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ABSTRACT
Accurate information on rainfall data is essential for numerous operational and research fields. Conventionally,

ground-based measurement is the main source of rainfall data. However, in developing countries, networks of

ground-based measurements are very sparse or nonexistent. An alternative to this measurement could be satellite-

based rainfall estimates (SREs). However, SREs need to be validated as their accuracy can be affected by topography

and climate. This study seeks to investigate the spatiotemporal relationship between gauge and SREs over the Awash

River basin. The Climate Hazards Group Infrared Precipitation (CHIRP), CHIRP combined with station

observations (CHIRPS), and African Rainfall Climatology version 2 (ARC2) are evaluated at dekadal (10-day),

monthly and annual time-scales for selected normal years against 37 ground-based measurements located at different

elevations of the basin. A point-to-grid-based comparison is adopted, using continuous statistical validation tools.

Temporal and spatial analysis indicates the basin exhibits tremendous spatial variability in the rainfall amount which

varying from 190 mm in lowland to 1300 mm yr-1 in highland, with significant correlation. From the overall analysis

at dekadal, monthly, and annual temporal scale, CHIRPS followed by CHIRP exhibited better performance in

comparison to ARC2. ARC2 product is poorly performed SREs with underestimations of high rainfall rate. The

agreement between the SREs and ground-based measurement improved with increase in time scale from dekadal (for

instance CHIRPS has correlation > 0.77, Nash-Sutcliff efficient coefficient (Eff) > 0.59, root mean square error

(RMS) < 22.1, and bias ≤ 1.1) to monthly (correlation > 0.89, Eff > 0.79, RMSE < 39.0 and bias ≤ 1.0), but the

performance of these products decrease when aggregated into annual time scale ( correlation > 0.40, Eff > -0.56,

RMSE < 161.10). In general, the SREs shows good agreement with ground-based measurements over the highland

parts of the basin at dekadal and monthly time scale, however, at an annual time scale, all products show better

performance over the lowland parts of the basin. This study demonstrates the reliability of satellite rainfall estimates

in regions where the spatial network of the gauge is highly sparse and inaccessible.
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INTRODUCTION
Accurate information on rainfall is essential for numerous
operational and research fields of water management,
hydrological applications, and agricultural forecasts (Sunilkumar

et al., 2015). Conventionally, the ground-based measurement is
the main source of rainfall data. However, in many parts of the
world and especially in developing countries, ground-based
measurements are very sparse or nonexistent (Behrangi et al.,
2011) and hence supplementing rainfall estimates from satellite-
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based sensors is important. However, these satellite estimates
need local validation.

The number of ground-based rainfall measurement in Ethiopia
is still less than the minimum station density recommended by
the world meteorological Organization (WMO, 1996), as a
result, the data provided by National Meteorological Agency
(NMA) of Ethiopia pause many inadequacies like many National
Meteorological Stations in Africa (Dinku et al., 2014). For
instance, ground-based rainfall measurement in the Awash River
basin, especially in the lowland parts of the basin, is extremely
sparse with no stations over some parts of the basin. In
addition, the existence of ground-based measurements is located
along main roads in a town and cities. Because of the
unrepresentative distribution of ground-based measurement, the
dependability on ground-based measurement to estimate the
spatial distribution of rainfall over large areas of Ethiopia is
considerably reduced (Ayehu et al., 2018).

Advances in remote sensing science have provided an
opportunity to estimate rainfall from satellite observations and
are becoming an important alternative source of rainfall data
(Ayehu et al., 2018). Satellite rainfall estimates (SRE) are
advantageous in terms of temporal and spatial coverage, as well
as they can provide data in ungagged basins (Katsanos et al.,
2015). At present, there are now relatively new satellite-based
rainfall products with good spatial (0.05◦ latitude/longitude)
and temporal (daily, pentad, dekadal, and monthly) resolution,
as well as quasi-global coverage (50◦ S–50◦ N) for a longer
duration. These are the Climate Hazards Group (CHG) Infrared
Precipitation (CHIRP) and CHIRP combined with station data
(CHIRPS) from the University of California at Santa Barbara
and U.S. Geological Survey (Funk et al., 2014; 2015a). ARC2 is
also another new product with relatively high spatial (0.1˚ and
0.0375˚, respectively) and temporal (daily) resolutions. Despite
its importance as an alternative source of rainfall data, satellite
rainfall products need to be validated as their accuracy can be
affected by geographical position, topography, and climate, as
well as by the algorithms used to derive rainfall from satellite
measurements (Meng et al., 2014; Xue et al., 2013).

