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Abstract

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary with
time and space. These spatial and temporal variables have been examined separately with some success, but still
elude systematic understanding. The present study investigates the covariance of spatial and temporal factors for
dengue outbreaks in the northern region of Sri Lanka. The relations identified herein demonstrate spatio-temporal
dynamics of the disease and can inform surveillance and control strategies. Multi-satellite remote sensing (RS) data
were used to construct an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/
AVNIR-2 and a digital land cover map were used to extract land usage information. Other data on relevant factors
and dengue outbreaks were collected through institutions and public databases. RS and other data were integrated
and analysed for spatial association analysis and spatial statistics. Our findings show that a combination of
ecological, socio-economic and demographic factors can predict spatial and temporal trends in dengue outbreaks.

Keywords: Dengue; Ecological, socio-economic and demographic
factors; Local Moran LISA statistics; Temporal analysis; Spatial
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Introduction
Since the early 1960s, dengue fever has emerged as a major vector-

borne viral disease and a significant source of the childhood fever
burden in Sri Lanka. Sri Lankan health officials reported 44,456
dengue cases in 2012, corresponding to a rate of 220 infections per
100,000 individuals. Approximately a quarter of reported cases
occurred in children under 15 years of age [1]. Dengue is now
considered to be hyper endemic to Sri Lanka, with detected co-
circulation of multiple serotypes [2,3].

Dengue outbreaks depend on ecological, socio-economic and
demographic factors that vary with time and space. Disease-promoting
factors include:

1) Climate variables of rainfall, humidity and temperature [4];

2) Changes in land cover, particularly rapid unplanned expansion
of urban areas with inadequate housing and infrastructure [5-11]; and

3) High population density [12].

Standing water from rainfall occupies natural depressions
(wetlands, streams, etc.) and human-made containers to create a high
surface area of mosquito habitat. High levels humidity also increases
mosquito fecundity. Temperature increases impact virus development
and vector survival, leading to increases in the proportion of infectious

vectors, mosquito range and bite rates. As the time required for a virus
to become infectious decreases, the virus spreads more efficiently [4].

Rapid unplanned expansion of urban areas leads to development of
communities with inadequate water, sewer and waste management.
The lack of an adequate municipal water supply in such urban areas
often leads residents to store water in large open containers, such as
clay jars and cisterns. Automobile tires, plastic containers and other
forms of debris that build up in crowded urban environments create a
high surface area of standing water [7-10] which becomes mosquito
habitat. Lack of adequate infrastructure and services is typically
associated with impoverished areas and sectors of the population.

The mosquito species Aedes aegypti lives in close association with
humans, preferentially feeding on human blood and reproducing in
human-created habitat [5]. It has been shown to be highly adapted to
urban environments [6,11]. As hosts for the insect, humans face an
increased likelihood of transmission with increasing population
density [12]. Given A. aegypti ecology, rapid, unplanned urbanization
has led to increased global incidence of dengue fever.

Previous studies have identified a large number of ecological, socio-
economic and demographic factors that affect the spatial and temporal
extent of dengue outbreaks in Sri Lanka. Studies examining these
variables have primarily considered different variable separately and
has not clearly demonstrated predictive relationships. Dengue
epidemiology could benefit from additional spatial information and
predictive tools. This study examines the spatial and temporal
relationships of dengue outbreaks in areas of northern Sri Lanka. The
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results can help clarify typical trajectories of the disease and inform
surveillance and control strategies for this region.

Materials and Methods

Study area
Our study area in northern Sri Lanka ranged across twelve regions

of health administration, referred to as Medical Office of Health
(MOH) divisions. Each MOH division consisted of a unique set of
geographic features—including agricultural fields, forested areas,
wetlands, grassland, urban areas, etc. Each division also has a unique
socio-economic make-up. The climate in the region is tropical, with
two monsoon seasons. These include the northeast monsoon
(November to April), and the southwest monsoon (May to October).

Dengue data
The Sri Lankan MOH divisions provided monthly estimates of

clinically confirmed dengue cases from January 2010 through
December 2013. They also provided annual estimates of clinically
confirmed dengue cases from 2007 through 2013.

