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Abstract

Oxidative stress is a much-recognized phenomenon linked with the progression of Neurodegenerative
Diseases (NDs) due to imbalances in redox homeostasis. Increasing evidence indicates that excessive Reactive
Oxygen Species (ROS), impairing the physiological functions of neurons via inducing cell apoptosis, is the main
cause of NDs. The drug candidates are required that can effectively protect neurons from oxidative stress insult to
slow down the process of neurodegenerative diseases. In present study, we investigated the protective effect and
the underlying mechanisms of berberine (BBR, an isoquinoline alkaloid isolated from the herb Rhizoma coptidis,
against oxidative damage in PC12 cells. It was found that BBR was able to suppress hydrogen peroxide (H2O2)-
induced cell death in PC12 cells. Flow cytometry revealed that BBR significantly reduced the apoptosis of PC12
cells exposed to H2O2. Western blot analysis displayed that BBR stimulated the extracellular regulated ERK1/2
survival signaling, while application of PC12 cells with ERK1/2 pathway inhibitor PD98059 blocked the
neuroprotective effect of BBR. These results together indicated that BBR is a potential protectant, and it protects
PC12 cells against H2O2 toxicity through activated the ERK1/2 pathway.
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Introduction
Neurodegenerative diseases (ND), such as Alzheimer's (AD) and

Parkinson's disease (PD), are chronic degenerative pathologies of the
Central Nervous System (CNS). NDs are characterized by progressive
loss of specific neurons which further leads to a decline in brain
functions [1,2]. Despite the fact that pathologies have different clinical
features, there are some common hallmarks, such as synaptic
dysfunctioning, oxidative stress, and inflammation [3]. The NDs are
caused by an enhancement of ROS production via mitochondria and
NADPH oxidase (NOX), which seems to account for tissue injury and
neurodegeneration [4,5]. Nowadays, NDs are chronic and incurable
conditions, and the disabling effects may continue for years or even
decades representing an enormous disease load, regarding human
suffering and economic cost [6,7]. In neuronal cells, the over
production of ROS is considered as one of the risk factors for NDs
[8,9]. Disruption of redox homeostasis is a key phenotype of many
pathological conditions. Hydrogen peroxide (H2O2), the main source
of ROS, can cause cell membrane injury as well as lipid peroxidation
and DNA damage in variety cells. However, antioxidants were able to
protect cells against H2O2-induced cell death via reducing ROS
production [10].

Recently, a number of natural medicinal plants have been tested for
their therapeutic properties, revealing that the raw extracts or isolated
pure compounds from them had more effective properties than the
whole plant itself for the treatment of ND and other disease [11,12]. In
the last decade, more and more attention has been paid to the
antioxidant activities of natural products and compounds isolated
from plants which usually have higher efficacy and lower side effects.
Berberine (BBR) is an isoquinoline alkaloid (5,6-

dihydrodibenzoquinolizinium derivative), which belongs to the
structural class of protoberberines and is extracted from several
medicinal herbs, particularly in the genus berberis [8]. Previous studies
have shown that BBR has abundant pharmacological activities,
including antioxidant, anticancer, anti-inflammation, antidepressant,
neuroprotection, hepatoprotection, cerebroprotection and
cardioprotection [13,14]. In recent years, BBR has been reported to
exert beneficial effects in neurodegenerative and neuropsychiatric
disorders because of its dual antioxidant and anti-apoptotic activities
[15-18].

