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That cancer cells display an altered metabolism was first recognized 
almost a century ago by Otto Warburg who noted that tumors 
display a shift in glucose metabolism from oxidative phosphorylation 
to glycolysis [1]. Since then, many reports have documented the 
importance of glycolysis in supplying much of the energy, proteins, 
and nucleotides required to fuel the largely metabolically demanding 
process at the core of all cancer causation: uncontrolled cell division 
[2-4]. Therefore, the importance of targeting cellular metabolism for 
cancer therapy has attracted much attention over the last decade and 
much of the research has primarily focused on three areas: i) metabolic 
and growth signaling pathways, ii) metabolic enzymes, and iii) diet 
and exercise. It was not until recently, however, that the major cellular 
energy sensor, Adenosine Monophosphate-Activated Protein Kinase 
(AMPK), emerged in the spotlight as a novel therapeutic target in the 
treatment of various cancer types. AMPK is a ubiquitously expressed 
tumor suppressor protein, which functions as a heterotrimeric enzyme 
and is activated in response to a variety of stress signals defined 
by a drop in the cellular ATP: AMP ratio [5,6]. Upon activation, 
energy consuming processes are shut down, while energy producing 
processes are turned up. In this way AMPK serves as a unique target 
for therapeutic intervention in a cancer setting as it integrates cellular 
growth factor signaling pathways with cellular metabolism.

The idea of AMPK as a novel target for cancer therapy really took 
off after the release of data from a 10 year-long epidemiological study, 
which revealed that type II diabetic patients on a regular regimen of 
the drug metformin (glucopage®) have a 30% less chance of developing 
a broad range of cancer types in their lifetime as opposed to those not 
taking metformin [7]. Also important to note is Libby et al. finding that 
metformin users who did develop cancer had a survival advantage over 
their non-taker counterparts [7]. This sprouted immediate curiosity 
into what the anti-cancer mechanism of metformin may be. It is no 
surprise then that the literature includes a plethora of metformin 
related studies in which its affects have been assessed in a wide range 
of cancer types including breast, colon, lung, prostate and ovarian 
from cancer laboratories all over the world [8-11]. Although its exact 
mechanism of action still remains to be determined, AMPK activation 
is well accepted to be the key and required event for its reported anti-
tumor effect, summarized nicely in a recent review by Pierotti et al. [12]. 
However, there are several drawbacks to using metformin for cancer 
therapy. The most important is that there is no telling if the established 
therapeutic doses used in the clinic for the treatment of type II diabetes 
will translate effectively in cancer patients. For this reason, there are 
currently 146, either open and/or completed, cancer related clinical 
trials listed on the clinicaltrials.gov website investigating metformin’s 
cancer fighting potential around the United States and Canada. Along 
these lines, the in vitro potency of metformin poses a major limitation 
to its bench to bedside translational potential, as it is optimally effective 
in the millimolar range. Therefore, the search for more potent AMPK 
activating agents could prove to be a rewarding avenue in cancer drug 
discovery and molecular therapeutics.

Recently, Chen et al. published 3,3’-Diindolylmethane (DIM), 
a by-product of the ingestion of indole-3-carbinol from cruciferous 
vegetables, and analogs of Epigallocatechin Gallate (EGCG), a green 

tea polyphenol, to be effective AMPK activators both in vitro and in 
vivo in a prostate or breast cancer model system, respectively [13,14]. 
The use of natural compounds as anti-cancer agents is an age-old 
idea. Many of the chemotherapeutic agents used in the clinic today 
are synthetic derivations based on naturally occurring agents found 
in plants, plant by-products and bacteria. Metformin itself actually 
comes from the French lilac flower and so it is no surprise that naturally 
occurring compounds such as DIM and EGCG, widely available in our 
daily food and drink, should have such cancer fighting powers. Based 
on their findings Chen et al. report, for the first time, that B-DIM can 
activate the AMPK signaling pathway, associated with suppression 
of the Mammalian Target Of Rapamycin (mTOR), down-regulation 
of Androgen Receptor (AR) expression and induction of apoptosis 
in both androgen-sensitive LNCaP and androgen-insensitive C4-2B 
prostate cancer cells. These results were further translated in vivo where 
B-DIM induced a similar effect in C4-2B prostate tumor xenografts in
SCID mice [13]. Similarly, Chen et al. also showed synthetic EGCG
analogs to be more potent AMPK activators than metformin and
EGCG (micromolar range), resulting in inhibition of cell proliferation,
up-regulation of the cyclin-dependent kinase inhibitor p21 and down-
regulation of mTOR pathway in MDA MB 231 breast cancer cells
[14]. These findings suggest that natural and synthetic compounds
are a valuable source for the development of novel, potent, and
specific AMPK inhibitors. However, as with all natural compounds,
bioavailability is indeed the major limitation to their use. Due to
biologically inactivating processes and instability issues in a physiologic
setting, derivatives of such compounds are commonly designed to
improve bioavailability as is the case with EGCG. Nevertheless, the
issue of sufficient and efficient concentration as well as effectiveness in
combination with other currently established chemotherapeutics also
needs to be addressed. It has been reported that green tea polyphenols
counteract some chemotherapy regimens and whether or not this can
be avoided with synthesis of derivatives should be determined [15,16].

In conclusion, it should be noted that although the great majority of 
the work published is in favor of AMPK activation as a potential novel 
approach in cancer therapy, there are those who report conflicting 
results with its activation [17-19]. In addition, it still remains widely 
debatable whether or not continuous activation of the enzyme is 
more favorable than activation in spurts, similar to that during 
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strenuous exercise. Finally, it should also be mentioned that there 
are twelve possible isoforms of AMPK, α1β1γ1 being most common 
[20]. As mentioned earlier, it is present in all cells and indeed, certain 
isoforms are exclusive to certain tissue types. The effect of prolonged 
activation could therefore have pleiotropic systemic effects that may be 
unfavorable, for example in the brain where pharmacologic activation 
of AMPK has been reported to have undesirable side effects on the 
ability to differentiate between hunger and satisfaction suggesting 
obesity risk [21-23]. For now, the study of AMPK’s tumor suppressing 
abilities is an exciting area of research which has the potential to bridge 
several large gaps in knowledge on the link between metabolism, obesity 
and cancer; thus it is overall an attractive molecular drug target for the 
treatment of cancer. Those off-target concerns, however, will absolutely 
need to be addressed before its capacity can be fully appreciated.
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