying between 4-6% has
been described as optimum for cellulase production by diverse
microorganisms [65], which was close to our observation. Aspergillus
flavus AT-2 and Aspergillus niger AT-3 revealed maximum cellulase
production under SSF with an inoculum size of 5% [66]. In contrast, B.
licheniformis A99, B. pumilus ASH 7411 and B. subtilis ASH were
reported to produce highest xylanase when as high as 15% inoculum
level was used [5,19,60]. Likewise, a 10% inoculum was also
documented as optimum for production of xylanase by B. megaterium
under SSF [67].

Optimum inoculum size may vary with organisms and the
substrates used in SSF. At certain level, enzyme production could
decrease because of depletion of nutrients and greater competition for
nutrient uptake due to the increased biomass, which would diminish
the metabolic activity [68]. Therefore, equilibrium between the
proliferating microbial biomass and existing substrate material should
be sustained to yield maximum enzyme [69].

Effect of different surfactants
Surfactants have been reported to influence the growth and

extracellular enzyme production of the microorganisms and their
effects might vary from enzyme to enzyme, even from organism to
organism [13]. In the present study, highest cellulase (78.15 ± 1.18 U
g-1) and xylanase (31.17 ± 0.66 U g-1) activities by B. pumilus LRF1X
was revealed with the supplementation of Tween 80 into the SSF
medium (Figure 1E). Whereas, DMSO gave maximum cellulase (63.84
± 1.04 U g-1) and xylanase (29.77 ± 0.58 U g-1) yields by B. tequilensis
HMF6X, which are depicted in Figure 2E. Stimulatory effect of Tween
80 on cellulase production by Penicillium sp. has been indicated [70].
Tween 80 was also reported to give positive effects on the production
of xylanase by B. subtilis and Aspergillus awamori [71]. However,
modulation of microbial xylanase activity by DMSO has not been
authentically reported previously. Most possibly the surfactants
increase the cell membrane permeability that in turn lead to
simultaneous increase in the secretion and extraction of enzymes from
SSF [72].

Effect of various carbon sources and their amount
Optimization of various supplemented carbon sources (1%)

revealed that lactose was the most effective carbon source for both
cellulase (87.14 ± 1.21 U g-1) and xylanase (34.16 ± 0.62 U g-1)
production by B. pumilus LRF1X (figure 1F). While, starch (65.28 ±
1.07 U g-1) induced the highest cellulase yield by B. tequilensis
HMF6X, which was followed by lactose (60.12 ± 0.95 U g-1) (figure
2F). Lactose supplementation also resulted in maximum xylanase
production (31.48 ± 0.61 U g-1) by B. tequilensis HMF6X (Figure 2F).
Further analyses with varying lactose levels revealed that 1% (w/v)
lactose was optimum for cellulase production by both the strains
(89.23 ± 1.18 U g-1 and 65.36 ± 0.91 U g-1, respectively), and xylanase
production (34.87 ± 0.64 U g-1) by B. pumilus LRF1X (Figures 1G and
2G). However, 2% lactose supplementation brought about maximum
xylanase yield (32.11 ± 0.61 U g-1) by Bacillus tequilensis HMF6X
(Figure 2 G). Further increase in the carbon level in both cases
diminished enzyme production.

In general, cellulases were described as inducible enzymes and were
shown to be induced by the presence of soluble saccharides [70]. In
accordance to our results, improved cellulase production through
lactose supplementation was reported by B. subtilis [73]. The
mechanism of lactose induced increase in cellulase yield was thought
to be on account of intracellular galactose-1-phosphate levels [74].
However, reports on the effect of different carbon sources in the
production of microbial xylanases were conflicting with contradictory
results. Supplementary carbon sources, such as starch, sucrose,
maltose, lactose or glucose at 1% were reported to improve the
production of xylanase by B. megatherium [75]. Our study revealed
only marginal increase in xylanase production through inclusion of
lactose and sucrose as additional carbon sources. In contrast, xylanase
production by Bacillus sp. AR-009 grown on wheat bran was repressed
upon addition of lactose, glucose and sucrose [20]. Catabolite
repression by glucose and/or xylose was also observed in many other
Bacillus spp. [5,60]. In the present study, repressed xylanase production
was noticed through inclusion of glucose, maltose, starch and fructose
in the SSF media.