It has been found that BBR-mediated neuroprotection against
neuronal apoptosis is regulated by several pathways including Akt/
GSK3β, ERK1/2, AMPK, Nrf2/HO-1 survival/apoptotic signaling
pathway as well as JNK and Caspase-3 activity inhibition [19,20].
Different studies have shown that BBR inhibited superoxide anions
and had radical scavenging activity against the highly reactive hydroxyl
radicals, while the mechanisms and signaling pathways involved in its
antioxidant effects are still not very clear. The rat pheochromocytoma
PC12 cells are useful neuronal models for the study of neuronal
degenative disorders such as Alzheimer's disease, and also widely

In present study, we discovered that BBR was able to protect PC12
cells against H2O2-induced oxidative damage via inhibiting the
apoptosis. We also displayed that the neuroprotective effect of BBR is
mediated through the ERK1/2 pathway. These findings suggest that
BBR is able to protect PC12 cells against H2O2 injury by the MAPK
pathway and further support that the BBR administration might be a
possible therapeutic approach for the treatment of AD.
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used 
to investigate free ROS biochemical pathways involved in cell death and 
neuroprotection [21]. Hence, this cell line is a suitable model

oxidative stress-induced neuronal injury.
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Materials and Methods

Materials
Dimethyl Sulfoxide (DMSO), poly-L-lysine and bovine serum

albumin were purchased from Sigma (St. Louis, MO, USA). Fetal
Bovine Serum (FBS), Penicillin-Streptomycin (PS), DMEM and
trypsin were obtained from Invitrogen (Carlsbad, USA). Methyl
Thiazolyl Tetrazolium (MTT) was got from Molecular Probes (Eugene,
OR, USA). Annexin V-FITC/PI Apoptosis Detection Kit was
purchased from BD Biosciences (San Diego, CA, USA). Anti-β-actin
and phospho-ERK1/2 antibodies were obtained from Cell Signaling
Technology (Woburn, USA). ERK1/2 inhibitor PD98059 was obtained
from Selleckchem.

Cell culture and treatment
The rat pheochromocytoma PC12 cell, NIH clone, was kindly

provided by Dr. Gordon Guroff (National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD,
USA). Cells were cultured in Dulbecco's Modified Eagle Medium
supplemented with 10% heat-inactivated horse serum, 5% Fetal Bovine
Serum (FBS) and antibiotics (100 U/mL penicillin; 100 μg/mL
streptomycin) as previously described [22,23]. Cells were incubated at
37°C with 5% CO2 humidified atmosphere. All experiments were
carried out 24 h after the cells were seeded. For the protection assay,
PC12 cells were pre-treated with BBR for 2 h, and then treated with
H2O2 for 24 h in all experiments. In addition, BBR was removed from
the cell culture medium before H2O2 exposure.

MTT assay
Mitochondrial activity, a measure of cell death, was measured by the

MTT assay as previously described [24]. Briefly, PC12 cells were
seeded in 96-well plates at a density of ×103 cells/well. After serum
starvation, the cultures were incubated with different reagents for 24 h.
Thereafter, MTT (0.5 mg/mL) was added to each well for an additional
4 h. Subsequently, medium was removed, and DMSO (100 μl) was
added to each well to solubilize the formazan salt. Absorbance was
measured at 490 nm by Infinite M200 PRO Multimode Microplate
(Tecan, Switzerland). The relative cell viability was presented as a
percentage compared with the control group.

Apoptosis of PC12 cells measured by flow-cytometry
The PC12 cells after treatment were analyzed by flow cytometer.

Briefly, the PC12 cells were collected by centrifugation (2000 rpm for 5
min) and washed with PBS for two times. Cells were suspended in 400
μl of 1X Binding Buffer. 5 μl Annexin V-EGFP mix was added in each
sample followed by the addition of 10 μl Propidium Iodide; mixed and
kept away from light at room temperature for 20 min. Data acquisition
and analysis were performed using BD C Sample plus.