Assessment and inert-comparison of different rainfall products
over complex topography like Awash River basin are essential to
determine which products are representative. A number of
studies have been conducted over different parts of Ethiopia to
compare satellite rainfall products with ground-based
measurements at different spatial and temporal scale (e.g.
Gebremichael et al., 2014; Worqlul et al., 2014; Beyissa et al.,
2017; Gebremichael et al., 2017; Ayehu et al., 2018; Dinku et al.,
2007; 2018; Gebrechorkos et al., 2018). However, many of these
studies have mainly focused on the Upper Blue Nile basin and
to some extent on whole and central Ethiopia. The results of
these studies indicated that the skills of SREs vary with the
characteristics of local climate, topography, and seasonal
distributions of rainfall. Therefore, the reliability of satellite
rainfall needs to be assessed against ground measurements to a
specific area and temporal scales before it can be used in any
subsequent application (Feidas, 2010). Other studies (e.g.
Romilly and Gebremichael, 2011; Hirpa et al., 2010)
documented validation of SREs over Awash River basin. None

of these studies evaluated CHIRP, CHIRPS, and ARC2 SREs
reliability in detail over the Awash River basin. Moreover, these
studies used small numbers of ground-based measurements
across the basin and lack validation based on a stratified sample,
for example, based on elevation. The results of these and other
similar studies indicated that SREs have major limitations in re-
producing rainfall fields in mountainous regions. Therefore,
using additional information, such as ground-based
measurement data at different elevations (e.g. Hirpa et al.,
2010), may be needed to assess the accuracy of rainfall estimates
from SREs.

Therefore, further assessment and comparison studies in
different mountainous regions of the country are important to
explore the strength and limitations in SREs. The current study
is intended to evaluate the performance of CHIRP, CHIRPS,
and ARC2 with 37 ground-based measurements across various
altitude at Awash River basin at dekedal (10 daily), monthly, and
annually temporal scale. These satellite rainfall products are
selected because CHIRP and CHIRPS have a relatively high
spatial and temporal resolution (5.3 km), and are freely
available. The ARC2 is also selected, as it has similar properties
as CHIRP, and CHIRPS (TIR-based, relatively high spatial
resolution and long time series).

METHOD

Study Area Description

The study focuses on the evaluation of dekadal, monthly, and
annual climate data sources for the Awash River basin, Ethiopia.
Awash River basin is one of the 12 river basins of Ethiopia and
covers a total land area of 110,000 km2. It lies within 7° 53’ N
and 12° 08' 24" N latitude and longitudes of 37° 57’ E and 43°
25’E (Figure 1,at the end of the text). The basin exhibits
dramatic variation in elevation, making it suitable to examine
satellite rainfall products over different elevations ranging from
4096 meter at highland to 105 meter above sealevel lowland.
The movement of the Inter-Tropical Convergence Zone (ITCZ)
and the influence of the Indian Monsoon throughout the year,
mainly determine the climate pattern of the Awash River Basin
(Romilly and Gebremichael, 2010). Based on the movement of
ITCZ, the amount of rainfall and the rainfall timing, there are
three seasons in the Basin. There are three seasons in the Awash
River basin; these three seasons are Kiremt, which is the main
rainy season (June-September in a highland and some parts of
midland, and July-September over most parts of midland and
lowland), the Bega, which is the dry season (October-January),
and Belg, the small rainy season (February-May). The mean
annual rainfall of the basin varies from about 1,400 mm in the
highland northeast of Addis Ababa to 200 mm in the lowland
of parts of the basin. The mean annual temperature of the
Awash River Basin ranges from 20.8° C in the upper part to 29°
C in the lower part.

Data source

Rainfall: Daily rainfall data for 66 independent weather stations
located at a different elevation (highland, midland, and lowland)
of the Awash River basin were obtained from National
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Meteorological Agency (NMA) of Ethiopian (Table 1; at the end
of the text after reference). It became apparent that there were
missing data points; more than 70% of the data was available
from 1987 to 2016 for most of the station included in the study.

Satellite-based Rainfall: Three satellite rainfall estimates are
utilized in this study: CHIRP, CHIRPS, and ARC2. A detailed
explanation of the CHIRP and CHIRPS products has been
provided in Funk et al. (2014; 2015a/b) and for detailed
information about ARC2 the reader is rereferred to (Novella et
al., 2013). A summary of the explanation of the CHIRP, and
CHIRPS algorithm and process is given below, while their
summary is provided in (Table 2).

The CHIRP and CHIRPS algorithm combines three main data
sources: (a) the Climate Hazards group Precipitation climatology
(CHPclim), a global precipitation climatology at 0.05° latitude/
longitude resolution estimated for each month based on station
data, averaged satellite observations, elevation, latitude and
longitude (Funk et al., 2012; 2015b); (b) TIR-based satellite
precipitation estimates (IRP); and (c) ground-based rain-gauge
measurements. The CHPclim is distinct from other
precipitation climatologies in that it uses long-term average
satellite rainfall fields as a guide to deriving climatological
surfaces. This improves its performance in mountainous
countries like Ethiopia (Funk et al., 2015a). The CHIRP/S
algorithm involves the following steps (Funk et al., 2015a): (a)
derive TIR precipitation estimates (IRP) from quasi-global
geostationary satellite observations, which are generated using
local regressions between Tropical Rainfall Measuring Mission
multi-satellite precipitation analysis pentads (TMPA 3B42:
Huffman et al., 2009; 2011) and cold cloud duration (CCD); (b)
convert the IRP to percent-age anomalies and multiply by the
CHPclim, producing the unbiased precipitation fields. (b)
results in the CHIRP product (an unbiased IRP), which is a time
series that goes back to 1981 at a spatial resolution of 0.05˚
latitude/longitude.

