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Introduction: Brief Review of GPCR Signaling
G Protein-Coupled Receptors (GPCRs) are a family of seven 

transmembrane proteins, which together are viewed as one of the largest 
therapeutic targets in clinical medicine [1,2]. In fact, GPCR ligands 
account for almost 40% of approved drugs such as α- and β-blockers, 
opiates, β-agonist and angiotensin-converting enzyme inhibitors [3,4]. 
GPCRs recognize various ligands, including hormones, proteins, 
peptides, lipids and ions [3-5], and thus, their signals and functions 
make them attractive drug targets [1,2,6,7]. 

Classically, agonist binding to GPCRs promotes structural changes 
that stimulate the activation of heterotrimeric G proteins and lead to 
the activations of various cytosolic signaling molecules [4,8-10]. It 
has been demonstrated that binding of agonists to GPCRs promote a 
desensitization process via GPCR phosphorylation by the G Protein-
Coupled Receptor Kinases (GRKs) with the involvement of β-arrestin 
[11-14]. These structural changes increase the binding affinities of 
GPCRs for β-arrestins, which are known to block G protein signaling 
[11-16]. β-arrestins is not only a desensitizer of G protein signals, but 
also a signaling molecule [9,14,17].

There are many diseases related to GPCRs including Cardiovascular 
Diseases (CVDs), diabetes and neurologic disorder [1,4,18,19]. Among 
the diseases, CVDs are one of the most common diseases [20,21]. 
CVDs, such as, atherosclerosis, coronary artery diseases, stroke, and 
thrombosis, are leading causes of death [21]. CVDs highly associate 
with many GPCRs which are expressed in heart [20,22,23], the 
underlying mechanisms responsible for CVD are poorly understood. 
In view of the fact that alterations in GPCR pathways are linked to 
the developments of various CVDs [20,22-26], it would appear drugs 
that target GPCR pathways might be helpful for the prevention and/or 
treatment of CVDs. Although drugs used in CVDs bind same receptor, 
the pharmacologic effects of them are dependent on ligands [4,27]. 
Here, we discuss a novel GPCR pathway, called biased agonism, and 
the importance of biased drug development in cardiovascular diseases. 
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β-Arrestins as Novel Signaling Molecules in GPCR 
Pathways

Classical paradigms portend G-protein signals act in a linear 
manner [28-30], to activate various downstream pathways that increase 
levels of second messengers, such as, cAMP, DAG, and IP3 (Figure 1). 
In response to agonist binding, G Protein-Coupled Receptors (GPCRs) 
undergo conformational changes, and combinations of structural 
changes and receptor phosphorylation causes the recruitment of 
β-arrestin, which leads to signal desensitization via endocytosis of 
receptor-protein complexs (Figure 1). Furthermore, sequestration of 
these receptors from the cell surface is an important component of 
receptor desensitization and down-regulation [9,11,14]. 

Recently, many researchers have reported GPCRs activate cytosolic 
signaling substrates, such as, MAPKs, Tyrosine Kinase (TK), AKT, PI3 
Kinase (PI3K), and NF-kB, via β-arrestins, that is, in non-classical G 
protein independent manner (Figure 2). β-Arrestins act as scaffolds 
that bind various signaling molecules, including MAPKs, AKT, PI3K 
in various cells [9,17,31-33]. The proliferation of such findings shows 
GPCRs have multiple signal networks, and thus, there is a need to 
evaluate current drugs targeting GPCRs using different experimental 
tools to elucidate the nature of these networks.

Biased Agonism of GPCRs
The classical GPCRs signaling pathway presumes that bindings of 

ligands elicit their effects through one mechanism [28-30]. According 
to this paradigm, although agonists differ in terms of efficacy, their 
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elicited downstream effects are identical [34,35]. This concept is 
sufficient to determine the character of a ligand, i.e., full, partial, inverse 
agonist or neutral antagonist (Figure 3) [28,36,37]. However, agonists 
differ qualitatively (e.g., one agonist selectively activates one signal 
whereas another predominantly stimulates a different signal via the 
same receptor) and quantitatively (e.g. partial verses full) [28,36,37]. 
Thus, according to this expansion of the classical paradigm, agonists 
recognized by same GPCR elicits different types of responses.

Because ligands exhibit functional specificity via the same GPCR, 
the molecular pharmacologic concept of ‘biased ligand’ was proposed 
[27,38,39]. Interactions between GPCRs and G proteins and β-arrestins 
represent general mechanisms of GPCR pharmacology and can initiate 
distinct signals, which are associated with specific physiological or 
pathophysiological consequences [20,22-26,40-42]. As shown in Figure 
4, ligands cause bias toward the G protein- or β-arrestin-mediated 
pathways, which suggests that biased ligands can be used to selectively 
to achieve greater beneficial or even negate unwanted results of GPCR 
activation, like side effects [43-45]. In past decades, several biased 
GPCR ligands have been identified that selectively target G proteins 
or β-arrestins [4,27]. Thus, the characterization of GPCRs signaling 
pathways related to specific drugs is an essential prerequisite to the 
development of optimal therapeutic approaches. 

