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RNA molecules contain four standard nucleosides, adenosine (A), 
guanosine (G), cytidine (C), and uridine (U). Post-transcriptional RNA 
modifications are present in many types of RNAs including ribosomal 
RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), 
and others. These RNA modifications are important for altering the 
chemical and physical properties of nucleotides resulting in increased 
efficiency of RNA functions. Of all the RNAs, tRNA exhibits the largest 
number and most diverse modifications with cells from all kingdoms 
of life allocating a large portion of their genome to encoding enzymes 
involved in the post-transcriptional modification of nucleosides in 
tRNA [1]. Post-transcriptional modification of the anticodon domain 
in tRNA is a major factor in controlling gene expression which enables 
bacteria to survive in many different environments [2]. Modifications 
of uridine at the wobble position of the anticodon (U34) are required 
for the recognition of codons that are rarely used. In the absence of 
modifications, a shift in the translational reading frame occurs resulting 
in the expression of alternate protein sequences [2]. 

Numerous enzymes have been identified in the modification 
pathways of bacterial tRNAs with glucose-inhibited division (GidA) 
protein and MnmE being two of the enzymes investigated. GidA, 
also known as MnmG, was first described in Escherichia coli as a cell 
division protein because deletion of gidA resulted in a filamentous 
morphology when grown in a rich medium supplemented with 
glucose [3]. Further studies have suggested a role for GidA in the cell 
division and morphology of Salmonella enterica serovar Typhimurium 
(STM) and Aeromonas hydrophila [4,5]. Most importantly, studies in 
E. coli suggest GidA is a tRNA modification methylase responsible
for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine
(mnm5s2u) at the 5 position of the wobble uridine (U34) of tRNAs [6,7]. 
MnmE, also known as TrmE, is a three domain protein proposed to
be a molecular switch GTPase which assumes different conformations
depending on whether it is bound to GTP or GDP [8]. In E. coli, MnmE 
is responsible for glutamate-dependent acid resistance by activating the 
transcriptional regulator gadE [9]. MnmE also appears to be a tRNA
modification enzyme as MnmE deletion mutants are defective in the
synthesis of mnm5s2u [6].

In E. coli, it has been suggested that GidA and MnmE are part of 
the same tRNA modification pathway [6,7]. The study by Yim et al. 
[10] reported that mutations in E. coli gidA impaired the biosynthesis
of mnm5s2u. Their study also showed identical levels of the same
undermodified form of U34 are present in tRNA hydrolysates from
gidA and mnmE mutants suggesting GidA and MnmE form a
functional complex in which both proteins are interdependent. Further 
studies done in E. coli have provided additional evidence suggesting
the in vitro binding ability of GidA and MnmE and that together these
two enzymes are responsible for the proper biosynthesis of mnm5s2u
in bacterial tRNA [11-13]. Additionally, Shippy et al. [14] showed that
GidA and MnmE bind together to modify Salmonella tRNA.

One of the most interesting aspects of the GidA/MnmE tRNA 
modification pathway is its potential role as a pathogenic regulatory 
mechanism. Studies have shown that deletion of gidA attenuates 
virulence and alters the biological characteristics of some bacteria 

[5,14-18]. In Myxococcus xanthus, GidA is described as a flavoprotein 
involved in fruiting body development [15]. The study by Kinscherf 
and Willis [16] suggests GidA is a global regulator of Pseudomonas 
syringae, as deletion of gidA affected numerous phenotypic traits. 
GidA has also been found to regulate a potent virulence factor of A. 
hydrophila, the cytotoxic enterotoxin (ACT) [5]. Furthermore, GidA 
was found to regulate rhl quorum sensing via RhlR-dependent and 
RhlR-independent pathways in Pseudomonas aeruginosa [17]. In 
Salmonella, deletion of gidA significantly attenuated both in vitro and 
in vivo virulence, and GidA was identified as a potential regulator of 
numerous genes and proteins associated with Salmonella pathogenicity 
island (SPI)-1 and SPI-2 [18]. Shippy et al. [14] have also implicated a 
role for MnmE in bacterial virulence. Their study reported deletion of 
MnmE attenuated the in vitro and in vivo virulence of Salmonella, but 
not to the extent seen in a gidA deletion mutant. A gidA mnmE double 
deletion mutant, however, was more attenuated than a single gidA or 
mnmE deletion mutant [14]. 

A major benefit of these attenuated bacterial strains is their 
potential use in live-attenuated vaccines. The study by Shippy and 
Fadl [19] characterized a gidA deletion mutant for potential use in a 
live-attenuated Salmonella vaccine. In their study, vaccination with 
a gidA deletion mutant fully protected mice from challenge with a 
highly lethal dose of the wild-type Salmonella strain. Both cellular and 
antibody mediated immunity were elicited as part of the protective 
mechanism provided by vaccination with a gidA deletion mutant [19]. 
Another study by Cho et al. shows tRNA modification by GidA is 
essential for Streptococcus pyogenes virulence, and suggests deletion of 
genes encoding tRNA modification enzymes as a new strategy to make 
avirulent strains for use in live-attenuated vaccines [20]. 

Overall, the GidA/MnmE tRNA modification pathway appears 
to be part of a major virulence mechanism in bacteria. Future work is 
needed to identify and characterize other enzymes potentially involved 
in this pathway as well as other pathways GidA and MnmE are 
associated with. Studies are needed in order to determine how GidA 
and MnmE regulate the specific genes and proteins identified for the 
pathogenic processes studied. Investigation into a gidA mnmE double 
deletion mutant for use in a live-attenuated vaccine, or as a vaccine 
vector, could lead to a promising therapeutic strategy to control or 
prevent disease.
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