Merging of station data with CHIRP is done at pentad (5-day)
and monthly time-scales with the pentads later rescaled such
that the sum of pentads in a calendar month is equal to the
monthly values. A daily version is created from the pentads and
monthly fields. The daily CHIRPS use daily CCD percentages
to discriminate between rain/no-rain events, and then the
corresponding pentad rainfall is partitioned among the daily
rain events proportional to the percentage of CCD. Two
versions of CHIRPS are produced operationally. The
preliminary version uses just GTS stations, which are then
updated to the final version with more station data. Preliminary
CHIRPS is available 2 days after the end of a pentad, while the
final version is generated the third week of the following month.
The CHIRP product may also have some inhomogeneity due to
missing satellite slots in the early 1980s.

ARC2 is the second version of the ARC and is compatible with
the algorithm of the Africa Rainfall Estimation Version 2 (RFE
2.0) (Novella et al., 2013). The product is a composite of 3-
hourly geostationary infrared data, which makes it different
from RFE, centered over Africa provided by the European
Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) and quality-controlled daily rainfall records

acquired from the Global Telecommunication System (GTS)
gauges (Gebrechorkos et al.,2018). ARC2 is consistent with the
historical data sets of the Climate Prediction Center Merged
Analysis of Precipitation (CMAP) (Xie and Arkin, 1997) and
Global Precipitation Climatology Project (GPCP) (Novella et al.,
2013). The data set is updated regularly and it is available at a
spatial resolution of 0.1˚ covering the period from 1983 to
present at a daily time-scale (Gebrechorkos et al., 2018). The
ARC2 algorithm uses three-hourly thermal infrared (TIR)
brightness temperature and a threshold of 235 K for
discriminating raining clouds from non-raining ones. This
temperature threshold is used to compute CCD from satellite
TIR images. Then a simple linear relationship is adopted to
convert CCD into rainfall amounts. Rain-gauge data made
available through the World Meteorological Organization’s GTS
are used to adjust the final ARC2 product (Dinku et al., 2018).
ARC2 is available at the International Research Institute climate
data library (IRI/LDEO, 2016).

Data Analysis

A conventional approach for classifying the Awash River basin
based on climatological, physical, socio-economic, agricultural,
and water resource characteristics is to divide it into upper,
middle, and lower Awash River sub-basins (Bekelle et.al 2017).
However, this classification does not show any clear boundary
among the sub-basin. Therefore, the current study classifies the
basin into three large climatic zones such as highland, midland,
and lowland based on the traditional climatic zone of Ethiopia,
which mainly relies on altitude and temperature (MoA, 2000;
Table 3; at the end of the text).

Quality Control of Rain-gauge Data

Filling of missing value, outlier detection, and homogeneity of
data is important steps when analyzing time-series data. Most of
the methods that estimate missing data, derive missing values
using observations from the neighboring station (Sattari et al.,
2016). In the context of the Awash River basin, the number of
rain gauge stations with complete records for a longer period is
very limited. As a result, filling of the missing values could
produce the bias on the comparison. Therefore, the current
study ignores filling of the missing data points and if there is
station with more than 20% missing value, the station was
excluded from the study (e.g. Romilly and Gebremichael, 2011).
The approach chosen was to assess the data using a selected
normal year, thereby minimizing the random errors in the data.
Accordingly, 41 stations with continuous daily rainfall data are
selected (Table 1). As there is variation in the years of missing
data among stations, the current study selected only normal
years i.e a year with Standardized Rain Anomaly (SRA) value
between -1 to 1 (Eq. 1). This makes possible the determination
of the dry, normal, and wet years in the record (WMO, 2012).
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Where, SRA is standardized rainfall anomaly, P is annual
rainfall in year t, P ̅m is long-term mean annual rainfall over a
period of observation and σx is standard deviation of rainfall
over the period of observation. SRA is utilized according to
McKee (1993) classification.

Spatial and temporal checks are carried out on the dekadal
rainfall values (e.g. Dinku et al., 2018). The spatial quality check
procedure compares the values of a given station with
corresponding values of the nearby stations if there. The
temporal check compares the consistency of a given dekadal
value with values for the same dekad of other years at the same
station. However, the quality check procedures may not remove
all the errors. The homogeneity of the annual total rainfall was
investigated by using statistical analysis tool (XLSTAT 2014),
with the most widely used homogeneity tests such as; the Pettitt
test, the Standard Normal Homogeneity Test (SNHT) for a
single break, the Buishand Range test (BRT) and the Von
Neumann ratio test (VRNT) to detect the inhomogeneity in the
time series (e.g. Firat et al., 2010). According to Wijngaard et al.
(2003), this test has been found useful for testing the
homogeneity of the climate dataset. According to Wijngaard et
al. (2003), the results of the tests are categorized into three
classes according to the number of tests rejecting the null
hypothesis as follow: Class A (as Useful): the series that rejects
one or none of the Ho under the four tests at 5% significance
level are considered as homogeneous and can be used for
further analysis. Class B (as Doubtful): the series that reject two
Ho of the four tests, the series has the inhomogeneous signal
and should be critically checked before further analysis. Class C
(as Suspect): when there are three or all of the tests reject the
null hypothesis at 5% significance level. In this category, the
series can be deleted or ignored before further analysis.

