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Abstract
Day 15 absolute lymphocyte count (ALC-15) post-autologous peripheral blood hematopoietic stem cell 

transplantation (APHSCT) is a prognostic factor for survival. ALC-15 recovery post-APHSCT directly depends 
on the collected and infused autograft absolute lymphocyte count (A-ALC). However, post-APHSCT relapses are 
still observed despite higher ALC-15 recovery. Recent studies have shown monocyte-derived cells affect tumor 
progression by suppression of host anti-tumor immunity. Monocytes are also collected and infused in patients 
undergoing APHSCT. Therefore this article reviews the possible immunosuppressive mechanisms of the autograft 
absolute monocyte count (A-AMC) affecting the host immunity and survival in patients undergoing APHSCT.

Introduction
Hematologic Stem Cell Transplant (HSCT) has become a vital 

option in the treatment armamentarium for hematologic malignancies. 
The initial hypothesis to support the survival benefit of HSCT relied 
solely on the rationale behind the use of high dose chemotherapy 
(HDT) to eradicate tumor cells [1]. To overcome the myelosuppressive 
effects of the HDT, patients are infused with stem cells to repopulate 
the bone marrow leading to hematologic engraftment observed by 
the recovery of white blood cells, red cells and platelets post-AHSCT 
[1]. Recent understanding of the importance of immune recovery 
post-HSCT has shifted the paradigm of how HSCT improves clinical 
outcomes. Inallogeneic stem cell transplantation, it is the current 
dogma that in the infused donor, allo-reactive lymphocytes produce 
graft-versus-tumor directly improving the survival of high-risk 
and/or relapse after standard treatment patients with hematologic 
malignancies [2]. The faster recovery of the absolute lymphocyte 
count at day 15 (ALC-15) after autologous peripheral hematopoietic 
stem cell transplantation (APHSCT) has been reported and confirmed 
to be a prognostic factor for superior clinical outcomes [3-11]. The 
ALC-15 recovery post-APHSCT directly depends on the amount 
of infused autograft absolute lymphocyte count (A-ALC) collected 
during stem cell apheresis, supporting the concept of autologous graft-
versus-tumor effect without the detrimental effects of graft-versus-
tumor effect observed in allogeneic stem cell transplantation [12-14]. 
However, relapses in post-APHSCT in patients with higher ALC-15 
recovery are still observed. Recent studies suggest that the collected and 
infused autograftmonocytes influence immune recovery and survival 
by inhibiting the anti-tumor hostimmunity post-APHSCT [15].

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous 
population of cells of myeloid progenitor and immature myeloid 
cells involved in tumor-associated immune suppression [16]. 
Two main subsets of MDSCs have been proposed in humans: the 
granulocytic and the monocytic MDSCs [17]. The human monocytic 
MDSCs subsets has been characterized as monocytic CD14+ cells 
with low levels of lack of the antigen presenting HLA-DR molecules 
(CD14+HLA-DRlow/neg. cells) [17].Our group reported the 
presence of circulating immunosuppressive CD14+HLA-DRlow/neg 
peripheral blood monocytic MDSCs in patients with lymphoma 
[18]. These circulating CD14+HLA-DRlow/neg monocytes are recruited 
and transformed into tumor-associated macrophages by the tumor 
impacting survival in cancer patients [19-22]. Based on these findings, 
we evaluated if monocytes have any impact on survival in lymphoma 

patients treated with APHSCT. We reported that during stem cell 
apheresis, in addition to collecting lymphocytes, monocytes were 
also collected [15]. The autograft absolute monocyte count (A-AMC), 
when infused, was the main predictor of monocyte recovery post-
APHSCT [15]. A higher day 15 absolute monocyte count (AMC-15) 
was associated with an inferior survival post-APHSCT [15]. We then 
combined the ALC-15 (i.e., a surrogate marker of host immunity) and 
AMC-15 (i.e., a surrogate marker of tumor microenvironment) as a 
ratio [15]. We reported that patients with an ALC/AMC-15 ratio ≥ 
1 experienced superior survival compared to those who did not [15]. 
Thus, the importance of the balance between host immunity (i.e., 
ALC-15) and tumor microenvironment (i.e., AMC-15) for the clinical 
outcomes of patients treated with APHSCT was brought into question. 
Furthermore, AMC-15 recovery directly depends on the amount of 
infused A-AMC, which may lead to abrogation of the immunologic 
anti-tumor effect of a higher ALC-15 recovery post-APHSCT [15]. For 
example, monocyte-induced immune tolerance appears to be caused 
by a period of “transient immunodeficiency” [23], accompanied 
by a simultaneous “state of enhanced activation” by post-APHSCT 
monocytes. This state is characterized by the secretion of unusually 
large quantities of kynurenine by monocytes post-APHSCT, triggered 
by even the slightest stimuli. Thus, this magnified stimulation-
induced kynurenine secretion by post-APHSCT monocytes may 
be one of the possible mechanisms of the monocytes’ documented 
suppressor activity, causing T-cell inhibition through apoptosis [23]. 
Furthermore, we recently reported in Hodgkin lymphoma patients in 
complete remission at day 100 post-APHSCT superior survival with a 
higher ALC/AMC ratio at day 100 (ALC/AMC-100) compared with 
those with a low ALC/AMC-100 by landmark analysis from day 100 
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arguing in favor on the concept of post-APHSCT immunosurveillance 
by balancing the interaction between host immunity (i.e., ALC) and 
tumor microenvironment (i.e., AMC) [24]. In addition, the ALC/
AMC ratio obtained from the standard complete blood cell count 
provides a simple standardized test to assess the interaction between 
host immunity and tumor microenvironment in comparison to gene-
expression profiling with the practical limitation of requiring fresh 
frozen tissue samples to analyze and in patients in complete remission 
like the patients included in our study [24] no tumor samples are 
available to biopsy to provide a dynamic real-time interaction between 
host response and tumor. Therefore, this article reviews the possible 
mechanisms of the immunosuppressive effects of A-AMC affecting the 
autograft versus tumor effect in patients undergoing APHSCT.