Western blot analysis
The western blotting in this study was carried out as described

previously [25]. Briefly, cells after different treatment were washed
once with ice-cold PBS, then lysed in RIPA buffer (10 mM Tris-HCl,
pH 7.4, 5 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 20 µg/ml
leupeptin, 0.1% aprotinin, 1 mM iodoacetamide, 200 µg/ml bacitracin,
20 µg/ml soybean trypsin inhibitor, 10 mM NaCl and 0.25% Triton
X-100) for 15 min on ice. Protein concentrations were measured by

BCA protein assay kit (Bio-Rad, Hercules, CA, USA) following the
manufacturer’s instructions. For western blotting, samples (20 µg
protein/lane) were separated by SDS-PAGE gel with a pre-stained
protein ladder (5 µl) as a molecular weight marker, and then
transferred to PVDF membranes. The p-ERK1/2 was determined by
phospho-specific antibody while β-actin was used as a loading control.
Immuno-reactive bands were visualized by ECL kit according to the
manufacturer's instructions. The intensity of band was quantified using
Image J software. The experiments were repeated for 3 times by using
independent cultures.

Statistical analysis
Statistical analysis and data handling were performed using SPSS

version 16.0. All experiments were repeated for 3 times. All the data for
continuous variables were expressed as the mean ± standard deviation
(X ± SD) along with ranges. Statistical analysis was performed using
one-way ANOVA followed by Tukey's multiple comparison. The null
hypothesis was rejected at P<0.05.

Results

BBR attenuated the decrease in cell viability induced by
H2O2 in PC12 cells

To calculate the cytotoxicity of H2O2, PC12 cells were incubated
with different concentrations of H2O2 for 24 h and the cell viability was
measured by MTT assay. As shown in Figure 1, H2O2 treatment for 24
h significantly decreased the cell viability of PC12 cells in a
concentration-dependent manner. H2O2 at 200 μM caused about 20%
loss in cell viability, thus this concentration of H2O2 was used in the
coming experiments to produce the cell insult and to measure
neuroprotection. To investigate the cytotoxicity of BBR, PC12 cells
were treated with different concentrations of BBR for 24 h, and the
cytotoxicity was measured by MTT assay. As shown in Figure 2, BBR
did not show any cytotoxicity between 0.315 and 5 μM, and these
concentrations were used in further experiments. To examine the
protective effects of BBR, PC12 cells were incubated with BBR for 2 h
and then exposed to H2O2 for 24 h. The result form MTT assay
revealed that pre-treatment with 1 or 2 μM of BBR significantly
attenuated H2O2-induced cell viability loss in a concentration-
dependent manner.

Protective effect of BBR on H2O2-induced apoptosis in the
PC12 cells

It was reported that cell death caused by H2O2 was mainly mediated
by apoptosis [26] and BBR was able to protect cells from apoptosis in
various cell types [20,27]. We therefore investigated whether BBR
could reduce the cell apoptosis caused by H2O2 in PC12 cells. Cell
apoptosis was tested by flow cytometry, and the data indicated that
H2O2 exposure markedly increased apoptosis in PC12 cells, while BBR
pre-treatment significantly reduced the apoptosis caused by H2O2
(Figure 2).
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Figure 1: BBR attenuated the decrease in cell viability induced by
H2O2 in PC12 cells. (A) The structure of BBR. (B) Cells were
incubated with H2O2 (25-400 μM) or 0.1% DMSO (vehicle control)
for 24 h, then the cell viability was determined by the MTT assay.
(C) Cells were treated with BBR (0.3-10 μM) or 0.1% DMSO
(vehicle control) for 24 h and cell viability was measured using the
MTT assay. (D) Cells were pre-treated with BBR at indicated
concentrations, then incubated with or without 200 μM H2O2 for
further 24 h. Data represented means ± SD, *P<0.05 vs. control
group; #P<0.05 vs. the H2O2-treated group.

Figure 2: Protective effect of BBR on H2O2-induced apoptosis in the
PC12 cells. (A) Photographs of representative cultures measured by
flow cytometry. (B) Quantitative analysis of (A). The data were
represented as the mean ± standard deviation of three independent
experiments. *P<0.05 vs. control group; #P<0.05 vs. the H2O2-
treated group.