Comparison of Satellite Rainfall Etimation against
Ground-based Mesurments

The comparison between gridded SREs and ground-based
measurement can be made using either grid-to-grid or point-to-
grid comparison methods. However, an attempt made to convert
point ground observations to gridded interpolated dataset led to
poor results due to uneven geospatial distributions of gauge
stations (Ayehu et al., 2018). Therefore, in this study point-to-
grid comparison approach is used. For each station included in
the study, the grid values of satellite rainfall products containing
the stations were extracted (e.g. Ayehu et al., 2018). Spatial
variability is assessed based on averaged annual rainfall for the
considered period derived from both ground-based observation
and SREs with the aim of identifying regions where SREs were
highly comparable to ground observation. The spatial
distribution of rainfall data is directly interpolated by Inverse
Distance Weight (IDW) technique with a power of two (e.g.
Xianghu, 2014; Eq. 2). The IDW estimator is calculated for the
location 𝑢0, where no measurements are present as:

Where 𝑢 is the distance between the location 𝑢0 and each
observation and r is an exponent.

Coefficient of variation (Eq. 3) and time series analysis is used
to investigate the dekadal, monthly and annual variability of
rainfall for both datasets. The time series of the 37-station is
classified in to three homogeneous classes (station located at
highland, midland, and lowland). The time series analysis is
performed by averaging the long year dekadal and monthly data
in to homogeneous classes and presented graphically.

Where, CV is the coefficient of variation; X ̅ is the average long-
term rainfall and S is the standard deviation of rainfall.

To evaluate the performance of satellite rainfall product against
ground-based measurement four pairwise comparison statistics
are used (Table 4, at the end of the text). Pearson correlation
coefficient (Eq. 4) is applied to evaluate the agreement of
individual products: satellite (S) to ground-based measurement
(G) with perfect score of one (Gebrechorkos et al., 2018).

Where r: is the person correlation coefficient; G: gauge rainfall
measurement; G ̅. - average gauge rainfall measurement; S:
Satellite-based rainfall estimate; S ̄ average Satellite-based rainfall
estimate; N: number of data pairs.

Root Mean Square Error, RMSE (Eq. 5), is a frequently used
measure of differences between two variables (acquires only
positive values) lower RMSE values indicate greater central
tendencies and generally smaller extreme errors and have a
perfect score of 0 (Toté et al., 2015)

Nash-Sutcliffe efficiency coefficient, Eff (Eq. 6) shows how well
the estimate predicted the observed time series, and it varies
from minus infinity to one: negative values mean that the gauge
means is better than the satellite-based estimate, zero means that
the gauge mean is as good as the estimate, and 1 corresponds to
a perfect match between gauge measurements and satellite-based
estimates (Toté et al. 2015).

Bias (Eq. 7) is a measure of how the average satellite rainfall
magnitude compares to the ground rainfall observation. A value
of 1 is the perfect score. A bias value above (below) 1 indicates
an aggregate satellite overestimation (underestimation) of the
ground rainfall amounts (Ayehu et al.,2018).
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A detailed description of these statistics can be found in Toté et
al. (2015) and Thiemig et al. (2012).

RESULTS AND DISCUSSIONS

Data Processing and Quality Control

Data gaps, errors, and low density of rain gauge networks are the
main challenges especially over the lowland parts of the basin.
For example, two station from midland (Merssa and Zequala),
three station from lowland (Adaitu, Dubty and Gawane), and
one station from highland (Sendefa) at which there is at least
greater than 15% missing value (Table 1, at the end of the text).
As a result, the current study selects only the normal year (the
year with SRA value between -1 to 1). Depending on available
data 15-25 years ( within 1987 –2016), is considered as an ideal
period for evaluating climate condition of last three decades.
Low density of the rain gauge network and data limitation over
the Awash River basin is also noted by Hirpa et al. (2010).

