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Cardiovascular disease remains the leading cause of death 
worldwide. A boundary for conventional severe heart failure 
treatments exists in spite of significant advances in therapeutic 
modalities and risk-reduction strategies [1]. This health problem has 
prompted research into new therapeutic approaches including cardiac 
regeneration [2]. With the discovery of various stem cell populations 
possessing cardiogenic potential, and the subsequent ability to isolate 
and expand these cells, the notion of a stem cell-based regenerative 
therapy has begun to take shape [3]. 

Acute ischemic injury and chronic cardiomyopathies lead to 
permanent loss of cardiac tissue leading to heart failure and a high 
rate of morbidity and mortality. For these pathologic conditions, cell 
transplantation is thought to be an emerging therapeutic method for 
replacing lost myocardium, and stem cell research and clinical trials for 
cardiac cell therapy are now being prioritized and funded in multiple 
countries [4,5]. Many clinical studies have been conducted using these 
somatic stem cells so far: TOPCAREAMI [6], BOOST [7], REPAIR-AMI 
[8] (Bone marrow hematopoietic stem cells), REGENT [9] (endothelial 
progenitor cells), POSEIDON [10] (mesenchymal stem cells), MAGIC
[11], CAuSMIC [12] (skeletal myoblasts), CADUCEUS [13], SCIPIO5
(cardiac progenitor/stem cells) and so on. However, this field still lacks 
sufficiently conclusive results to support full-scale implementation of
such therapies. A major reason for the insufficient results would be the
poor survival and long-term engraftment of transplanted cells. Despite 
initial positive results on myocardial function and perfusion, the
disappearance of transplanted cells reduces the likelihood of sustained
positive paracrine effects or sustained recovery of function [14]. It is
reported that more than 70% of the cells die during the first 48 hours
after needle injection due to the hypoxic, inflammatory, and/or fibrotic 
environment [15]. Thus, new strategies such as combination of cardiac 
cells with bioengineering techniques are being subjected to intense
research, suggesting that the strategies may improve the efficiency of
stem cell therapies [16,17].

Initial experiments were performed by combining the cells with 
injectable biomaterials such as collagen, fibrin, gelatin, or Matrigel with 
the goal of providing a favorable microenvironment rich in growth 
factors. These early studies showed an increased survival of the grafted 
cells and an improvement of the cardiac function after transplantation 
[18-21]. However, these approaches did not accomplish the goal of 
sustained cell retention or an adequate distribution of the grafted 
cells. The creation of cellular patches as a tissue-like structure has been 
developed by using biomaterials which act as a delivery platform for the 
cells, assuring their engraftment and more homogeneous and organized 
distribution of the cells [17]. Cellular patches using mesenchymal 
stem cells (MSCs) entrapped in a collagen-I matrix and transplanted 
onto rat infarcted hearts induced an increase of cell engraftment and 
a functional improvement [22]. Three-dimensional (3D) contractile 
loops of mixed collagen and neonatal cardiomyocytes (CMs) have 
also been successfully used in rodent cardiac repair experiments. 
Implantation of these engineered heart tissues onto the damaged heart 
improved contractile function [23]. We have developed a novel 3D 

engineered cardiac tissue (ECT) using chick or rat embryonic/fetal/
neonatal CMs and scaffolds as a robust in vitro model to investigate 
the maturing embryonic myocardium [24,25]. Recently, we found that 
mechanical stretch or p38 mitogen-activated protein kinase inhibition 
affects cellular development, growth or proliferation using gene 
expression assays with rat embryonic ECTs [26]. On the other hand, 
porous biomaterials, such as alginate or polymers like poly-glycolide-
colactide, have also been tested as cell scaffolds with human embryonic 
stem (ES) cell-derived CMs [27]. New strategies like microtemplating 
or electrospinning have also been incorporated to create scaffolds that 
mimic the natural heart extracellular matrices to control a homogenous 
seeding of the cells allowing an organized and aligned distribution 
[28]. The repopulation of a decellularized mouse heart as extracellular 
matrices of the whole heart with human induced pluripotent stem cell 
(iPSC)-derived cardiovascular progenitor cells has also been reported 
[29]. 