The biased ligand concept proffers GPCRs adopt specific ligand-
dependent conformations [10,46-49]. In particular, different ligand 
biases could stabilize distinct receptor conformations, and result in 
the transmissions of different signals to intracellular components 
[46,47,50,51]. Moreover, the bindings of different β-arrestin biased 
ligands to same GPCRs might activate other effectors in different 
ways [18,52,53]. About 400 GPCRs have pharmacologically relevant 
in human, only 30 GPCRs of structures have been reported [18]. It 

Figure 1: Classical paradigm of G Protein-Coupled Receptors (GPCRs) 
signaling pathway.
After agonist binding to GPCRs, activated receptor stimulates G proteins 
and is phosphorylated by G Protein-Coupled Receptor Kinases (GRKs). The 
β-arrestin binds phosphorylated receptor and leads to desensitization.

Figure 2: New paradigm of G Protein-Coupled Receptors (GPCRs) 
signaling pathway.
After agonist binding to GPCRs, the β-arrestin which was bound to receptor 
not only terminate G-protein signaling, but acts as scaffolds to activate 
several signaling molecules.
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Figure 3: Interaction between ligand and receptor.
Full agonist: It binds to the certain receptor, and leads to produce full efficacy.
Partial agonist: Although it binds to the same receptor, it produces only partial 
efficacy.
Full antagonist: It inhibits agonist-mediated pharmacological functions.
Inverse agonist: It binds to the same receptor, however, it has opposite effect 
compared to agonist.
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is helpful to reveal 3-dimensioinal structures of GPCRs for designing 
biased ligands. Thus, understanding of structure-activity relationships 
is required for the developments effective therapeutics.

Importance of Biased Ligands in the Background of 
CVD

Numerous studies have been conducted on relations between 
GPCRs and disease states [19,20,22-26,42,54-59]. Angiotensin II 
(AngII) Type 1 Receptor (AT1R) and β-adrenergic receptors are 
probably the most important and well-studied GPCRs in the context 
of CVDs [60-65]. The Platelet-Activating Factor (PAFR) has an 
important role in the development of atherosclerosis (Figure 5 and 
Table 1) [32,66,67].

Angiotensin II (Ang II) Type 1 Receptor (AT1R)
As shown in Figure 6, AT1R, which is stimulated by Ang II, plays 

an important regulatory role in the cardiovascular system [60,62,64,68-
72]. Excessive stimulation by Ang II is detrimental and causes arterial 
hypertension, myocardial hypertrophy, and cardiac dysfunction 
[60,62,64,68-72]. Like other well-studied GPCRs, signaling of AT1R 
also occurs via G proteins and β-arrestins pathways [28,73], the 
characteristics of which have been investigated using mutant ligands 
that activate one pathway, signal inhibitors, siRNAs, and knockout 
mice [60,62,64,65,68]. 

TRV120027, a β-arrestin biased ligand, reduces arterial pressure 
and increases cardiac contractility whereas G protein biased ligand, 
angiotensin II, causes vasoconstriction and fluid retention [72,74,75]. 
Insufficient cardiac output causes vasoconstriction by activating the 
Renin-Angiotensin System (RAS), which further impairs cardiac 
function because of the additional work required to maintain end 
organ perfusion [76,77]. It has been shown TRV120027 can block 
vasoconstriction induced by G protein activation and increase cardiac 
performance via β-arrestin biased signaling [72,74,75]. TRV120027 
also suppresses angiotensin II-induced cardiac hypertrophy but 
enhances cardiac contractility [70]. Other β-arrestin biased ligand, 
TRV120026, has similar effects [4,64]. In this regard, β-arrestin biased 
ligands of AT1R offer a potentially efficient means of improving patient 
outcomes (Figure 6A).

β-Adrenergic Receptors (β-AR)

The adrenergic receptors are GPCR family members that target 
catecholamines, and the β-adrenergic receptors have been well studied 
[78-80]. Antagonists and agonists of adrenergic receptors are among 
the most clinically important drugs for the treatment of cardiovascular 
diseases [81,82]. In the cardiovascular system, β1-adrenergic receptor 
(β1-AR) specifically increases cardiac output by increasing heart 
rate, conduction velocity, and stroke volume [83-85], whereas β2-AR 
controls vascular tone [86]. 