As homogeneity test analysis indicates, 37 stations are found
homogeneous whereas four stations (Addis Alem, Awash
melkam, Aliyu amba, and Tulu bolo) are found inhomogeneous.
4 out of 41 stations are considered inhomogeneous whose
change points are found to be insignificant at 5 % level of
significance by the four-homogeneity test (SNHT, Pettitt, BRT,
and VNRT). For example, homogeneity test at Addis Ababa
Bole station shows station data homogeneity without any
changing point (Figure 2). The station found inhomogeneous
are excluded from further analysis. For example, all three tests
(Pettitt, SHNT, and BRT) detected a change point around 2001
in Addis Alem station (Figure 3). The outcome of the tests is
that most tests detected change points at around the same years
at almost all stations. The likely reason for this inhomogeneity
may be due to non-climatic factors, which make data
inhomogeneous such as; location of the stations, type of
instrument, observing practices and station environment.
Karabörk et al. (2007) noted that simultaneous inhomogeneities
may arise from simultaneous changes in observational routines.

Temporal Variability of Rainfall using Ground-
based Measurement and SREs

As per the ground-based measurement, the average annual aerial
rainfall distribution across the basin varies from 454.8 mm yr-1
in lowland to 1070.1 mm yr-1 highland. The highest variation in
annual areal rainfall is observed mainly over the lowland parts of
the basin (Table 5, at the end of the text). From the ground-
based measurement result, it can be observed that over some
parts of midland and most highland parts of basin, the main
rainy season began starting from June first and reached its peak
in July to August, then the rainfall decreased sharply starting
from beginning of September to second of October. The dry
season set in the third of October and lasted through January.

Meanwhile, the main rainy season in most midland and lowland
on-set very fast from the first of July and reach its peak on the
third of August, then the rainfall decreased sharply from the
first of September to the second of October. The short rainy
season start in February and end in June (Figure 4).

In general, the three SREs (CHIRP, CHIRPS, and ARC2) have
good agreement with ground-based measurement. CHIRPS and
CHIRP described almost similar spatial rainfall distribution
with the ground-based measurements over the basin, while
ARC2 product shows an underestimation of high rainfall rate
and slight overestimation low rainfall value (Table 5). Besides,
the ARC2 product showed the highest coefficients variation
value in areal annual rainfall than the other SREs. Charles et al.
(2005) documented moderate variation in annual rainfall is (CV
< 30%), therefore the annual rainfall variation showed by
ground-based measurements and SREs is moderate at most parst
of the basin.

The basin exhibits tremendous spatial variability in the average
annual areal rainfall. All products show that the rainfall pattern
is controlled by topography: high-elevation areas receive more
rain than do low-elevation areas. This may be due to orographic
uplifts since in most case rainfall increases with elevation due to
the orographic uplifts (Worqlul et al., 2014). This is in line with
other studies (e.g. Romilly & Gebremichael, 2011 and Bekele et
al., 2016). As the time series analysis indicated, there is inter-
annual rainfall variability in the basin. This might be due to the
movement of ITCZ, which causes most of the inter-annual
rainfall variability in Ethiopia (Seleshi & Zanke, 2004). Results
are in agreement with the other studies (e.g. Degefu, 1987;
Edosso et.al., 2010). The high rainfall variation based on the CV
is also observed mainly over the lowland parts of the basin. A
similar conclusion was arrived by Mersha (1999; 2003) who
reported that the rainfall variability is higher in areas of low
annual rainfall.

Spatial Variability Between Ground and Satellite-
based Rainfall Estimation

The spatial distribution of annual averaged rainfall for selected
normal years derived from ground-based measurement, and
SREs (CHIRPS, CHIRP and ARC2) are presented in (Figure 5,
at the end of the text). As the ground-based measurement
indicates, the rainfall varies in relation to the topography from
highland to lowland (Figure 5). The largest annual rainfall
occurred in the highland part of the basin (with annual rainfall
as high as 1,300 mm), while the lowest one is observed in the
lowland (about 190 mm). ARC2 showed underestimation of
higher rainfall value and slight overestimations of low rainfall
rates (Figure 5A). CHIRP and CHIRPS (Figure 5B, & 5C)
showed almost similar rainfall distribution with ground-based
measurements respectively. In addition, absolute values varied
considerably from one dataset to another and their distribution
regions differ from that of rain gauge estimates, especially for
ARC2. As the result indicates, the inter-annual rainfall
variability shown here is similar to the result obtained in
temporal rainfall variability analysis. The possible reason and
explanation for this variability were given under section 4.2 and
will not repeated here. The most likely reason for the poor
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capacity of ARC2 to estimate the actual rainfall amount might
be due to sensor signal unable to penetrate the clouds (Thiemig
et al., 2013). Another likely possible reason for underestimations
of ARC2 might be attributed to the complex topography of the
validation site that may reduce the ability to identify rainy
clouds (Dinku et al., 2007; Funk et al., 2015b). This result was
consistence with the studies of (Gebremicael et al., 2017; Ayehu
et al., 2018). Which indicates that satellite rainfall products have
challenges to estimate orographic precipitation in basins with a
complex topograph.

