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Short Commentary
The interests in bacterial lipopolysaccharides (LPS) and their 

influence on cell membrane fluidity in the brain has accelerated with 
the increase in plasma LPS in individuals of the developing world with 
elevated LPS levels in 30% of individuals in United States of America, 
Australia, Germany and India [1]. LPS are endotoxins and essential 
components of the outer membrane of all Gram-negative bacteria. LPS 
from bacteria share common features in their basic architecture and 
consists of three covalently linked segments, a surface carbohydrate 
polymer (O-specific chain), a core oligosaccharide featuring an outer 
and inner region and an acylated glycolipid (termed Lipid A). LPS is an 
amphiphile that can rapidly insert into cell membranes and transform 
mammalian cells with a preference for insertion and partition into 
cholesterol/sphingomyelin (SM) domains in cell membranes [2-4] 
leaving the hydrophilic polysaccharide chain exposed to the exterior of 
the cell. LPS in cholesterol/SM-rich domains partition into ordered lipid 
phases of ratios phosphatidycholine such as DOPC (55), sphingomyelin 
(15) and cholesterol (30) membranes [2,5]. 

Lipid rafts preferentially sequester saturated-chain lipids and 
proteins such as the hydrophobic Alzheimer’s disease amyloid beta 
(Aβ) peptide into the disordered phase and alter cells phospholipid 
dynamics [6] in cell membranes with the promotion of non-brownian 
Aβ dynamics and toxic Aβ formation [3,4]. Divalent cations such 
as magnesium [7] may neutralize and stabilize LPS in the outer 
membrane but LPS in the presence of monovalent cations forms highly 
negatively-charged aggregates [7]. Research studies support that LPS 
and lipids with highly charged or bulky head groups can promote 
highly curved membrane architectures due to electrostatic and/or 
steric repulsions [8]. It is now clear that LPS can act on plasma lipid 
membranes in a receptor independent interaction to phase separate 
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into small, cholesterol and SM-rich domains (lipid rafts) in contrast 
to a fluid, phosphatidylcholine-rich phase [2,8]. The interactions 
of cholesterol, apolipoprotein E (apo E) and Aβ [9] are secondary 
events in cell membranes compared to the rapid cell phospholipid 
dynamics associated with phospholipids such as 1-palmitoyl-2-oleolyl-
phosphatidylcholine (POPC). The common pattern of naturally 
occurring phospholipids in cells occurs with a saturated chain at the 
glycerol-1-phosition and an unsaturated chain at the 2-position that 
confers cells and lipoproteins to have unique metabolic handling 
with the rapid transfer of phospholipids from the lipoproteins/cells 
to the liver for metabolism [10]. Phospholipids such as dipalmitoyl 
phosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC) 
and dioleoylphosphatidylcholine (DOPC) are poorly transported from 
lipoproteins to the liver with delayed metabolism [10]. Aβ oligomers and 
apo E have been shown to be sensitive to DPPC or DOPC membranes 
with monomer Aβ favoured by the POPC structures [11-13]. 

LPS acts on the blood brain barrier (BBB) with BBB disruption or 
via receptors with the induction of a neuroinflammatory response [14-
16]. LPS corrupts Aβ transport across the BBB with increased influx, 
decreased efflux and increased neuron production of Aβ by induction 
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of LRP-1 [17,18]. The effects of LPS on the BBB involve complete 
inhibition of the Aβ dynamics important to the peripheral hepatic 
clearance of Aβ. In peripheral cells, neurons and astrocytes membrane-
bound and soluble proteins have been shown to bind LPS such as 
LPS binding protein, toll-like receptor (TLR) and CD14 receptor 
[19]. Activation of the TLR-4 by LPS is central to neuroinflammation 
that involves mouse and human astrocytes [3] with lipid rafts that 
sequester CD14 (GPI-linked protein) involved in TLR-4 endocytosis 
[20]. In AD the CD14 receptor is referred to as the LPS receptor that 
is involved in the phagocytosis of the Aβ peptide [18]. The insertion 
of LPS into neuron membranes [8,21-24] disturbs the handling of the 
dynamic nature of phospholipids that is essential to neuron endocytic 
Aβ metabolism by the insertion of the ganglioside GM1 which is a 
ceramide-oligosaccaride. GM1-cholesterol is found in lipoproteins, 
astrocytes and neurons with relevance to GM1-cholesterol as the seed 
for Aβ oligomerization [25-28]. LPS that disrupts the BBB corrupts the 
astrocyte-neuron crosstalk (Figure 1) with defective abeta clearance 
from neurons [3].

