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ABSTRACT
It is known that Non-Alcoholic Fatty Liver Disease (NAFLD) causes NAFLD-associated Hepatocellular Carcinoma

(HCC) and obesity, Type 2 Diabetes Mellitus (T2DM), and Cardiovascular Disease (CVD) as co-morbidities of

NAFLD also promote the development and progression of HCC. Previous study indicated that dysregulated

metabolites, low grade inflammation, immunity, and autophagy in the tumor microenvironment play a crucial role of

HCC progression in obesity status. In this article, the author reviewed the current knowledge of association between

obesity and hepatocellular carcinoma along with nitroglycerin-mediated vasodilation study. In result, with respect to

the association between obesity and atherosclerosis, obesity is low grade inflammatory status, suggesting that

inflammation and/or oxidative stress as a causal factor may induce decreased Flow-Mediated Dilatation (FMD) and

impaired Nitroglycerin-Mediated Vasodilation (NMD). The clinical and experimental studies suggested that steatosis-

related lipotoxicity may cause hepatocarcinogenesis. It is putative that adipocytes serve as a critical role in the tumor

microenvironment through the dysregulated adipokine secretion, leading to the effect of carcinogenesis, metastasis,

and chemoresistance. Obesity-associated hepatocarcinogenesis may  be  associated with the  remodeled adipose tissue,

genetic factors, inflammation, oxidative stress, and immunity alteration.
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INTRODUCTION
It is known that NAFLD can cause NAFLD-related HCC and 
obesity as a co-morbidity of NAFLD also promotes the 
development and progression of HCC. Previous study indicated 
that dysregulated metabolites, low grade inflammation, 
immunity, and autophagy in the tumor microenvironment play a 
critical role of HCC progression in obesity status [1]. It is known 
that adipocytes serve as a crucial role in the tumor 
microenvironment through the dysregulated adipokine secretion, 
leading to the effect of carcinogenesis, metastasis, and 
chemoresistance [2]. The report also indicated that obesity-
associated hepatocarcinogenesis are associated with the 
remodeled adipose tissue, altered gut microbiome, genetic 
factors, Endoplasmic Reticulum (ER) stress, oxidative stress and 

epigenetic alterations [3]. In this article, the current knowledge 
and trends of association between obesity and HCC along with 
nitroglycerin- mediated vasodilation study will be reviewed in 
detail.

LITERATURE OF REVIEW

Link between obesity and atherosclerosis
Due to the epidemics of obesity and Type 2 diabetes mellitus 
(T2DM), the prevalence and incidence of NAFLD have emerged 
[4]. It is known that both visceral adipose tissue and liver fat are 
considered 2 key drivers of cardiometabolic risk associated with a 
level of total body fat status [5,6]. Previous studies provided that 
obesity is associated with endothelial dysfunction assessed by 
Flow-Mediated Vasodilation (FMD) study, increased Intima-Media
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Thickness (IMT) evaluated by common carotid artery, and
increased Pulse Wave Velocity (PWV) that are established CVD
surrogate markers [7-12]. The study of an association between
obesity and impaired NMD has been reported suggesting that
decreased NMD may reflect inflammation and oxidative stress
[8,13]. It is suggested that inflammation and/or oxidative stress
may result in reduced bioconversion of Glyceryl Trinitrate (GTN)
to Nitric Oxide (NO), within smooth muscle cells, leading to
impaired NMD. According to Ayer’s report, it is possible
explanation that inflammation associated with obesity, leads to
the overabundance of ROS in the vessel wall, resulting in the
reduced bioconversion of GTN to NO [8]. The author
previously showed the relationship between waist circumference
reflecting abdominal adiposity marker and NMD [14].
Endothelial dysfunction has been considered as an early
surrogate marker in CVD and an initial step in atherosclerosis
condition. Flow-mediated vasodilation (FMD) and Nitroglycerin-
Mediated Vasodilation (NMD) tests in the brachial artery are
significant methods for evaluating vascular endothelial and
Vascular Smooth Muscle Cell (VSMC) function in atherosclerosis
[15]. The author has described several studies on the diseases of
migraine, CVD, Chronic Kidney Disease (CKD), dyslipidemia,
aging liver, hypertension and COVID-19 using FMD and NMD
procedure [14,16-32]. Obesity is a low grade inflammatory status,
thereby, suggesting that inflammation as a causal factor may
induce decreased FMD and impaired NMD.