Validations of SREs With Ground-based
Measurement

SREs Dekadal Validation: The correlation between ground-
based measurements and SREs shows wide scatter for all the
products at dekadal time scale (Figure 6). The wider scatter is
mainly observed over the lowland than the other parts of the
basin, and this wider scatter is mainly attributed to ARC2. The
CHIRPS products have less scatter compared to the other
products. On the other hand, there is no considerable difference
between CHIRP and CHIRPS. As the validation result at
dekadal scale shows (Figure 7, at the end of the text), all
products represent the spatial distribution of rainfall reasonably
well. However, there are also differences among the different
products. ARC2 has the lowest validation result over lowland
(Eff = 0.15), and (CC= 0.63), and highest result over the
highland parts of the basin (Eff = 0.69), and (CC = 0.84). It has
the highest random error over highland and midland parts of
the basin (RMSE = 27 and 28). In terms of bias, it shows under
and overestimation of rainfall rate at different elevations of the
basin (Figure 7). CHIRPS followed by CHIRP has better
validation result (Eff ≥ 0.44), (CC ≥ 0.65) and lowest random
error with little or no bias compared to ARC2 products over
different elevations of the basin. Overall dekadal validation and
comparison indicated that CHIRPS followed by CHIRP has a
high level of correspondence with ground-based observations
and may have a useful skill for various functions in the study
area. As the results scatter plot indicates (Figure 6), ARC2 has
wider scatter than the other products may be due to missing of a
significant number of rainfall event. ARC2 miss orographic
rainfall processes because of the cold temperature thresholds
used by ARC2 algorithms (Dinku et al., 2018). This wider
scatter (variation) is mainly observed over the lowland than the
other parts of the basin. This scatter may be attributed to
uncertainty in station locations, and uncertainties associated
with some gauge observations. A similar result was arrived by
(Romilly & Gebremichael, 2011) in the evaluation of SREs over
Ethiopia, and reported that variation in the performance of the
SREs is larger at elevations lower than 1500m.

As the results of validation statistics indicate, the two SREs
(CHIRPS, CHIRP) shows good agreement with ground-based
measurement over the highland and weakest but still good
agreements over the lowland parts of the basin (Figure 7),
however, ARC2 shows slight overestimations of low rainfall and
underestimations of high rainfall amount substantially over the
lowland and highland parts of the basin respectively (Figure 7).
The worst result of ARC2 may be attributed to two main factors.

The first is that ARC2 uses a single rain/no-rain threshold (235
K) for the whole of Africa (Novella and Thiaw, 2013). As a
result, ARC2 may miss rainfall from warm cloud processes such
as orographic rains. The other factor is that ARC2 uses three-
hourly, as opposed to half-hourly, TIR observations. As a result,
it may miss some short-lived rainfall events, which are frequent
over the Tropics (Dinku et al., 2018). A likely reason for
overestimations ARC2 at lowland, ARC2 overestimates rainfall
amounts over most the dry and warm regions probably because
of sub-cloud evaporation and other factors (Dinku et al., 2018).
CHIRP is much better than ARC2. It has a little or no bias and
higher validation result than ARC2. In addition to the
algorithm itself, CHIRP has one main advantage over ARC.
This advantage is the use of carefully generated gauge–satellite
climatology, CHPclim (Funk et al., 2015a) to remove mean
biases. However, CHIRP, and CHIRPS rainfall fields show some
low rainfall values over some areas where ground observations
and the other satellite products show zero rainfall values. This
artefact may be due to the use of TRMM TMPA as “truth” data
in the TIR estimation procedure. Since the TMPA is at 0.25◦
resolution, training to this data may produce light rain (Dinku
et al., 2018). The CHIRPS product has not been discussed
separately above because it has been shown that it is very similar
to CHIRP. There is no substantial difference observed between
these two products. This may be due to the addition of the new
station observations for each dekad of each year should have
improved CHIRP (Dinku et al., 2018).

SREs Monthly Validation: As expected, the monthly
aggregations have reduced the scatters considerably, but wider
scatter and underestimation of rainfall amounts by ARC2 stand
out in (Figure 8). Similar to dekadal validation the higher scatter
is mainly observed over the lowland parts of the basin. CHIRPS
and CHIRP products have less scatter. The validation statistics
have also improved with higher correlations (CC ≥ 0.89, and
0.81) skill (Eff ≥ 0.79, and 0.65) for CHIRPS and CHIRP
products respectively over the different elevation of the basin
compared to the dekadal (Figure 9), but shows slight
overestimations of rainfall rate over some parts of basin. The
performance of ARC2 has also shown improvement over the
different elevations of the basin, but ARC2 shows an under and
overestimation rainfall rate over different elevations of the basin.
However, comparing both topographic features, the magnitude
of underestimation is greater than that of overestimation in
most products. The lowest RMSE score (21.8 mm month–1) is
attributed to CHIRPS, while the highest RMSE score (61.5mm
month-1) is attributed to ARC2 (Figure 9). The agreement
between the satellite rainfall products and ground-based
measurement improved with the increase in time scale (from
dekadal to monthly). This may because errors at smaller time
scales offset each other when aggregated (Gebremicael et al.,
2017). Many studies (e.g., Gebremicael et al., 2017;
Gebrechorkos et al., 2018; Ayehu et al., 2018) reported that the
performance of satellite rainfall estimates improved as time step
increased. In contrast, the performance of these products is not
uniform with an increasing spatial scale. All satellite rainfall
products show good agreement with ground-based measurement
over the highland and weakest agreements over the lowland
parts of the basin. This is the contradictory result with studies

