
Open AccessReview Article

Volume 4 • Issue 3 • 1000134J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

Bioinformatics for Highthroughput Sequencing

Keywords: Virus; Bioinformatics; Metagenome; High throughput
sequencing

Introduction
During past decade we have seen dramatic evolution of next 

generation sequencing (NGS) instruments like Genome Analyzer/
HiSeqSystem (Illumina), 454 GS FLX (Roche), SOLiD (ABI) and 
Ion Torrent Proton (Life Technologies). A variety of bench top NGS 
instruments, e.g. the 454 GS Junior (Roche), MiSeq (Illumina) and 
Ion Torrent PGM (Life Technologies) are now becoming standard 
equipment in virological laboratories. The performance of various NGS 
technologies has been reviewed elsewhere [1,2]. 

NGS technologies can be used to obtain a comprehensive and 
unbiased sequencing of the DNA present in a sample, without the 
requirement of any prior PCR or other amplification that requires prior 
information about sequences that may be present [3]. The complete 
sequencing of all microbiological sequences that may be present in a 
sample is termed metagenomics [4]. Viral metagenomics is nowadays 
routinely used for virus detection and discovery of new viruses [5-13].

As previously pointed out, viral metagenomics has the potential to 
further our knowledge of the role of viruses in human diseases such 
as cancer [14]. The last few decades have led to the realization that a 
considerable proportion of cancers are caused by infections and have 
also provided epidemiological indications that additional cancer-
associated infections may exist [14]. With viral metagenomics, it 
is possible to perform a large-scale analysis of all infections that are 
present in cancers and in healthy individuals [14]. Sequencing of cancer 
specimens with NGS has already been used in the discovery of a new 
cancer-associated virus, MCV [15]. The Human Microbiome Project 
(HMP) is one of several international efforts to take advantage of 
metagenomic analysis and measure microbial diversity in microbiomes 
from healthy and diseased individuals [16].

Modern NGS technologies are capable of generating billions of 
bases, at a rapidly decreasing cost per base [1,2]. This increases the 
demands on the bioinformatics for the analysis of data produced by 
NGS instruments. In this paper, we review some of the most commonly 
adapted bioinformatics tools for viral metagenomic analysis, from 
quality filtering to genome assembly and taxonomic classification.

Bioinformatics Pipeline
The bioinformatics analysis of NGS data for viral metagenomics 

follows a number of distinct steps, as schematically depicted in Figure 
1. This review mostly follows the procedures used in our previous

publications [10-13], but with consideration of alternatives and 
possible improvements. 

Quality checking and filtering

The bioinformatics pipelines to analyze next-generation 
sequencing data usually start by quality checking. The sequences are 
trimmed according to their Phred quality scores [17]. Phred quality 
scores are logarithmically related to the base-calling error probabilities. 
For example, a Phred quality score of 10 corresponds to a base calling 
accuracy of 90% (10 errors per 100 bp), while quality score of 20 equals 
to base calling accuracy of 99% (1 error per 1000 bp) [17]. Specific 
quality filtering conditions can be adapted for different downstream 
analyses [18].
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Abstract
Detection of the presence of known and unknown viruses in biospecimens is today routinely performed using 

viral metagenomics. Because the sequencing speed and cost per base is rapidly declining with new next generation 
sequencing technologies, such as HiSeq (Illumina), 454 GS FLX (Roche), SOLiD (ABI) and Ion Torrent Proton 
(Life Technologies), the bioinformatics analysis is today a most important and increasingly demanding part of viral 
metagenomics analysis. In this review, we highlight some of the major challenges and the most commonly adapted 
bioinformatics tools for viral metagenomics.

Figure 1:  Bioinformatics pipeline for viral metagenomics.
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Next generation sequencing technologies might produce exact 
and/or nearly duplicated reads due to PCR amplification, PCR 
errors and/or sequencing errors [19,20]. Identifying and removing 
these reads, a process also called de-duplication, can significantly 
reduce computational resources for downstream analysis and 
improve assembly. Presence of duplicated reads might also introduce 
overestimation of species abundance. On the other hand, duplicated 
reads might also include natural duplicates that by chance originate 
from the same start from the same genomic position [19,20]. Highly 
abundant species have a higher chance to have natural duplicates [20] 
and their removal might introduce bias towards underestimation 
of abundances [19]. The Cdhit-454 tool identifies and distinguishes 
artificial and natural duplicates in 454 pyrosequencing datasets [19]. 
CD-HIT-DUP tool identifies duplicates from single or paired Illumina 
reads [21].