MDSCs mechanisms of immune effector cells suppression

T-cell lymphocytes inhibition by immunosuppressive 
cytokines: MDSCs at the tumor site can differentiate into tumor-
associated macrophages (TAMs). TAMs acquire the ability to produce 
immunosuppressive cytokines such as interleukin-1β (IL-1β), IL-6, IL-
10, transforming growth factor-β (TCFβ), and tumor-necrosis factor-
alpha (TNF-α) [17]. In the allogeneic stem cell transplantation setting 
IL-6 and IL-10 has been positively correlated with the CD14+ HLA-
DR low/neg cells [25]. Specifically in APHSCT, two immunosuppressive 
cytokine produced by MDSCs/TAM had been identified from the 
autograft absolute monocyte count (A-AMC) collected during stem 
cell collection: IL-10 and TNF-α. Singh et al. [26], reported high levels 
of IL-10 mRNA produced by the A-AMC in the autograft stem cell 
collection product, directly correlating with T-cell inhibition activity 
as well as decreased phytohemagglutinin (PHA) stimulation of the 
autograft T-cells collected and infused when compared with normal 
peripheral blood mononuclear cells. High levels of mRNA TNF-α have 
been documented in the autograft products for patients undergoing 
APHSCT produced by the A-AMC [26]. Antibodies directed against 
TNF-α were able to abolish the autograft T-cells inhibitory activity 
produced by this monokine from the A-AMC [26].

Alteration of antigen recognition and activation: MDSCs produce 
elevated levels of reactive oxygen species (ROS) [16-17] including 
peroxynitrite (ONOO-) and upregulate signal transducer and activator 
of transcription 3 (STAT3) activity. This is associated with an increase 
in arginase 1 activity and low levels of nitric oxide (NO) production 
[16-17]. MDSCs can take up, process and present antigens to antigen-
specific CD8+ T cells. During cell to cell interaction, MDSCs disrupt the 
biding of specific peptide-major histocompatibility complex (pMHC) 
dimers to CD8+ T cells through nitration of tyrosines by the production 
of peroxynitrite, leading CD8+ T cells unable to response to specific 
peptide [27]. In allogeneic stem cell transplantation, down regulation 
of the expression of CD3ζ-chain has been reported by indoleamine 2, 
3-dioxygenase (IDO) produced by CD14+ HLA-DRlow/neg. cells [25]. 
Blocking IDO restored the CD3ζ-chain expression as well as increased 
production of interferon-ϒ, thus T cell activation [25]. No studies are 
currently available in the APHSCT setting; nevertheless, it is reasonable 
to hypothesize a similar process of T-cell immunosuppression by the 
A-AMC could occur.

Induction of regulatory T-cells: In vivo studies have described 
the ability of MDSCs to promote the induction of forkhead box 
P3 (FOXP3) regulatory T (Treg) cells [28-29]. The induction of Treg 
by MDSCs required IL-10, arginase 1, and the capture, processing 
and presentation of tumor-associated antigens by MDSCs [30]. In a 
recent study in multiple myeloma patients mobilized with high-dose 
cyclophosphamide and granulocyte colony-stimulating factor (G-SCF) 

for APHSCT identified high levels in the autograft of CD4+ CD25high Treg 
expressing high levels of FOXP3, CTLA-4, and GITR and displaying 
in vitro suppressive properties [31]. Further studies are warranted to 
see if A-AMC/MDSCs have any impact in the induction and sustained 
production of Treg in APHSCT.

MDSCs-T-cell Fas/Fas-Ligand (FasL) interaction: In vivo studies 
have shown MDSCs to express the death receptor Fas [32]. Activated 
T-cell expressing FasL induces apoptosis in MDSCs identifying 
a mechanism of regulating MDSCs levels. This finding suggests a 
retaliatory relationship between T-cells and MDSCs in relation to 
MDSC s suppressing T-cells activation; however, once activated T-cells 
mediate MDSCs apoptosis [32]. In APHSCT, autograft A-AMC FasL 
expression is found in significantly greater amounts compared to 
controls. Studies on these increased quantities of FasL have suggested 
that these activated FasL-expressing monocytes interact with activated 
Fas+ CD4+ T lymphocytes, causing apoptosis and leading to the 
destruction of CD4+ T cell populations, about 28-51% of CD4+ cells 
[33-34]. CD8+ cells, unlike CD4+ T cells, do not express elevated 
quantities of Fas expression and are possibly less targeted by FasL+ 
monocytes to the same degree as CD4+ cells; this results in a preferential 
deletion of post-APHSCT CD4+ T-cells and ultimately a shift in the 
CD4+/CD8+ ratio [35]. FasL+ monocytes deplete CD4+ cells”, thus 
rendering CD8+ cells inactive, and contributing to the suppression of 
the host immunity in APHSCT. 