Edris S

J Remote Sens GIS, Vol.10 Iss.7 No:1000P151 6



performed in the Tekeze-Atbara Basin (Gebremicael et al., 2017)
and other parts of the country. These differences could be due
to factors such as; uncertainty in gauge measurement, data used
and gauge density. Since there were more data Gaps,
measurement discontinuities and low density of the rain gauge
network in lowland than the other parts of the basin. As, a well-
designed rain gauge network with a sufficient number of rain
gauges, can reflect the spatial and temporal variability of rainfall
in a catchment (Yeh et al., 2011).

SREs Annual Validation: Unexpected, low performance is
obtained for annual timescale compare to monthly and dekadal
timescale. As a result of the scatter plot indicates, the SREs show
wide scatter for all products at the annual time scale compared
to dekadal and monthly time scale (Figure 10). The wider scatter
is mainly observed over the highland than other parts of the
basin. This is contradictory with dekadal and monthly analysis.
The validation statistics is also considerably reduced, most of the
SREs shows slight under and overestimation of rainfall
amounts, and they are weakly correlated with ground-based
measurement (r < 0.50), lower skill and large random errors
particularly over the highland parts of the basin (Figure 11). In
general, CHIRPS followed by CHIRP shown a satisfactory
agreement with the ground-based measurement, and the weakest
result is attributed by ARC2 at the annual time scale. In terms
of Bias, CHIRPS, and CHIRP presented Bias scores
approximately equal to 1, but ARC2 shows an under and
overestimation of high and low rainfall rate respectively. The
lowest RMSE score (70.4 mm yr–1) over the lowland is
attributed to CHIRPS and the highest RMSE score (388.2 mm
yr–1) over the midland is attributed to ARC2.

Unexpectedly, the worst performance is obtained at annual
timescale compare to dekadal, and monthly. RMSE increase
when time step increase, this may be due to increasing rainfall
amount when aggregated into a large scale. All SREs showed
slight under and overestimations of rainfall rate with low
validation statistics particularly over highland parts of the basin.
Most validation and comparison studies are conducted at daily,
dekadal and monthly temporal scales (e.g., Gebremicael et al.,
2017; Gebrechorkos et al., 2018; Ayehu et al., 2018; Tufa Dinku
et al., 2018), and reported that the performance of satellite
rainfall estimates improved as time step increased. In contrast,
the results of this study show that the performance of satellite
rainfall products is not uniform with increasing time steps from
monthly to yearly. This may be due to the data and location
selected by the current study. A similar result was obtained by
Zambrano et al., (2017), and reported that the possible sources
of error may be due to aggregations of small systematic biases.
The result of the topographic features demonstrates that the
overall validation result of SREs is better in lowland than in
highland areas. This suggests that the satellite product challenges
to estimate orographic rainfall in complex topographic areas like
the Awash River basin. This result is in agreement with other
studies (e.g. Gebremicael et al., 2017; Ayehu et al., 2018; Dinku
et al., 2007). In general, CHIRPS followed by CHIRP is the best
performing SREs in characterizing basin rainfall characteristics
than ARC2 at all temporal and spatial scale. The better
performance of CHIRPS can be explained by the fact that it to
considers topographic effects and its high spatial resolution

(Katsanos et al., 2016). A similar result has been obtained by
Dinku et al. (2018); Gebrechorkos et al. (2018) over East of
Africa; Ayehu et al. (2018); Bayissa et al. (2017) over Upper Blue
Nile Basin, and Duan et al. (2016) over Italy and Toté et al.
(2015) over Madagascar are among many other studies that
compare CHIRPS with other different SREs and found
CHIRPS as best-performing SREs.

CONCLUSIONS
The objective of the study is to assess and compare three widely
used high-resolution satellite-based rainfall data (CHIRPS,
CHIRP, and ARC2) with 37 rain gauge data located at different
elevations at Awash River basin, and investigate their spatial and
temporal characteristics at dekadal, monthly and annual rainfall.
A point-to-grid-based comparison is carried out at different
temporal scale using continuous statistical validation tools.
Spatial variability is assessed by interpolating the average annual
rainfall for the normal year using IDW with power 2. The
coefficient of variation (CV) and time series analysis was used to
investigate the temporal rainfall variability. 