Recent research has revealed that carvedilol, a widely used 
β-blocker, activates ERK1/2 via β-arrestin in the absence of G 
protein activation, and classical antagonists of G protein signaling 
transactivate EGFR via a β-arrestin-dependent pathway [87-91]. These 
transactivations show that β-blocker, which acts as a β-arrestin biased 
ligand, has cardioprotective effects in-vitro and in-vivo systems [87-90]. 
However, it is thought that sustained β1-AR activation is cardiotoxic 
such as increasing apoptosis, heart rate, blood pressure via Gs signaling 
(Figure 6B) [92]. Moreover, carvedilol (a well-known β-blocker) acts 
as a β-arrestin-biased ligand for β1-AR and β2-AR [88,91]. Thus, 
the β-arrestin-dependent signaling of β-AR is expected to have a 
cardioprotective effect (Figure 6B).

Figure 4: Schematic representation of biased ligands. (A) G protein biased 
ligand can only activate G protein-related signals. (B) β-arrestin biased ligand 
do not activate G protein-, but β-arrestin-mediated signaling pathways.

 
Figure 5: Protective role of SIRT1 in PAF-mediated β-arrestin signaling 
pathway.

Platelet-Activating Factor Receptor (PAFR)

Platelet Activating Factor (PAF), which binds to PAF 
receptor (a member of the GPCR family), was found to enhance 
matrixmetalloproteinase-2 (MMP-2) expression levels and MMP-2 
is considered to make an important contribution to atherosclerotic 
plaque instability [32,66,93-95]. PAF-enhanced MMP-2 production 
has been shown to occur via activation of a β-arrestin-dependent ERK 
pathway (Figure 5) [32,66]. Interestingly, SIRT1 (silent mating type 

Figure 6: Examples of β-arrestin biased ligand of GPCRs. (A) TRV120027 
do not activates G proteins, but β-arrestin-mediated pathway after binding 
of AT1R. Angiotensin II (AngII) induces vasoconstriction via G protein 
activation, however, TRV120027 has only beneficial effects via β-arrestin 
activation. (B) In β1AR activation, β-arrestin-mediated signals have various 
good effects, but G protein activation induces high blood pressure, apoptosis 
and increasing heart rate. 
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information regulation 2 homolog 1), is a key regulator of protection 
against vascular disorders and down-regulates PAFR via β-arrestin-
mediated internalization [66]. These results suggest deacetylation, a 
function of SIRT1, might be involved in GPCR regulation (Figure 5). 

PAFR also plays a critical role in platelet aggregation [96,97]. 
Arachidonic acid, which is known to potent aggregation factor, 
induced platelet aggregation and thrombosis formation through PAFR 
[98]. SIRT1 down-regulates PAFR in platelets via proteasomal and/or 
lysosomal pathway [66]. SIRT1 activation suppresses platelet activation 
ex-vivo and pulmonary thromboembolism in-vivo [98]. Thus, 
elucidating G protein-related signaling pathway of PAFR is important 
to develop new cardiovascular drugs targeting PAFR.

Apelin receptor

Apelin receptor, which is also one of the GPCR family, has similar 
sequence with the AT1 receptor [26,99]. However, the receptor does 
not respond to angiotensin II [26,100]. In Apelin receptor signaling 
pathway on vascular endothelial cells, biased toward G protein (MM07, 
Elabela/Toddler) signals has beneficial effects like vasodilation, 
increasing cardiac output [26,101-104]. MM07 or Elabela/Toddler 
showed β-arrestin biased actions at around 45 nM or 100 nM. 
β-arrestin-related signaling by mechanical stretch in Apelin receptor 
causes cardiac hypertrophy whereas G protein prevents the cardiac 
hypertrophy [26,105]. In case of Apelin receptor, G protein signal is 
beneficial compared to β-arrestin pathway.

Sphingosine-1-Phosphate 1 receptor (S1P1 receptor)

Chronic inflammation induced by inflammatory macrophages 
plays critical role in the initiation and progression of cardiovascular 
diseases including atherosclerosis [106,107]. S1P enhances phenotypic 
changes of macrophages to anti-inflammatory phenotype [108]. In 
recent research, ApoM+HDL act as a β-arrestin biased ligand and it 
decreases vascular inflammation [109]. These results can support the 
cardiovascular protective role of HDL [109].

Conclusion and Perspectives
To make ideal drugs which offer safer, more efficacious for GPCRs, 

studies should focus on revealing the signals in detail and binding 
of ligand-receptor. Biased agonism is relatively novel concept, and 
despite the examples described above, comparatively few studies have 
been undertaken to elucidate the natures of GPCR pathway signals. 
Some research suggested functional bias is dependent on structures of 

ligands. Identification of receptor structures will support the structure-
based drug design. These approaches will undoubtedly lead to the 
discovery of developing ideal biased ligands for therapeutics.

This review places emphasis on the G protein/β-arrestin bias 
concept because G protein and β-arrestin are being directly targeted for 
drug discovery. We hope this article provides the motivation to better 
define the natures of GPCRs signals and aids the developments of more 
effective drugs on the basis of structures.
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