To obtain the dataset that contains reads of interest, e.g. the virus-
related reads for viral metagenomics, sequences that are not a target 
of the investigation need to be filtered out. This decreases the risk of 
misassemblieS [18], and also speeds up downstream analysis. NGS 
projects directed towards detecting of viral communities, generated 
from human samples subjected to whole genome amplification (WGA)
may contain more than 70% of human-related reads unless there has 
been prior separation of viral capsids or shorter DNAs from long 
chromosomal DNA [10] (Table 1) and viral reads typically constitute 
less than 1% of reads (Table 1). With prior selection for viral nucleic 
acids, the human and bacterial related reads will still be the most 
commonly obtained reads, followed by sequences classified as “other” 
and “unknown” [10,11] (Table 1). Enrichment for viral particles by 
ultracentrifugation is helpful in the analysis of serum samples (Table 
1), but has not been useful in the analysis of biopsies or skin swabs 
(Table 1). Bacterial sequences and sequences classified as “other” and 
“unknown” may also be present in negative control samples (water) 
after NGS sequencing [11] (Table 1), and it is therefore imperative 
that all metagenomic sequencing projects also include sequencing 
of negative control samples [11]. The background sequences found 
in water samples might be present due to the background reactivity 
of Phi29 polymerase reaction [22] or represent environmental 
contamination. However, water controls have so far been found to be 
uniformly negative for viral sequences [11] (Table 1).

To identify possible contaminant sequences as well as sequences 
that are not of interest, the NGS sequences need to be aligned against 
reference sequences. Different alignment software’s are available for 
different sequencing platforms. There are hash table based softwares 
such as SSAHA2 [23] MAQ [24] and BFAST [25] as well as suffix/prefix 
tries based such as BWA-SW [26], SOAP2 [27] and Bowtie2 [27]. Hash 

table based algorithms require a large amount of operating memory, 
whereas suffix/prefix tries requires less computational resources. 

Assembly

NGS technologies produce billions of short reads from random 
locations in the genome by oversampling it. Assembly algorithms, 
in the process called de novo assembly; reconstruct original genomes 
present in the sample by merging short genomic fragments into longer 
contiguous sequences (“contigs”). There are two main types of de novo 
assembly programs: Overlap/Layout/Consensus (OLC) assemblers, 
most widely applied to the longer reads such as MIRA and Celera 
Assembler’s CABOG pipeline and de Bruijn Graph Assemblers, most 
widely applied to the shorter reads such as Euler [28], Velvet (www.
ebi.ac.uk), ABySS [29], All Paths [30] and SOAP de novo (http://
soap.genomics.org.cn/). The different assembly algorithms have been 
reviewed elsewhere [31-33].

The possibility always exists that assembly algorithms may construct 
erroneous “chimeric” sequences by the assembly of 2 different sequences 
from different organisms or species, a problem that may be particularly 
relevant for viral metagenomics where the bio-specimens may contain 
a multitude of related viral sequences. To validate assembly results, we 
suggest to use several assembly algorithms, as well as to perform a re-
mapping of all singletons reads to assembled contigs [3,10].

Taxonomic Classification and Bining
Similarity based methods

Taxonomic classification or bining of metagenomic reads can be 
divided into similarity and non-similarity based methods. One of the 
most famous similarity-based taxonomic classifications is performed 
by NCBI BLAST searches where sequences are compared to known 
genomes. However, a large part of the sequencing reads from de novo 
sequencing projects are classified as unknown [10,11]. This can result 
from incompleteness of public sequence databases or drawbacks of 
NGS technologies such as short read lengths and sequencing errors. 
Because metagenomes might contain a large amount of sequences 
that have very distant homologs or even no homologs at all in public 
databases, we suggest that the use of BLASTn [34] nucleotide searches 
is suboptimal and that more sensitive algorithms, prone to identify 
more distant homologs may be preferable. One such possibility is to 
search against the protein database using BLASTx, or the tBLASTx 
algorithm, that translates query and reference nucleotide sequences in 
all six frames and then compares them to each other. Remote protein 
homologs can also be identified by exploring conserved protein 
domains using BLAST (such as deltablast [35]) or HMM-based (such 