Effect of various nitrogen sources and their amount
Nitrogen sources are important nutrients for enzyme production.

Among all the organic and inorganic nitrogen sources tested, the
highest cellulase (91.53 ± 1.33 U g-1) and xylanase (36.05 ± 0.62 U g-1)
production by B. pumilus LRF1X was achieved with supplementation
of ammonium sulphate and ammonium nitrate, respectively (Figure 1
H). Inclusion of ammonium sulphate evidenced the second best
xylanase production (34.11 ± 0.55 U g-1) by B. pumilus LRF1X.
Further study revealed that 2.0% (w/v) supplementation of ammonium
sulphate was optimum for production of both cellulase (92.36 ± 1.28 U
g-1) and xylanase (36.47 ± 0.56 U g-1) by B. pumilus LRF1X. (Figure 1
I). Another strain, B. tequilensis HMF6X resulted in the highest
cellulase (70.16 ± 0.95 U g-1) and xylanase (33.75 ± 0.51 U g-1)
production when supplemented with peptone as an additional nitrogen
source (figure 2H). Further study revealed 2% (w/w) peptone as
optimum concentration for cellulase (72.33 ± 1.05 U g-1) and xylanase
(34.33 ± 0.54 U g-1) production by B. tequilensis HMF6X (Figure 2 I).
Supplementation of additional nitrogen sources provided
enhancement of cellulase and xylanase production in several previous
studies. In conformity with our observation, the maximum cellulase
production by B. subtilus [73] and Aspergillus spp. [66] were observed
with ammonium sulphate supplementation, which support our
observation. Although, improved cellulase production by Penicillium
sp. with inclusion of ammonium nitrate was also reported [70]. Similar
with our results obtained in B. tequilensis HMF6X, peptone caused
was described to cause marginal increase in xylanase activity by B.
subtilis ASH [60]

Effect of NaCl
In the present study, 2% NaCl (w/w) supplementation showed

highest cellulase (94.15 ± 1.59 U g-1) and xylanase (37.96 ± 0.68 U g-1)
production by Bacillus pumilus LRF1X (Figure 1J). However, B.
tequilensis HMF6X produced the maximum cellulase (74.78 ± 1.08 U
g-1) and xylanase (35.49 ± 0.56 U g-1) with 1.0%, NaCl (w/w)
supplementation (figure 2J). Previously, enhanced cellulase production
by B. pumilus was observed with 2.5% NaCl supplementation [64].
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Effect of incubation period on cellulase and xylanase
production and on cellulose and xylan degradation

Following optimization of the various process parameters, a time
course study was conducted with LOC as substrate to notice the
cumulative effect of various parameters. Enzyme production increased
gradually with incubation time and maximum cellulase (95.25 ± 1.14
U g-1) and xylanase (38.02 ± 0.53 U g-1) production by B. pumilus
LRF1X was obtained after 8 days (Figure 3).

Figure 3: Effect of incubation time on cellulase and xylanase
production along with cellulose and xylan degradation by Bacillus
pumilus LRF1X (KF640221).

Concentration of NSPs in the substrate reduced gradually as
fermentation progressed. Degradation of cellulose (67.61%) and xylan
(62.98%) in the LOC was observed through SSF by B. pumilus LRF1X
after 8 days. Degradation of the NSPs did not increase further during
the last two days of incubation. Similarly, the highest yields of cellulase
(75.02 ± 0.84 U g-1) and xylanase (36.15 ± 0.59 U g-1) by B. tequilensis
HMF6X were achieved after 8 days under optimized conditions
(Figure 4), that lead to degradation of cellulose (60.37%) and xylan
(54.92%) in the solid substrate (LOC). Enzyme yield declined during

further incubation probably due to reduced nutrient level in the
medium. Otherwise, it could also be the result of poisoning and
denaturation of the enzyme by interaction with other components in
the medium [76]. Degradation of cellulose and xylan mostly ceased
after day 8, which might be in consequence of decreased enzyme
concentration.