NAFLD-associated HCC 

Due to the increased rates in parallel to obesity and T2DM,
Non-Alcoholic Fatty Liver Disease (NAFLD) is the common
liver disease worldwide [4]. The risk factors and multifactorial
process in NAFLD include obesity, T2DM, hypertension,
ethnicity, genetic polymorphism PNPLA3, TM6SF2, GCKR,
MBOAT7, and HSD17B13, epigenetic factors, transcriptional
factors, post-transcriptional modification, and hepatic
lipogenesis carcinogenesis as previously described [30]. The
growing incidence has showed that NASH/NAFLD has led to
an increase of NASH-related HCC [33]. Regarding cirrhotic
NAFLD-related HCC, the study by Grimaudo et al. and a meta-
analysis  have  been identified [34,35].  With  respect  to  non-
cirrhotic NAFLD-related HCC, the clinical practice guidelines
stated that studies have associated obesity and T2DM with the
risk of HCC [36]. Bengtsson et al. reported that patients with
non-cirrhotic NAFLD-related HCC were observed in 37% of
NAFLD-HCC [37]. Regarding obesity status, it is known that
BMI level is associated with carcinogenesis risk [38]. Recent
study revealed the novel genetic variants in GPAM and APOE
that are associated with liver fat content and liver disease
showing a robust association between liver damage and lipid
biology [39]. Bianco et al. described a causal association between
liver fat and HCC suggesting that Polygenic Risk Score (PRS)
improve the accurate diagnosis of HCC in individuals with and
without severe fibrosis status [40]. Although several risk factors
and complex and multifactorial process are present in the
progression of NAFLD-related HCC, the author suggests that
comprehensive determination using epidemiological factor and
PRS including PNPLA3, TM6SF2, GCKR, MBOAT7, and
HSD17B13 may be attributed to the risk stratification,

prognosis, and therapeutic strategy in cirrhosis and non-cirrhosis
patients with NAFLD-related HCC as previously mentioned
[30].

Hepatic lipogenesis carcinogenesis

It is known that obesity is considered as a risk factor for cancer
such as NASH-related HCC derived from steatosis, liver injury,
inflammation, and fibrosis [41,42]. Recently, Metabolic-
Associated Fatty Liver Disease (MAFLD) has been proposed
including the metabolic component of fatty liver [43]. The
report suggests that the type rather than the amount of lipids is
attributable to the transition from steatosis to NASH [44]. The
increased hepatic cholesterol including the effect for the
mitochondria has regarded as a crucial role in the initiation of
NASH [45]. The evidence for cholesterol as a tumor promoter
or tumor-suppressor role has been identified in HCC
development [41,46]. Ribas et al. concluded the evidence for
tumor promoter role of cholesterol in NASH-related HCC
associated with an increased expression of the genes involved in
immune checkpoints [41]. Liang et al. provided that dietary
cholesterol promotes NASH related HCC through dysregulated
metabolism and calcium signaling [47]. The study showed that
the novel aberrant gene expression, mutation and core
oncogene pathways recognized in cholesterol-associated NASH-
related HCCs in animal study were observed in human NASH-
related HCC [47]. The recurrently mutated genes included
RYR1, MTOR, SDK1, CACNA1H and RYR2. With respect to
metabolic-related genes, namely, ALDH18A1, CAD, CHKA,
POLD4, PSPH, and SQLE were included in human NASH-
related HCCs [47]. Based on the evidence, the clinical and
experimental studies provided that steatosis-related lipotoxicity
may cause hepatocarcinogenesis as previously described [30].