Sample type FFPE1

Biopsies
Fresh Frozen

Biopsies Skin Swabs Serum Negative water  
control

Pre-amplification 
treatment after WGA E-Gel - E-gel - E-gel UC2 - - - UC2 UC2 -

Sequencing platform GS 
FLX

GS 
FLX

GS 
FLX

GS 
FLX

GS 
FLX

GS 
FLX

GS 
FLX Ion PGM 300bp kit Ion PGM 400bp kit GS Junior GS Junior GS FLX

Human 63.9 37.3 95.5 99.8 42.6 2.1 69.1 77.3 76.3 23.6 37.3 2.8
Bacteria 14.6 21.3 3.1 0.1 36.8 61.1 24.2 18.3 18.3 36.8 26.3 52.2

Virus 0.0 0.2 0.0 0.0 0.1 0.1 0.3 0.4 0.3 0.7 0.8 0.0
Other 11.7 10.2 0.5 0.0 17.1 31.5 2.2 1.3 1.0 33.1 20.5 15.5

Unknown 9.8 30.9 0.9 0.0 3.5 6.1 4.2 2.7 4.1 5.9 15.1 29.5
1Formalin Fixed Paraffin Embedded. 2Ultracentrifugation.

Table 1: Typical taxonomic assignmentof NGS reads (percent). Summary of results in previous studies using different types of biospecimens, pretreatments and NGS 
platforms [10,11].

http://www.ebi.ac.uk
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as HMM-FRAME [36]) alignment against Pfam [37], CDD [38] and 
TIGRFAM [39] databases. 

Conventional BLAST-based search tools are extremely time 
consuming and may take days or even weeks to complete when large 
metagenomic datasets need to be compared against nucleotide or 
protein databases. Paracel Blast (Striking Development) is software 
that helps to save time by executing searches on multiple non-shared-
memory processors simultaneously.

To classify sequences from alignment results several methods 
have been developed. One of the first and most frequently used is 
MEGAN [40]. In BLAST searches, sequences might have multiple 
matches and MEGAN finds the ‘Lowest Common Ancestor’ node 
of all matching sequences in the phylogenetic tree, which reduces 
the risk of false positive matches. However, MEGAN might produce 
false negative results by discarding sequences if they do not satisfy 
user-defined cutoffs. Because the size of genome is related to the 
number of reads in metagenomic samples, MEGAN is suboptimal for 
quantitative metagenomic analyses. This problem has been addressed 
by the development of the GAAS (Genome relative Abundance and 
Average Size) tool [41] that iteratively weights each reference genome 
for all matching reads and the number of reads is then normalized to 
the length of their genomes. GRAMMy (Genome Relative Abundance 
estimates based on Mixture Model theory) [42] is another useful 
tool that, compared to GAAS models, reads assignment ambiguities, 
genome size biases and read distributions along the genomes on 
a unified probabilistic framework [42]. However, both GAAS and 
GRAMMy estimate similarities from the alignment qualities of the 
reads to the reference genomes and not from the reference genomes 
directly. Thus, they are suboptimal in case there are highly similar 
genomes in the reference databases. The Genome Abundance Similarity 
Correction (GASiC) considers reference genome similarities to correct 
the observed abundances estimated via read alignments [43]. 

Composition based methods

Taxonomic classification methods that explore composition of 
genome such as GC content, codon or short oligomer (k-mers) usage 
are called composition-based methods. Their advantage is that they can 
be used for taxonomic classification of sequences that do not have any 
homologs or are highly divergent from sequences in public databases. 
Composition-based methods are computationally faster compared to 
similarity-based methods. However, they have lower accuracy and are 
very dependent on sequence length.

Composition-based methods can be divided into (1) assignment 
dependent: PhyloPythia [44] and Phymm [45], (2) hybryd: SPHINX [46] 
and PhymmBL [47] that combine similarity-based and composition-
basedapproaches and (3) assignment independent: Metacluster3 
[48] and Metacluster4 [49], TETRA [50], variants of SOMs [51], 
CompostBin (http://arxiv.org/abs/0708.3098) and AbundanceBin [52]. 
However, originally these methods were not designed for analyzing 
viral metagenomic datasets. Existing taxonomic profiling tools have 
problems to realistically profile and estimate abundances of viral 
sequences [53]. MGTAXA (http://mgtaxa.jcvi.org) is a composition-
based tool that uses approach of the Phymm bacterial classifier [45] but 
is designed to predict the taxonomic placement of viral metagenomic 
sequences. Taxy-Pro tool [53] performs mixture model based analysis 
of protein signatures for taxonomic profiling and has good performance 
for estimating virus abundances in metagenomic datasets [53].