Rainfall, humidity and temperature
Rainfall data were obtained and processed using the Global Satellite

Mapping of Precipitation (GSMaP) freeware and the combined MW-
IR algorithm. Data were compiled from numerous satellites including
TRMM TMI, Aqua AMSR-E, GCOM-W AMSR2, DMSP SSM/I,
DMSP SSMIS, NOAA-19 AMSU, MetOp-A AMSU and GEO IR. The
GSMap was drafted at the highest levels of precision and resolution
(Temporal resolution: 1 hour, Spatial resolution: Grid latitude-
longitude of 0.1 degrees) [13,14]. The near-real-time version
(GSMaP_NRT) is published with an approximately 4-hour time-lag
from the time of satellite observation, with the reanalysis version
(GSMaP_MVK) available after reprocessing. The monthly average
rainfall from January 2010 to December 2013 and the annual average
rainfall from 2007 to 2013 were obtained by processing the
GSMaP_MVK and GSMaP_NRT data for the study period, and
converting processed data into TIFF image files for incorporation into
the geographic information system (GIS) spatial model.

Humidity (total precipitable water, or vertically integrated water
vapor amount) and temperature (surface temperature) data were
acquired from the JAXA Satellite Monitoring for Environmental
Studies (JASMES) data portal [15]. These geophysical parameters were
acquired from Aqua/MODIS and Terra/MODIS data. Both the Terra
and Aqua satellites include MODIS instruments. MODIS projects a
swath of 2,330 km in width, and views the entire Earth’s surface every
one to two days. Its detectors measure 36 spectral bands between 0.405
and 14.385 µm, and it acquires data at three spatial resolutions: 250 m,
500 m and 1,000 m [16]. We obtained the monthly averages from
January 2010 to December 2013, and the annual averages from 2007 to
2013 by processing the RS data, and converting it into TIFF image files
for integration into the GIS model.

Land cover, including urbanization
A paper survey map was digitized to generate detailed land cover

data. The digital land cover map was also integrated into the GIS
model.

The ALOS/AVNIR-2 dataset was used along with an unmix method
to detect and map urbanization. The unmix method isolates the
contribution of a specific material within a heterogeneous (mixed)
pixel. For a given material, this method records pixel location and
fraction of material present in the pixel. We designated eight material
pixel fraction classes that report subpixel detections in material pixel
fraction increments of 0.20. Pixels determined to have material pixel
fractions of 20-29% belong to class 0.20-0.29, pixels with material pixel
fractions of 90-100% belong to class 0.90-1.00 and so forth.

Population density
We obtained annual population data for respective MOH divisions

from 2007 to 2013 from the Regional Epidemiological Unit, Jaffna.
Combining this information with the MOH division data for the area,
we calculated the population density as a socio-economic and
demographic factor. We also calculated average values from annual
population density estimates at the same scale (MOH division level) to
investigate the annual population density trends. These data were used
for both spatial association analysis and spatial statistical analysis.

Incidence rates
To examine the spatial patterns of dengue occurrence, epidemic

curves were produced by calculating the annual dengue incidence rate
during a period from 2007 to 2013. Annual incidence rates for each
MOH division were calculated from the number of annual confirmed
dengue cases, divided by the total population-years and then
multiplied by 10,000. These rates were expressed as annual confirmed
dengue cases per 10,000 individuals. The average annual incidence at
the MOH division level was also calculated to determine overall trends
in annual incidence. This was used for both spatial association analysis
and spatial statistical analysis.

Spatial analysis in GIS
A polygon layer based on the twelve MOH divisions was integrated

with TIFF image data on rainfall, humidity and temperature within the
GIS model. The pixel (i.e., raster) size was changed from 0.05 to 0.01 to
integrate layers and enable analysis of raster values within the
polygons. We extracted raster value from pixels according to
polygonal templates and then assigned summaries of raster values to
each polygon. The results were tabulated in Excel.

The digital land cover map was also integrated into the GIS model.
The polygon layer and the digital land cover map layer were overlaid.
The land cover data within the polygons were summarized and
tabulated in Excel. Similar methods were used to integrate raster data
on urbanization with MOH spatial divisions. Thus the polygon layer
attributes were also integrated with ecological, socio-economic and
demographic data in Excel.

We also calculated the average annual values for rainfall, humidity
and temperature within MOH divisions. This information allowed us
to visualize variation in annual rainfall, humidity and temperature,
and was used for both spatial association analysis and spatial statistical
analysis.