The data limitation and low density of the rain gauge network
were the main challenges especially over the lowland parts of the
basin. The basin exhibits tremendous spatial variability in the
mean annual rainfall, and both products (ground-based
measurement and SREs) show that the rainfall pattern is
controlled by topography. The highest rainfall variability is
observed mainly over the lowland parts of the basin. Overall,
good agreement has existed between the SREs and ground-based
measurements in the characterizing of rainfall distribution over
the basin. CHIRPS and CHIRP show a consistence rainfall
distribution with ground observation over different elevations of
the basin. Meanwhile, ARC2 shows an under and
overestimation of the rainfall rate over the different elevations of
the basin. There were no significant differences between CHIRP
and CHIRPS. The agreement between the satellite rainfall
products and ground-based measurement improved with an
increase in time scale (from dekadal to monthly), but
surprisingly the performance of these products is decreased
when aggregated into an annual time scale. In addition, all SREs
shows good agreement with ground-based measurements over
the highland, and weakest agreements over the lowland parts of
the basin at dekadal and monthly time scale, but at annual time
scale all product shows better performance over the lowland
parts of the basin. The reliable performance of CHIRPS at
different elevations could make the product more appropriate
for various hydrological and rainfall analysis functions for the
basin. In addition, the product can be used to check the
acceptability of available ground-based measurement or
substitute ground observations in the basin where ground
station data are not available or accessible in most case. This
study suggests the use of satellite data in regions where the
spatial network of stations is highly sparse. It seems relevant to
use more rain-gauge stations with complete daily data in future
studies, and a pixel-to-pixel analysis can be applied to conduct
in-depth analysis. Furthermore, studies should be also carried
out to understand the reasons why the performance SREs is not
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uniform with increasing time step over different elevations at
the Awash River basin.

References
1. Ayehu G.T., Tadesse T., Gessesse B., Dinku T.. Validation of new

satellite rainfall products over the Upper Blue Nile Basin,
Ethiopia. 2018; 1921–1936.

2. Bayissa Y., Tadesse T., Demisse G., Shiferaw A.. Evaluation of
Satellite-Based Rainfall Estimates and Application to Monitor
Meteorological Drought for the Upper Blue Nile Basin, Ethiopia.
Remote Sens. 2017; 9(7): 669.

3. Behrangi A., Behnaz K., Tsou C., Amir A., Kuolin Soroosh S.,
Bacchetta N. Hydrologic evaluation of satellite precipitation
products over a mid-size basin. J. Hydrol. 2015; 397:225-237.

4. Bekele D., Alamirew T., Kebede A., Zeleke G., Melesse A.M..
Analysis of rainfall trend and variability or agricultural water
management in Awash River Basin, Ethiopia. J. Water Clim.
Chang. 2017; 8:127–141.

5. Charles V.J., Ellen M.D., Pamela A.G. Carmen R.. Geospatial
indicators of emerging water stress: an application to Africa.
AMBIO A J. Hum. Environ. 2005; 34: 230–236.

6. Degefu W. Some aspects of meteorological drought in Ethiopia. In
M. H. Glantz (Ed.), Drought and Hunger in Africa. Cambridge:
Cambridge University Press. 1987.

7. Dinku T., Block P., Sharoff J., Hailemariam K., Osgood D., Corral
J., Thomson M.C.. Bridging critical gaps in climate services and
applications in Africa. 2014; 1–13.

8. Dinku T., Ceccato P., Grover-Kopec E., Lemma M., Connor S.J.,
Ropelewski C.F.. Validation of satellite rainfall products over East
Africa’s complex topography. International Journal of Remote
Sensing. 2007; 28(7): 1503–1526.

9. Dinku T., Funk C., Peterson P., Maidment R., Tadesse T., Gadain H.,
Ceccato P.. Validation of the CHIRPS satellite rainfall estimates over
eastern Africa. Quarterly Journal of the Royal Meteorological Society.
2018.

10. Duan Z., Liu J., Chiogna G., Disse M. Evaluation of eight high spatial
resolution gridded precipitation products in Adige Basin (Italy) at
multiple temporal and spatial scales. Science of theTotalEnvironment.
2016; 573:1536–1553.

 

Edris S

J Remote Sens GIS, Vol.10 Iss.7 No:1000P151 8

https://doi.org/10.1002/qj.3244
https://doi.org/10.1002/qj.3244
https://doi.org/10.1002/qj.3244
https://doi.org/10.1002/qj.3244
https://doi.org/10.1016/j.scitotenv.2016.08.213
https://doi.org/10.1016/j.scitotenv.2016.08.213
https://doi.org/10.1016/j.scitotenv.2016.08.213
https://doi.org/10.1016/j.scitotenv.2016.08.213

	Contents
	Assessment of Spatio-temporal Relationship between Gauge and Satellite Rainfall Estimates over Awash River Basin, Ethiopia
	ABSTRACT
	INTRODUCTION
	METHOD
	Study Area Description
	Data source
	Data Analysis
	Quality Control of Rain-gauge Data
	Comparison of Satellite Rainfall Etimation against Ground-based Mesurments

	RESULTS AND DISCUSSIONS
	Data Processing and Quality Control
	Temporal Variability of Rainfall using Ground-based Measurement and SREs
	Spatial Variability Between Ground and Satellite-based Rainfall Estimation
	Validations of SREs With Ground-based Measurement

	CONCLUSIONS
	References