BBR stimulated the ERK1/2 signaling pathway in PC12 cells
ERK1/2 pathway phosphorylation is a key biochemical event

responsible for cell survival and apoptosis. BBR was able to activate
ERK1/2 signaling in mice as reported earlier [28]. We tested whether
ERK1/2 pathway is involved in BBR-induced neuroprotective effects in
PC12 cells. As shown in Figure 3, phosphorylation of ERK1/2 was
gradually increased after the addition of BBR in a concentration-
dependent fashion. This data suggested ERK1/2 pathway participated
in the protective action of BBR.

Figure 3: Involvement of ERK1/2 signaling in the neuroprotective
effect of BBR. (A) PC12 cells were treated with BBR in different
concentrations. The expression of phosphorylated ERK1/2 and β-
actin were detected by western blotting with specific antibodies. (B)
Quantification of representative protein band from western
blotting. *P<0.05 vs. control group.

The ERK1/2 pathway inhibitor PD98059 attenuated the
protective effects of BBR

To further support the role of ERK1/2 signaling pathway involved in
the neuroprotective effect of BBR, PC12 cells were pre-incubated with
25 μM PD98059 (a specific inhibitor of MEK which is an upstream
kinase of ERK1/2), and then the neuroprotective effect of BBR on
H2O2-induced injury was investigated by MTT assay. As shown in
Figure 4, pre-incubation with PD98059 markedly reduced the
neuroprotective effect of BBR on H2O2-induced cell viability loss.
These results indicated that the neuroprotective effect of BBR was
mediated by ERK1/2 pathway.

Discussion
Numerous scientific reports emphasized that oxidative stress plays a

crucial role in the pathophysiology of NDs [29-32]. ROS, caused by
oxidative stress, lead to lipid peroxidation as well as protein oxidation,
resulting in plasma membrane broken and cross-linking of cytoskeletal
biomolecules [33-36]. Antioxidants can reduce or delay oxidation
process though preventing the initiation or propagation of oxidizing
chain reactions. In this study, neuroprotective effect of BBR on H2O2-
induced oxidative damage was investigated. Our results showed that
200 μM H2O2 significantly increased the cell apoptosis in PC12 cells,
while pre-treatment with BBR was able to significantly attenuate the
cell viability loss induced by H2O2. Further study displayed that the
neuroprotective effect of BBR was mediated by the ERK1/2 pathway.
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Figure 4: ERK1/2 pathway inhibitor PD98059 attenuated the
neuroprotective effects of BBR. PC12 cells, pre-treated with 25μM
PD98059were treated with 2 μM BBR for 2 h, then incubated with
or without 200 μM H2O2 for further 24 h. Cell viability was
determined by MTT assay. *P<0.05 vs. the control group; #P<0.05
vs. the BBR+H2O2 treated group.

Excessive oxidative stress caused mitochondrial dysfunction and has
been proposed to be associated with NDs and brain aging [37].
Therefore, reducing oxidative damage to neuronal cells could be a
promising preventive and therapeutic approach [7]. Increasing
evidences suggest that many phytochemicals can activate pathways
that prevent or reverse oxidative injury. BBR is able to quench
superoxide anions and exert radical scavenging activity [38]. In culture
cells, BBR was able to inhibit ROS production and prevent generation
of superoxide anions caused by NADPH oxidase in the LPS stimulated
human monocyte-derived macrophages [39]. It has been reported that
BBR inhibited iNOS expression to attenuate NO production. In
addition, several reports have shown that BBR induces antioxidant
defence by enhancement of the levels of non-enzymatic antioxidants
[15,40].

Biologically, ERK1/2 pathway is a key signaling component that
plays a crucial role in the regulation of most of cellular processes
linked to stimulation such as cell proliferation, cell apoptosis and
differentiation. Our results provided mechanistic evidence to support
that BBR protected PC12 cells from H2O2-induced oxidative damage
via ERK1/2 activation.

In summary, our results demonstrated that BBR is able to protect
PC12 cells from H2O2-induced oxidative damage and this protective
effect is mediated, at least in part by activated ERK1/2 signaling.
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