Autograft monocytes and Natural killer (NK) cells: Greater 
NK cell counts have been correlated with higher ALC-15 recovery 
and found to be the key lymphocyte subset at day 15 post-APHSCT 
predicting clinical outcomes [36]. In the presence of A-AMC, NK cells 
are found to be significantly decreased. A study conducted by Ageitos et 
al. [37], documented this NK cell decrease in APHSCT autografts, and 
demonstrated that the presence of A-AMC affects both the function 
and proliferation ability of NK [37].

Stem Cell Mobilization in APHSCT
Both Granulocyte Colony-Stimulating Factor (G-CSF) and 

Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) have 
been used to mobilize and collect the desired quantity of CD34+ stem 
cells to proceed with APHSCT [38-39]. Recent studies have found that 
the products of the stem cell transplant autografts mobilized by C-CSF 
or GM-CSF have a much greater quantity of CD-14+ monocytes than 
controls [39]. Studies of monocyte-associated suppressive activity 
revealed a direct relationship between the number of CD14+ cells 
and suppressor cell function in mobilized cell products [40] and the 
characterization of the cells as monocyte lineage [40] up to 40% of the 
cells in the autograft of mobilized stem cell products by G-CSF/GM-
CSF are shown to be a CD14+ myeloid cell [41] and up to 10% of the 
peripheral blood leukocytes following APHSCT [42] were identified 
as CD14+ suppressive activity [33]. In addition to G-CSF and GM-
CSF, Plerixafor is in current use for the mobilization of CD34+ stem 
cells for APHSCT. Mechanism of action of plerixafor is attributed to 
be a reversible and transient disruption of the interaction between 
the chemokine receptor CXCR4 and its ligand chemokine CXCL12 
(previously known as stromal derived factor 1) which is accompanied 
by a rapid (8-11 hours) release of CD34+ cells from the bone marrow 
niche into the circulation [43]. Our group reported that Plerixafor 
can also mobilized lymphocytes leading higher autograft absolute 
lymphocyte count (A-ALC) collection affecting clinical outcomes 
post-APHSCT [44]. Recently, Plerixafor has been shown to mobilize 
monocyte affecting the numbers of A-AMC [45]. Further studies 
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are needed to identify if Plerixafor mobilized immunosuppressive 
CD14+HLA-DRlow/neg monocytic MDSCs.

Conclusion
This article reviewed mechanisms associated with the negative 

immunosuppressive effects of A-AMC/MDSCs that may impact the 
clinical outcomes of patients undergoing APHSCT. In the allogeneic 
stem cell transplantation setting, the adoptive transfer of MDSCs 
improves the alloreactivity in preclinical graft-versus-host disease 
[25]. Thus, the use of MDSCs is an attractive idea in allogeneic stem 
cell transplantation in conjunction with Treg and mesenchymal stem 
cell-based therapies to minimize the side effects of graft-versus-host 
disease. However, in APHSCT, the immunosuppressive effects of 
A-AMC/MDSCs possibly mediated through: 1) the production of IL-
10 and TNF-α; 2) the induction of Treg; 3) Fas/Fas-Ligand activation 
resultingin T-cells apoptosis; and 4) the down regulation of NK cell 
activity and proliferation, mostlikely explaining the inferior clinical 
outcomes of patients achieving a high AMC-15 and low ALC-15 
recovery post-APHSCT (see Figure 1).

The identification of the negative prognosis based on the A-AMC 
provides a new incentive to minimize A-AMC collection with the 
hope to improve survival post-APHSCT, as the current stem cell 
mobilization agents (G-CSF, GM-CSF and possibly Plerixafor) 
has been associated with the mobilization of immunosuppressive 
monocyte leading to higher collection of A-AMC. These observations 
give a platform to develop autograft engineering therapies to minimize 
the collection and infusion of immunosuppressive A-AMC/MDSCs 
in the APHSCT setting. Carbonyl-iron column suspension has been 
a commonly preferred method of removing CD-14+ monocytes, and 
would be ideal for our proposed method of intervention. In column 
suspension, a magnet is introduced and results in cell suspension; 
because monocytes contain high percentages of iron, they are attracted 

to the magnet and can easily be isolated and removed. In studies that 
used this same method [37], the removal of A-AMC resulted in the 
expansion and restoration of autograft T and NK cells immunologic 
function and proliferation. Therefore, the removal of CD-14+ A-AMC 
from autograft products by column-suspension during mobilized 
apheresis may provide an avenue to improve immune recovery and 
reduce treatment failure post-APHSCT.
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