Temporal analysis
To examine temporal patterns, we used monthly data on dengue

cases, rainfall, humidity and temperature from January 2010 through
December 2013. The moving average (MA) was calculated and
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graphed to examine temporal climate trends associated with dengue
outbreaks. We also calculated average monthly values from monthly
data on rainfall, humidity and temperature to determine trends and
chi-square test inputs. The chi-square test was used to evaluate the
randomness of variation in monthly estimates of dengue cases, rainfall,
humidity and temperature during the study period. The significance
levels were set at 0.05.

Spatial association analysis
Univariate Local Indicators of Spatial Association (LISA) analysis

(implemented in GeoDa) was used to measure the local spatial
autocorrelation of dengue occurrence [17,18]. LISA statistics measure
spatial dependence and evaluate the existence of local clusters within
the spatial distribution of a given variable. They are based on a
statistical index I, developed by Moran to measure the global spatial
autocorrelation of the overall data clustering in a given spatial area
under investigation [19]. Moran’s I ranges from −1 (negative spatial
autocorrelation) to 1 (complete spatial dependence), with 0 indicating
an absence of spatial dependence (i.e., random distribution) [20].

Local spatial autocorrelation analysis was performed based on the
Local Moran LISA statistics, which yield a measure of spatial
autocorrelation for each individual location. LISA statistics revealed
five categories of spatial autocorrelation presented on the cluster map
legend: 1) not significant (i.e., areas that are not significant at the
default pseudo-significance level of 0.05), 2) high-high (high values
surrounded by high values), 3) low-low (low values surrounded by low
values), 4) low-high (low values surrounded by high values) and 5)
high-low (high values surrounded by low values) [21,22]. High-high
and low-low represent positive spatial autocorrelation (i.e., association
between areas of similar values), and high-low and low-high represent
negative spatial correlation (i.e., association between areas of
dissimilar values) [21,23]. A finding of significant clustering for p<0.05
suggests that dengue incidence values are too similar in adjacent
provinces to have occurred by chance, providing significant evidence
for rejecting the null hypothesis of this pattern [23].

Assigning individuals to these four classes depends on the results of
a statistical significance test. We used a test consisting of random
Monte Carlo permutations among the sites located in the spatial lag, to

compare the observed LISA results to those corresponding to the
random permutations [17]. For this analysis, significance was
calculated from 999 permutations, corresponding to a pseudo-p-value
significance threshold of 0.01 and a confidence level of 99% [20].

Spatial statistical analysis
The chi-square test was used to test the spatial association between

ecological, socio-economic and demographic factors and dengue cases.
The ecological, socio-economic and demographic factors were
categorized in two ways: 1) values above or below average values for a
given factor or 2) presence or absence of factor depending on the
factors. Threshold values for these factors were determined from
average values or categorized according to their presence or absence
within spatial units of the GIS model. The statistical significance levels
were set at 0.05.

Results from the chi-square test allowed us to compare differences
in ecological, socio-economic and demographic factors between areas
of significant high-high clustering (i.e., endemic areas) and the areas of
significant low-high clustering (i.e., non-endemic areas predicted to be
under the influence of other model variables), as identified in the
univariate LISA analysis.

Results

Results of temporal analysis
Humidity levels tend to rise in early January in the study area,

remain at elevated levels during the dry season, and then decline with
increasing rainfall in early September. These changes accelerate at
lower temperatures. Distributions of monthly dengue cases show a
compelling degree of variation in step with weather variables. Dengue
case specifically tended to increase after exponential increases or
decreases in rainfall (Figure 1). The chi-square test results affirmed the
significance of the relationship. We observed significant monthly
covariance between dengue cases and rainfall (p<0.01), whereas
dengue cases did not appear to vary with humidity or temperature
variables.

Figure 1: The temporal trends for monthly dengue cases, rainfall, humidity and temperature. Monthly dengue cases in the northern region of
Sri Lanka from January 2010 to December 2013 (purple solid line); the average monthly rainfall in mm (blue solid line); the average monthly
humidity in °C (red solid line); and the average monthly temperature in °C (green solid line). The dashed lines show three-month moving
averages of dengue cases (purple), rainfall (blue), humidity (red) and temperature (green).
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Figure 2: LISA cluster map.

Figure 3: LISA significance map.

Results of spatial association analysis
Figures 2 and 3 show the LISA cluster and significance maps

(respectively) of average values based on annual dengue incidences.
The LISA cluster map shows two types of geographical clustering
(high-high and low-high). The most significant area of high-high
clustering (average annual dengue incidences) accounted for 8.3% of
observed clusters and occurred in the Nallur MOH division. The most
significant area of low-high clustering accounted for 16.7% of observed
clusters and occurred in Kopay and Tellipallai MOH divisions. The
Moran’s I statistic of −0.08 indicated only random spatial variation.