Figure 4: Effect of incubation time on cellulase and xylanase
production along with cellulose and xylan degradation by Bacillus
tequilensis HMF6X (KF640219).

Effect of fermentation on proximate composition of LOC
Waste utilization through the generation of value added by-products

is the major benefit for using agro-industrial residues in SSF. Analyses
of proximate composition in the LOC following SSF at optimal
conditions by the fish gut isolates B. pumilus LRF1X (Set-I) and B.
tequilensis HMF6X (Set-II) revealed that there were minor
improvement in the contents of crude protein, lipid, ash, total free
amino acids and fatty acids as compared to the raw LOC (Table 2). SSF
of LOC was effective in significantly

Parameters Raw LOC Fermented LOC

Set-I Set-II

SSF with LRF1X %Increase (↑)/Reduction
(↓) SSF with HMF6X %Increase (↑)/Reduction

(↓)

Dry matter* 92.26 ± 0.53a 96.61 ± 0.48b 4.71↑ 94.85 ± 0.55b 2.81↑

Moisture 7.74 ± 0.31c 3.39 ± 0.26a 56.2↓ 5.15 ± 0.29b 33.46↓

Crude protein 34.09 ± 0.81a 36.86 ± 0.88b 8.13↑ 36.18 ± 0.78b 6.13↑

Crude lipid 13.84 ± 0.53a 15.82 ± 0.24b 14.3↑ 15.94 ± 0.25b 15.17↑

Ash 6.18 ± 0.23a 6.89 ± 0.19b 11.49↑ 6.77 ± 0.21b 9.54↑

Crude fibre 7.61 ± 0.35c 4.17 ± 0.22a 45.2↓ 4.94 ± 0.26b 35.08↓

NFE 30.54 ± 0.76a 32.87 ± 0.78a 7.63↑ 31.02 ± 0.73a 1.89↑

Total carbohydrate# 38.15 ± 0.45b 37.04 ± 0.41a 2.91↓ 35.96 ± 0.49a 5.74↓

Cellulose 17.51 ± 0.87c 5.67 ± 0.21a 67.61↓ 6.94 ± 0.26b 60.37↓
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Hemicellulose (Xylan) 13.02 ± 0.66c 4.82 ± 0.24a 62.98↓ 5.86 ± 0.23b 54.97↓

Gross energy (kcal/g)$ 4.81 ± 0.05a 4.89 ± 0.04a 1.65↑ 4.86 ± 0.05a 1.03↑

Total free amino acids 0.23 ± 0.04a 0.31 ± 0.02b 34.78↑ 0.29 ± 0.04ab 26.08↑

Total free fatty acids 1. 46 ± 0.07a 1.61 ± 0.03b 10.27↑ 1.58 ± 0.05ab 8.21↑

Tannin 2.31 ± 0.06b 1.47 ± 0.06a 36.37↓ 1.53 ± 0.08a 33.76↓

Phytate 1.14 ± 0.03c 0.73 ± 0.02a 35.96↓ 0.89 ± 0.04b 21.92↓

Trypsin inhibitor 1.73 ± 0.07b 0.63 ± 0.05a 63.58↓ 0.61 ± 0.04a 64.74↓

Table 2: Proximate composition of raw and fermented linseed oil-cake (on % dry matter basis). Values are means ± SE of three determinations.
Values with the same superscript in the same row are not significantly different (P<0.05) from each other. *Includes organic matter and ash. Dried
to constant weight at 100°C. #Total carbohydrate=NFE+Crude fibre. $kcal=Kilocalorie (Unit of energy).