Lipidomics is now an important tool in lipid biochemistry 
involved in the characterization of plasma and cell analysis of various 
lipid species. In aging and AD cell membrane changes that lead to 
unstable membrane alterations that possibly involve the role of LPS 
and magnesium deficiency [7] that promote Aβ aggregation and fibril 
formation [29] with LPS now involved in the poor interpretation 
of extensive lipidomic analysis in various plasma and cells from AD 
individuals. LPS and its corruption of the peripheral sink Aβ hypothesis 
involves the corruption of phospholipid transport between lipoproteins/
cells and the liver with impaired Aβ efflux across the BBB and disturbed 
Aβ homeostasis associated with abnormal phospholipid dynamics 
relevant to the metabolism of neuronal Aβ and the progression of 
AD. LPS has been shown to involve cholesterol efflux with effects on 
liver X-receptor-ATP binding cassette transporter 1 (LXR-ABCA1) 
interactions [4]. Monitoring dietary fat intake to reduce LPS [19] 
has become important with absorption of fat relevant to plasma LPS 
levels and non-alcoholic fatty liver disease (NAFLD). LPS effects on 
the release of cellular alpha-synuclein may determine membrane 
phospholipid and cholesterol metabolism relevant to altered cellular 
ceramide and sphingomyelin content [4]. LPS binds to phospholipid 
transfer protein (PLTP) with preference for transport by PLTP instead 
of vitamin E, phospholipid and Aβ transport between cells [3,4,30,31]. 
LPS has been shown to neutralize apo E with relevance to apo E-PLTP 

transport of phospholipids and Aβ [19]. Inhibitors of PLTP in plasma 
should be checked in various populations with relevance to drugs that 
have a core benzazepine core structure that inhibit PLTP [32,33].  
Nutritional therapy [9,19,34] that improves the survival of the species by 
the release of proteins that delay LPS toxic Aβ interactions and involve 
various proteins such as albumin (Aβ self-association) may be involved 
with reduced toxic effects of LPS associated Aβ oligomerization. 
Unhealthy diets such as high fat and cholesterol have been shown 
to increase plasma LPS levels and induce hypercholesterolemia, 
inflammation and NAFLD in man and mice [35-39]. Unhealthy diets 
that contain palmitic acid (dairy, coconut oil, palm oil) should be 
avoided that change cell membrane fluidity since they promote DPPC 
cell membrane contents with poor Aβ metabolism. Bacterial LPS can 
insertion into cell membranes the liver and brain with the increased 
induction of NAFLD and neurodegeneration.

Healthy diets such as olive oil maintain POPC cell phospholipids 
that confers cells with the rapid metabolism of cholesterol and Aβ. 
Unhealthy diets without LPS but high in cholesterol and fat (palmitic 
acid) may induce increased liver and neuron membrane cholesterol/
DPPC lipid rafts with delayed metabolism of Aβ oligomers. Unhealthy 
diets that contain palmitic acid or LPS can also downregulate the 
nuclear receptor Sirtuin 1 (Sirt 1) [3,4,34,40] with abnormal membrane 
fluidity and increased cell cholesterol levels associated with alteration 
in phosphatidylcholine, sphingomyelin and cholesterol ratios in 
cholesterol/SM-rich domains. Alcohol can stimulate LPS absorption 
from the intestine with alcohol involved with Sirt 1 downregulation 
[41,42]. Sirt 1 inhibitors such as suramin and sirtinol [43] inhibit 
hepatic Sirt 1 with reduced clearance of LPS and increased plasma LPS 
levels. Alteration by LPS of liver and brain cholesterol and phospholipid 
dynamics promotes toxic Aβ oligomer formation with the development 
of AD. 

Conclusion
In the developing world the rise in plasma LPS levels has become 

of major concern to health and nutrition. LPS can corrupt healthy 
diets with POPC cell membrane characteristics by insertion of itself 
or promotion of ganglioside GM1-cholesterol as the seed for Aβ 
oligomerization. LPS modification of cell membrane fluidity in the liver 
and neurons interfere with apo E-PLTP actions that effect vitamin E, 
phospholipid and Aβ metabolism. Nutritional therapy intervention 
such as low fat and cholesterol diets prevent the absorption of LPS 
and maintain liver and brain membrane fluidity in metabolic disease 
and Alzheimer’s disease with reduced toxic effects of LPS to astrocyte-
neuron crosstalk in the brain.
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