Results of spatial statistical analysis
The spatial statistical analysis revealed that dengue occurrence

correlates with ecological, socio-economic and demographic factors.
Significantly more dengue cases were observed in MOH divisions
(66.7%) with average annual rainfall of >1353 mm compared to in
those with average annual rainfall of <1353 mm (χ2=112.8; p<0.01).
Correspondingly, we also observed significantly more dengue cases in
MOH divisions (66.7%) with average annual humidity of >39.62 mm
compared to those with average annual humidity of <39.62 mm
(χ2=55.6; p<0.01). Moreover, significantly more dengue cases occurred

in MOH divisions (58.3%) with an average annual temperature
>31.2°C compared to those with an average annual temperature of
<31.2°C (χ2=104.7; p<0.01) (Table 1).

Dengue occurrence was also significantly associated with the
presence or absence of urbanized areas (χ2=264.7; p<0.01).
Urbanization within MOH divisions (33.3%) covaried with dengue
occurrence. Significantly more dengue cases occurred in MOH
divisions (50.0%) that had an urbanization ratio of >18% within the
MOH division area, relative to those with urbanization ratios of <18%
(χ2=40.7; p<0.01). MOH divisions with a population density of >1150
(33.3%) hosted a higher number of dengue cases relative to those with
population densities of <1150 (χ2=347.2; p<0.01).

Factors N (%) p (χ2)

Rainfall >1353 mm 8(66.7%) p<0.01 (112.8)

<1353 mm 4(33.3%)

Humidity >39.62 mm 8(66.7%) p<0.01 (55.6)

<39.62 mm 4(33.3%)

Temperature >31.2°C 7(58.3%) p<0.01 (104.7)

<31.2°C 5(41.7%)

Built-up area Presence 4(33.3%) p<0.01 (264.7)

Absence 8(66.7%)

Urbanization >18% 6(50.0%) p<0.01 (40.7)

<18% 6(50.0%)

Pop. Density >1150 4(33.3%) p<0.01 (347.2)

<1150 8(66.7%)

Table 1: Results of spatial statistical analysis.

The chi-square test results showed the Nallur MOH division to be a
high-high clustering area, with urbanized land area and a relatively
high population density. The Kopay and Tellipallai MOH divisions
represented low-high clustering areas having a smaller relative
proportion of urbanized area and lower population densities. These
results indicate significant differences in urbanization and population
density between high-high clustering areas and low-high clustering
areas. Urbanization and higher population density could thus
influence dengue occurrence.

Discussion
Our results showed that dengue outbreaks covary with rainfall,

humidity, temperature, and urbanization and population density. Our
analyses also quantify the degree to which these factors influence
dengue occurrence. The results of spatial association analysis showed
that even though Nallur, Koppay and Tellipallai MOH divisions
cluster together, Nallur represented an endemic area, whereas Kopay
and Tellipallai do not. Variation in dengue cases corresponds to
variation in urbanization and population density between these
endemic and non-endemic areas. Urbanization and higher population
density could thus influence dengue occurrence. This interpretation is
consistent with ecology and behaviour of the vector (i.e., Aedes
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aegypti), which is an opportunistic breeder, highly adapted to urban
and specifically residential environments.

Data concerning urbanization trends were obtained from the digital
land cover map, and not the RS data in the present study. Future
research efforts should be made to determine urbanization trends
from RS data to verify and refine our results and interpretations.

Conclusion
Dengue occurrence within northern Sri Lanka is spatially and

temporally heterogeneous. As such it requires integration of statistical
analysis and GIS. Advances in remote sensing (RS) and the increasing
availability of RS data can be used to refine epidemeological models of
re-emerging diseases such as dengue fever. Spatial and temporal
analysis of cases of dengue fever showed that rainfall, humidity,
temperature, urbanization and higher population density are
predictive variables in the disease’s occurrence in northern Sri Lanka.
Further research must focus on the whole island to improve the
accuracy and scope of spatio-temporal models. An integrated spatio-
temporal prediction model that uses ecological, socio-economic and
demographic factors could substantially improve risk assessment,
prevention and control of dengue outbreaks.
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