Genotype abundances, community diversity and structure

To estimate the number of different genotypes (richness) and 
their relative abundances (evenness) in a metagenomic sample, simple 
read counts may introduce biases, because longer genomes have a 
higher chance to be sequenced [41]. Another problem is that large 
parts of metagenomic sequences are classified as unknown, most 
probably because of shortcomings in the similarity-based taxonomic 
classification methods, which might result in biased diversity estimates. 

Microbial community structure and their differences between 
different metagenomic samples can pinpoint the influences of patterns 
of microbial communities and among them presence of yet unknown 
microbes. Viral metagenome diversity and Community structure 
estimation pipelines mainly consist of generating contig spectra by 
tools like Circonspect (http://biome.sdsu.edu/circonspect), calculating 
average genome size by tools like GAAS [54,55], and using these 
two parameters to estimate biodiversity by PHACCS [56]. Genotype 
abundances and community diversity is estimated by the number of 
different genotypes in the sample, defined as richness (alpha diversity) 
and their relative abundances and distribution, defined as evenness 
(gamma diversity) among the metagenomic samples [57]. The analysis 
is based on the assumption that more abundant organisms will have 
longer and higher coverage contigs whereas less abundant organisms 
will have many small and low coverage contigs in the sample (alpha 
diversity) [57,58]. The gamma diversity uses the same assumption but 
estimates diversities among different metagenomic samples [57,58]. It 
assembles mixed sequences from metagenomic samples to be compared 
and the amount of similarity is measured by the degree of overlap (i.e., 
if fragments from one sample can be assembled with fragments from 
another sample) between the sequences from different samples. Monte 
Carlo analyses are then performed to estimate the degree of morphing 
[58].

Sequential blast analysis

Sequential blast analysis is another technique used to find shared 
and non-shared sequences between metagenomic samples [59]. If there 
are more than two metagenomic samples one is chosen randomly and 
is compared to a second randomly selected metagenome, which is used 
as a BLASTn database [59]. Applying user-defined cutoffs, the common 
sequences are identified and used as BLASTn database to be compared 
with a third randomly chosen database. The procedure continues until 
all metagenomic samples are compared. The entire pipeline may be 
repeated several times for different random orderings [59].

Discussion
As NGS technologies continue to develop rapidly, the 

metagenomics and viral metagenomics fields are expanding rapidly. 
NGS instruments generate large amounts of data that increase the 
demand on bioinformatics tools and algorithms. We have reviewed 
some of the most commonly used bioinformatics tools used to 
construct bioinformatics pipelines for viral metagenomic analysis.

One of the biggest challenges for bioinformatics analysis is 
taxonomic classification of NGS data as many of the sequences have 
no homologs in the public databases or are highly divergent, which is 
especially true for viral sequences [60]. Taxonomic classification by 
composition-based methods is in its infancy and very few methods 
have been developed for viral sequence classification and abundance 
estimations in metagenomic datasets [60]. MGTAXA (http://mgtaxa.
jcvi.org) and Taxy-Pro [53] are particularly useful in this regard. As 
viruses are underrepresented in current genomic reference databases, 

http://arxiv.org/abs/0708.3098
http://mgtaxa.jcvi.org
http://biome.sdsu.edu/circonspect
http://mgtaxa.jcvi.org
http://mgtaxa.jcvi.org
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accurate and realistic estimation of the proportion of viral DNA in 
metagenomics is a great challenge [53]. Thus, further development of 
viral sequence classification and abundance estimations methods is 
essential.

Sequence quality checking, identification and removal of sequences 
of no interest as well as artificial duplicates are necessary steps to obtain 
as realistic datasets as possible that represent the sequences of interest 
(e.g. virus-related reads for viral metagenomics). This will decrease the 
risk form is assembly [18] and reduce the computational resources for 
downstream analysis. Different downstream analyses require different 
quality filtering methods [18].

Because the field of viral metagenomics is rapidly developing, 
both regarding the NGS technologies used and the bioinformatics 
tools applied, comparison of results from different studies is difficult 
and establishment of open access databases with metagenomics data 
also faces challenges in international comparability. We think that 
regular reviews of the best practices in the bioinformatics used in viral 
metagenomics, their advantages and shortcomings, are essential for the 
development of this important field.
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