Another promising approach for construction of 3D tissue-like 
structure is the creation of cell sheets or patches without scaffold 
support. The generation of cell sheets using monolayer cell culture 
is a promising method because of larger scalability and accessibility. 
This technique can be used with a culture dish covalently grafted 
with temperature-responsive polymer poly (N-isopropylacrylamide) 
(PIPAAm) which enables the preparation of cell sheets without 
enzymatic digestion [30]. The beneficial potential of this technique 
has been demonstrated by many experiments using stem cell sources 
such as the transplantation of a monolayer cell sheet generated from 
iPSCs or adipose tissue-derived MSCs to animal myocardial infarction 
models [31,32]. We have reported a transplantation study of a three-
layered cardiac tissue sheet bioengineered with mouse embryonic stem 
cell (ESC)-derived defined cardiac cell populations to an infarcted rat 
heart [33]. In these cases, an increase in neovascularization together 
with an attenuation of ventricular remodeling responsible for the 
improvement in cardiac function has been demonstrated and this cell 
sheet-based method creates a novel platform for exploring the cellular 
mechanisms of cardiac regeneration. The combinations of cell types 
composing the transplanted cell sheets enabled us to elucidate the 
regenerative function of each cell type (for example, the comparison 
of cell sheets with or without CMs is helpful for the elucidation of 
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the cellular function of CMs). This cell-type controlled analysis led 
us to identify one of the cellular mechanisms of cardiac regeneration 
following cell therapy that CMs are main contributors for the functional 
improvement through neovascularization. 

 Nevertheless the progresses in bioengineered technologies toward 
cardiac stem cell therapy introduced here, hurdles still remain for 
producing and adequate quantity of functional cardiac cells which 
do not die following implantation and for creating patches/organs 
that can mimic the structure and function of the heart. In this regard, 
iPSCs possess great potential for cardiac regeneration. A main reason 
is that iPSCs can be expanded geometrically in vitro while remaining 
pluripotent in an undifferentiated state in culture, and can give rise 
to most somatic cell lineages including various cardiac cells once 
allowed to differentiate [34]. In this regard, the regenerative capacity 
is theoretically limitless [35]. The merit of iPSCs is larger especially 
for the heart compared to other organs, such as endocrine or sensory 
organs, as the heart functions as an assembly of a large number of 
cells including CMs and other cell types (e.g. vascular cells, cardiac 
fibroblasts), and numerous heart-composing cells might be required 
to fully compensate for the damaged human heart [36]. Potent 
differentiation methods based on high-density monolayer culture 
and chemically defined factors, and modifications thereof, have been 
reported to induce CMs from human iPSCs with a robust efficiency 
of 40-70 % [37,38]. The application of these methods would strongly 
promote cardiac regeneration using human iPSCs. Another advantage 
of iPSCs is that they lack the ethical and immunogenic issues associated 
with the use of ESCs [4]. The generation of iPSCs by reprogramming 
autologous somatic cells with genes regulating pluripotency may resolve 
the ethical and immunogenic issues associated with the use of ESCs 
which is brought from inner cell mass with destruction of fertilized egg. 
Integration of bioengineering and iPSC technologies may generate an 
ideal structure suitable for cardiac regenerative therapy in the future. 

The combination of cell therapy and local administration of 
cytokines that induce paracrine effects such as angiogenesis is a 
method for enhancing therapeutic potential of cell therapy. Tabata et 
al. [39] have developed a bioengineered system for sustained release 
of angiogenic cytokines, such as basic fibroblast growth factor (bFGF), 
from a biodegradable material, gelatin hydrogel; this system enables 
to control the release of cytokines over the periods required for 
efficient clinical outcomes. The addition of such sustained release of 
bFGF enhanced the functional benefit of the transplantation of cardiac 
progenitor cells in a porcine myocardial infarction (MI) model [40]. 

Besides cell-based strategy, there are promising approaches for 
cardiac regeneration with bioengineered technologies. Gene therapy is 
emerging as a potential treatment option in patients suffering from a 
wide spectrum of cardiovascular diseases [41]. Gene therapy, which is the 
direct introduction of transgenes into the vasculature or myocardium, 
may contribute in controlling the symptoms of cardiovascular diseases 
and may also reverse the pathological conditions involved. In 2010, 
Ieda et al. [42] reported that a combination of 3 developmental 
transcription factors (Gata4, Mef2c, and Tbx5) rapidly, efficiently, and 
directly reprogrammed postnatal cardiac or dermal fibroblasts into 
differentiated cardiomyocyte-like cells in vitro (direct reprogramming). 
This technology was recently applied to an in vivo mouse MI model in 
which the 3 genes were delivered by a retroviral vector, resulting in 
direct reprogramming of cardiac fibroblasts within the infarction site 
into cardiomyocyte-like cells and amelioration of cardiac dysfunction 
[43]. Three goals must be accomplished for appropriate gene therapy: 

suitable vectors must be generated, a suitable gene or group of genes 
must be identified, and an appropriate delivery system must be 
developed. Bioengineered materials such as biodegradable hydrogel 
are reported to contribute to this appropriate delivery of vectors and 
enhance the transfection efficiency with sustained release of vectors 
[44]. Thus, there a range of cellular and tissue engineering strategies 
are rapidly transitioning from pre-clinical to clinical trials to repair 
and regenerate damaged myocardium towards sustained recovery. We 
sincerely expect that these advanced modalities that integrate cellular 
and bioengineering technologies will enhance the efficacy of cardiac 
cell therapy and further contribute to cardiac regenerative medicine. 
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