(P<0.05) reducing the contents of NSPs (both, cellulose and
hemicellulose), crude fibre and other ANFs, e.g., tannins, phytic acid
and trypsin inhibitor. Apparently, it was revealed that SSF by B.
pumilus LRF1X (Set-I) was more effective than B. tequilensis HMF6X
(Set-II) in improving the nutrient levels and reducing the ANFs
including cellulose and hemicellulose (xylan) contents of LOC, except
for lipid. SSF, as a consequence, presumably assisted in processing of
LOC that in turn led to improvement of its nutritive value. During
fermentation, ameliorating the nutrient level through microbial
synthesis might be expected [7,9], which were in agreement with the
present report. Increased level of crude protein, lipid, free amino acids,
and free fatty acids in fermented oil-cakes in comparison to the raw
substrate was consistent to the findings of Ghosh and Mandal [9],
Ramachandran et al., [11], Bairagi et al. [16] and Khan and Ghosh.

Amino acids Raw LOC Fermented LOC

% dry
matter

% crude
protein

% dry
matter

% crude
protein

Arginine 3.31 9.73 4.01 10.88 (↑)

Histidine 1.16 3.41 1.67 4.53 (↑)

Isoleusine 1.54 4.53 1.79 4.87 (↑)

Leusine 1.82 5.33 1.8 4.89 (↓)

Lysine 1.31 3.85 1.16 3.16 (↓)

Metheonine 0.62 1.82 0.9 2.45 (↑)

Phenylalanine 1.93 5.68 2.55 6.92 (↑)

Threonine 1.86 5.47 2.47 6.71 (↑)

Tryptophan 0.77 2.25 1.09 2.96 (↑)

Valine 1.57 4.62 1.9 5.17 (↑)

Cystine 0.76 2.23 0.89 2.41 (↑)

Table 3: Amino acid composition of raw and fermented linseed oil-
cake in Set-I (fermented with B. pumilus LRF1X). Each value
represents mean of three determinations. Amino acid contents are
expressed as both, % dry matter and % crude protein. Increase (↑) or
decrease (↓) in the amino acid contents of fermented LOC is indicated
in the parenthesis.

Effect of fermentation by B. pumilus LRF1X on amino acid
composition

Our result is consistent with the report of Ghosh and Mandal [9],
where improvement of amino acid balance in the groundnut oil-cake
has been reported through SSF. Plant feedstuffs are usually deficient in
the sulphur containing amino acids, viz., lysine, cystine and
methionine. Therefore, increase in the contents of methionine and
cystine in consequence of SSF could be worth to mention.

Conclusions
The results of the present study suggest that adoption of SSF as a

bio-processing strategy might contribute to enhance the nutritive value
of the oil-cakes. Value addition in the bio-processed LOC became
apparent from increase in the level of nutrients (crude protein, lipid
etc.) and decrease in the contents of ANFs like NSPs, tannin, phytic
acid and trypsin inhibitor. Moreover, SSF by B. pumilus LRF1X
resulted in improved amino acid profile in the SSF-processed LOC.
The bio-processed LOC produced in the present study might be
included in the diets for carps or other monogastric animals at higher
ratios replacing the conventional protein sources, that would
successively reduce the feed cost and feed-related waste outputs. Thus,
adoption of SSF as a bio-processing technique might contribute to
enhance the nutritive value of oil-cakes or other agro-industrial wastes.
Present study also reported cellulase and xylanase producing ability of
the two autochthonous fish gut bacteria, B. pumilus LRF1X and B.
tequilensis HMF6X under SSF using LOC as the substrate. Therefore,
concurrent production of NSP-degrading enzymes together with
generation of bio-processed solid substrate might be of great economic
viability for application of this bio-processing strategy at an industrial
scale. Furthermore, possibilities for their direct inclusion of the NSP-
degrading fish gut bacteria as probiotics could be emphasized in
forthcoming studies to improve nutrient utilization in monogastric
animals fed plant feedstuffs incorporated diets.
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