Association between obesity and HCC

It is known that NAFLD can cause NAFLD-related HCC and
obesity as a co-morbidity of NAFLD promotes the development
and progression of HCC. Previous study indicated that
dysregulated metabolites, low grade inflammation, immunity,
and autophagy in the tumor microenvironment play a crucial
role of HCC progression in obesity [1]. Both visceral adipose
tissue and liver fat are considered 2 key drivers of
cardiometabolic risk associated with a level of total body fat
status [5,6]. Clinically, obesity is strongly correlated with the
prevalence of metabolic disorders including insulin resistance,
dyslipidemia, hypertension, and NAFLD, leading to obesity-
related carcinogenesis [2]. Adipocyte serves as a crucial role in
the tumor microenvironment through the dysregulated
adipokine secretion, leading to effect of carcinogenesis,
metastasis, and chemoresistance. Excessive and dysfunctional
adipose tissue dysregulates adipokine secretion, subsequently
leading to obesity-associated HCC [2]. It is thought that obesity
alters inflammation and stress respond pathways and causes
tissue adiposity and tumorigenesis [3]. Evidence provides a close
relationship between obesity and the increased incidence of
HCC showing that obesity drives HCC, and obesity-related
tumorigenesis develops NAFLD-related HCC [3]. Obesity-
associated hepatocarcinogenesis are associated with the
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remodeled adipose tissue, altered gut microbiome, genetic
factors, Endoplasmic Reticulum (ER) stress, oxidative stress and
epigenetic alterations leading to dysregulated adipokine
secretion and activated Nrf-1, NF-κB, mTOR, P13K/PTEN/Akt,
and JAK/STAT signaling pathways [3]. Regarding the
immunologic pathways which subsequently activate oncogenic
mechanisms, it has been demonstrated that ROS accompanied
by the production of lipid peroxidation increases the release of
inflammation and inhibitory cytokines including TNF-α, IL-6,
leptin and adiponectin [48]. With respect to immune
infiltration of fatty liver, experimental study revealed that
immune cells and cytokines serve as a crucial role in the
pathogenesis of HCC. Previous report provided that prolonged
NASH status induces activated CD8+ T-cell subsequently
leading to HCC in experimental study [49]. Additionally, a loss
of intrahepatic CD4+ T-cells was induced by NAFLD status [50].
Whereas, B-cells, T-cells, natural killer cells and myeloid cell
have been associated with the pathogenesis of NASH-induced
HCC [51]. It is known that obesity induces altered immune
function and systemic endocrine alterations. Previous study
showed that the mechanisms of NAFLD/NASH-associated
HCC involve metabolites, oxidative stress, altered immune
function, pathological inflammatory responses, and alteration of
endocrine or adipokine signaling [52]. Llovet et al. suggested
that ER stress, pathological lipophagy, increased ROS genesis,
and low NADH or NADPH levels induce the altered oncogenic
gene in fatty acid-overloaded hepatocytes leading to the
malignant cells [52]. With respect to oxidative stress in obesity,
mouse model study demonstrated that high STAT-1 level
induced progression to NASH, whereas high STAT-3 level
progressed HCC, independently of each other, suggesting that
similar inflammatory signals can differentially cause [53].
Regarding the progression from NAFLD to NASH, and fibrosis,
it is known that lipotoxicity causes hepatocyte death and
activated and proliferated Kupfer cells, as well as recruited
immune cells to the liver subsequently leading to NASH. The
inflammation and tissue damage lead to wound healing with
accumulated extracellular matrix proteins with characteristic
fibrosis [54]. Recently, Brahma, et al. described that excessive
levels of ROS from the fatty acid influx and chronic
inflammation is considered as a causative factor for the
initiation and progression of HCC [54]. They provided the
evidence for the intracellular sources of obesity-induced ROS
and molecular mechanisms for hepatic tumorigenesis, and the
role of the dysregulated activity of BCL-2 proteins and Protein
Tyrosine Phosphatases (PTPs).

DISCUSSION
Obesity is low grade inflammatory status, suggesting that
inflammation and/or oxidative stress as a causal factor may
induce decreased FMD and impaired NMD reflecting
atherosclerosis status. The clinical and experimental studies
suggested that steatosis-related lipotoxicity may cause
hepatocarcinogenesis. It is putative that adipocytes serve as a
significant role in the tumor microenvironment through the
dysregulated adipokine secretion, leading to the effect of
carcinogenesis, metastasis, and chemo resistance. Excessive and
dysfunctional adipose tissue dysregulates adipokine secretion,

subsequently leading to obesity-associated HCC. Obesity-
associated hepatocarcinogenesis may be associated with the
remodeled adipose tissue, genetic factors, inflammation,
oxidative stress, and immunity alterations. Regarding oxidative
stress, the study showed that high STAT-1 level induced
progression to NASH, meanwhile, high STAT-3 level progressed
HCC in mouse model study. It is putative that excessive levels of
ROS from the fatty acid influx and chronic inflammation are
considered as a causative factor for the initiation and
progression of HCC.

CONCLUSION
The inflammation and/or oxidative stress as a causal factor may
induce decreased FMD and impaired NMD reflecting
atherosclerosis status. The clinical and experimental studies
suggested that steatosis-related lipotoxicity may cause
hepatocarcinogenesis. It is putative that adipocyte serves as a
crucial role in the tumor microenvironment through the
secreted adipokines, leading to carcinogenesis, metastasis, and
chemoresistance. Obesity-associated hepatocarcinogenesis may
be associated with the remodeled adipose tissue, genetic factors,
inflammation, oxidative stress, and immunity alterations.
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